
.

1.21.0

1.05

2.0

0.9
2.3.36

1.1

??

Predicting Problems Caused
by Component Upgrades

Stephen McCamant and Michael D. Ernst

Program Analysis Group

{smcc,mernst}@CSAIL.MIT.EDU

Predicting Problems Caused by Component Upgrades p. 1

Upcoming Zeminars

• Future Zeminars will be here in room 518,
except as noted

• Monday August 25th 3pm: Jonathan Edwards on a

type system for Alloy

• Monday September 1st 3pm: No Zeminar, Labor Day

• Monday September 8th: Future schedule TBA

Predicting Problems Caused by Component Upgrades p. 2

Outline

• The upgrade problem

• Solution: Compare observed behavior

• Comparing observed behavior (details)

• Example: Sorting and swap

• Case study: Perl modules

• Scaling to larger systems

• Conclusion

Predicting Problems Caused by Component Upgrades p. 3

Upgrade safety

• A system uses version 1.1 of a component

• Might version 1.2 cause the system to
misbehave?

(The general question is undecidable)

Predicting Problems Caused by Component Upgrades p. 4

Terminology

• The component might be any separately
developed piece of software

• The application uses the component

• The vendor develops the component

• The user integrates the component with the rest
of the application

Predicting Problems Caused by Component Upgrades p. 5

Previous solutions

• Integrate new component, then test

• Resource intensive

• Vendor tests new component

• Impossible to anticipate all uses

• User, not vendor, must make upgrade decision

• Static analysis to guarantee identical or subtype
behavior

• Difficult to provide adequate guarantees

Predicting Problems Caused by Component Upgrades p. 6

Behavioral subtyping

• Behavioral subtyping [Liskov 94] guarantees
behavioral compatibility

• Provable properties about supertype are provable about

subtype

• Operates on human-supplied specifications

• Behavioral subtyping is too strong
• OK to change aspects that the application does not use

• Behavioral subtyping is too weak
• An application may depend on implementation details

Predicting Problems Caused by Component Upgrades p. 7

Outline

• The upgrade problem

• Solution: Compare observed behavior

• Comparing observed behavior (details)

• Example: Sorting and swap

• Case study: Perl modules

• Scaling to larger systems

• Conclusion

Predicting Problems Caused by Component Upgrades p. 8

Run-time behavior comparison

• Compare run-time behaviors of component
• Old component, in context of the application’s use

• New component, in context of vendor test suite

• Compatible if the vendor tests all the
functionality that the application uses (and gets
the right output)

Predicting Problems Caused by Component Upgrades p. 9

Operational abstraction

• Abstraction of run-time behavior of component

• Set of program propertiesÐ mathematical
statements about component behavior

• Syntactically identical to formal specification

• Consists of pre- and post-conditions

• Can compare via logical implication

Predicting Problems Caused by Component Upgrades p. 10

Dynamic invariant detection

• Recover likely invariants by examining runtime
values, using Daikon http://pag.lcs.mit.edu/daikon

• Output is logical statements describing program
behavior (potential invariants)

• Algorithm:
• Conjecture all properties from a large grammar

• At each dynamic program point, discard falsified properties

• Eliminate implied and statistically unjustified statements

• To find conditional properties (x is even ⇒ a[x] = 0), use subsets

of data

Predicting Problems Caused by Component Upgrades p. 11

Outline

• The upgrade problem

• Solution: Compare observed behavior

• Comparing observed behavior (details)

• Example: Sorting and swap

• Case study: Perl modules

• Scaling to larger systems

• Conclusion

Predicting Problems Caused by Component Upgrades p. 12

Testing upgrade compatibility

1. User computes operational abstraction of old
component, in context of application’s use

2. Vendor computes operational abstraction of new
component, over test suite

3. Vendor supplies operational abstraction along
with new component

4. User compares operational abstractions using an
automated tool

Predicting Problems Caused by Component Upgrades p. 13

Verifying unchanged behavior

• The operational abstraction of the new version,
with the vendor’s tests, consists of pre- and
post-conditions Pretest and Posttest

• The abstraction of the old version, in the context
of the application, is Preapp and Postapp

• For the upgrade to be safe, verify that Preapp and
the new component imply Postapp

Predicting Problems Caused by Component Upgrades p. 14

New abstraction must be stronger

We want to check that Preapp ⇒ Postapp

We know that Pretest ⇒ Posttest

Rest of application
⇓

Preapp ⇒ Pretest
⇓ ⇓

Old component New component
⇓ ⇓

Postapp ⇐ Posttest
⇓

Rest of application

Sufficient conditions: Preapp ⇒ Pretest and

Posttest ⇒ Postapp

Predicting Problems Caused by Component Upgrades p. 15

New abstraction must be stronger

We want to check that Preapp ⇒ Postapp

We know that Pretest ⇒ Posttest

Rest of application
⇓

Preapp ⇒ Pretest
⇓ ⇓

Old component New component
⇓ ⇓

Postapp ⇐ Posttest
⇓

Rest of application

Sufficient conditions: Preapp ⇒ Pretest and

Posttest ⇒ Postapp

Predicting Problems Caused by Component Upgrades p. 16

New abstraction must be stronger

We want to check that Preapp ⇒ Postapp

We know that Pretest ⇒ Posttest

Rest of application
⇓

Preapp ⇒ Pretest
⇓ ⇓

New component New component
⇓ ⇓

Postapp ⇐ Posttest
⇓

Rest of application

Sufficient conditions: Preapp ⇒ Pretest and

Posttest ⇒ Postapp

Predicting Problems Caused by Component Upgrades p. 17

New abstraction must be stronger

• We want to check that Preapp ⇒ Postapp

We know that Pretest ⇒ Posttest

Rest of application
⇓

Preapp ⇒ Pretest
⇓ ⇓

New component New component
⇓ ⇓

Postapp ⇐ Posttest
⇓

Rest of application

Sufficient conditions: Preapp ⇒ Pretest and

Posttest ⇒ Postapp

Predicting Problems Caused by Component Upgrades p. 18

New abstraction must be stronger

• We want to check that Preapp ⇒ Postapp

• We know that Pretest ⇒ Posttest

Rest of application
⇓

Preapp ⇒ Pretest
⇓ ⇓

New component New component
⇓ ⇓

Postapp ⇐ Posttest
⇓

Rest of application

Sufficient conditions: Preapp ⇒ Pretest and

Posttest ⇒ Postapp

Predicting Problems Caused by Component Upgrades p. 19

New abstraction must be stronger

• We want to check that Preapp ⇒ Postapp

• We know that Pretest ⇒ Posttest

Rest of application
⇓

Preapp ⇒ Pretest
⇓ ⇓

New component New component
⇓ ⇓

Postapp ⇐ Posttest
⇓

Rest of application

• Sufficient condition:

(Preapp ⇒ Pretest) ∧ (Posttest ⇒ Postapp)

Predicting Problems Caused by Component Upgrades p. 20

Comparing operational abstractions

• Sufficient, but usually false:
(Preapp ⇒ Pretest) ∧ (Posttest ⇒ Postapp)

Preapp Pretest

x is even ⇒ x is an integer

[Application] ⇓ ⇓ [inc test suite]

Postapp Posttest

x′ = x + 1 6⇐ x′ = x + 1

x′ is odd

• Just right:
(Preapp ⇒ Pretest) ∧ (Preapp ∧Posttest ⇒ Postapp)

Predicting Problems Caused by Component Upgrades p. 21

Highlighting new failures

• This check could reject an ‘upgrade’ of a
component to the same version

• Use of untested behavior (vendor testing insufficient)

• Abstraction or prover failure

• Repeat comparison, using vendor’s abstraction
for old component version

• Especially interested in failures that occur only
with the new component abstraction

Predicting Problems Caused by Component Upgrades p. 22

Reasons for behavioral differences

• Differences between application and test suite
uses of component require human judgment

• True incompatibility

• Change in behavior might not affect application

• Change in behavior might be a bug fix

• Vendor test suite might be deficient

• It may be possible to work around the incompatibility

Predicting Problems Caused by Component Upgrades p. 23

Outline

• The upgrade problem

• Solution: Compare observed behavior

• Comparing observed behavior (details)

• Example: Sorting and swap

• Case study: Perl modules

• Scaling to larger systems

• Conclusion

Predicting Problems Caused by Component Upgrades p. 24

Sorting application

// Sort the argument into ascending order

static void bubble_sort(int[] a) {

for (int x = a.length - 1; x > 0; x--) {

// Compare adjacent elements in a[0..x]

for (int y = 0; y < x; y++) {

if (a[y] > a[y+1])

swap(a, y, y+1);

}

}

}

Predicting Problems Caused by Component Upgrades p. 25

Swap component

// Exchange the two array elements at i and j

static void swap(int[] a, int i, int j) {

int temp = a[i];

a[i] = a[j];

a[j] = temp;

}

Predicting Problems Caused by Component Upgrades p. 26

Upgrade to swap component

// Exchange the two array elements at i and j

static void swap(int[] a, int i, int j) {

a[i] ^= a[j]; // XOR

a[j] ^= a[i];

a[i] ^= a[j];

}

Predicting Problems Caused by Component Upgrades p. 27

Compare abstractions

Preapp

0 ≤ i < size(a) − 1 Pretest

1 ≤ j ≤ size(a) − 1 ⇒ 0 ≤ i ≤ size(a) − 1

j = i + 1,i < j 0 ≤ j ≤ size(a) − 1

a[i] > a[j] i 6= j

bubble sort application ⇓ ⇓ swap test suite

Postapp

a′[i] = a[j] Posttest

a′[j] = a[i] a′[i] = a[j]

a′[i] = a′[j − 1] ⇐ a′[j] = a[i]

a′[i] < a′[j]

Predicting Problems Caused by Component Upgrades p. 28

Compare abstractions

Preapp

0 ≤ i < size(a) − 1 Pretest

1 ≤ j ≤ size(a) − 1 ⇒ 0 ≤ i ≤ size(a) − 1

j = i + 1,i < j 0 ≤ j ≤ size(a) − 1

a[i] > a[j] i 6= j

bubble sort application ⇓ ⇓ swap test suite

Postapp

a′[i] = a[j] Posttest

a′[j] = a[i] a′[i] = a[j]

a′[i] = a′[j − 1] ⇐ a′[j] = a[i]

a′[i] < a′[j]

Preapp ⇒ Pretest

Predicting Problems Caused by Component Upgrades p. 29

Compare abstractions

Preapp

0 ≤ i < size(a) − 1 Pretest

1 ≤ j ≤ size(a) − 1 ⇒ 0 ≤ i ≤ size(a) − 1

j = i + 1,i < j 0 ≤ j ≤ size(a) − 1

a[i] > a[j] i 6= j

bubble sort application ⇓ ⇓ swap test suite

Postapp

a′[i] = a[j] Posttest

a′[j] = a[i] a′[i] = a[j]

a′[i] = a′[j − 1] ⇐ a′[j] = a[i]

a′[i] < a′[j]

Preapp ∧ Posttest ⇒ Postapp

Predicting Problems Caused by Component Upgrades p. 30

Compare abstractions

Preapp

0 ≤ i < size(a) − 1 Pretest

1 ≤ j ≤ size(a) − 1 ⇒ 0 ≤ i ≤ size(a) − 1

j = i + 1,i < j 0 ≤ j ≤ size(a) − 1

a[i] > a[j] i 6= j

bubble sort application ⇓ ⇓ swap test suite

Postapp

a′[i] = a[j] Posttest

a′[j] = a[i] a′[i] = a[j]

a′[i] = a′[j − 1] ⇐ a′[j] = a[i]

a′[i] < a′[j]

Upgrade succeeds
Predicting Problems Caused by Component Upgrades p. 31

Another sorting application

// Sort the argument into ascending order

static void selection_sort(int[] a) {

for (int x = 0; x <= a.length - 2; x++) {

// Find the smallest element in a[x..]

int min = x;

for (int y = x; y < a.length; y++) {

if (a[y] < a[min])

min = y;

}

swap(a, x, min);

}

}
Predicting Problems Caused by Component Upgrades p. 32

Compare abstractions

Preapp Pretest

0 ≤ i < size(a) − 1 0 ≤ i ≤ size(a) − 1

i ≤ j ≤ size(a) − 1 ⇒ 0 ≤ j ≤ size(a) − 1

a[i] ≥ a[j] i 6= j

selection sort application ⇓ ⇓ swap test suite

Postapp

a′[i] = a[j] Posttest

a′[j] = a[i] a′[i] = a[j]

a′[i] = a′[j − 1] ⇐ a′[j] = a[i]

a′[i] ≤ a′[j]

Predicting Problems Caused by Component Upgrades p. 33

Compare abstractions

Preapp Pretest

0 ≤ i < size(a) − 1 0 ≤ i ≤ size(a) − 1

i ≤ j ≤ size(a) − 1 6⇒ 0 ≤ j ≤ size(a) − 1

a[i] ≥ a[j] i 6= j

selection sort application ⇓ ⇓ swap test suite

Postapp

a′[i] = a[j] Posttest

a′[j] = a[i] a′[i] = a[j]

a′[i] = a′[j − 1] ⇐ a′[j] = a[i]

a′[i] ≤ a′[j]

Upgrade fails:
Preapp 6⇒ Pretest, i 6= j not valid

Predicting Problems Caused by Component Upgrades p. 34

Outline

• The upgrade problem

• Solution: Compare observed behavior

• Comparing observed behavior (details)

• Example: Sorting and swap

• Case study: Perl modules

• Scaling to larger systems

• Conclusion

Predicting Problems Caused by Component Upgrades p. 35

CPAN case studies

From To Upgrade Relevant
Module Version Version is Method

Math-BigInt 1.40 1.42 Unsafe bcmp()
Math-BigInt 1.47 1.48 Safe bmul()
Date-Simple 1.03 2.00 Unsafe Constructor
Date-Simple 1.03 2.03 Unsafe Constructor
Date-Simple 2.00 2.03 Safe Constructor

• The “applications” were other CPAN modules

• We supplied simple randomized test suites

Predicting Problems Caused by Component Upgrades p. 36

BigFloat::bcmp() results

• An upgrade from 1.40 to 1.42 is not behavior
preserving. Our tool finds an inconsistency
caused in part by a bug that also causes the
following difference:
• In 1.40, bcmp(1.67, 1.75) ⇒ 0

• In 1.42, bcmp(1.67, 1.75) ⇒ −1

• Our tool also declares a downgrade from 1.42 to
1.40 to be unsafe, since
• In 1.42, bcmp returns −1, 0, or 1

• In 1.40, bcmp returns any integer

Predicting Problems Caused by Component Upgrades p. 37

BigFloat::bmul() results

• In from version 1.47 to 1.48, the bmul
floating-point multiplication routine was
partially rewritten

• The system verifies that this change was
behavior-preserving for Math-Currency

• Caveat:
• Daikon required four hand-written splitting conditions to capture

special-case behavior

Predicting Problems Caused by Component Upgrades p. 38

Date::Simple results

• Date-Simple 2.00 and 2.03 are compatible with
each other, but not with 1.03

• This incompatibility is caused by a bug in 1.03
• The constructor relies on undefined behavior of POSIX’s mktime,

and fails to check for an error return value

Predicting Problems Caused by Component Upgrades p. 39

Outline

• The upgrade problem

• Solution: Compare observed behavior

• Comparing observed behavior (details)

• Example: Sorting and swap

• Case study: Perl modules

• Scaling to larger systems

• Conclusion

Predicting Problems Caused by Component Upgrades p. 40

Challenges of larger systems

• There may be no formal test suite available

• Treat other applications’ use as tests

• Behavior may depend on other system state

• Use program’s own methods to access

• Error conditions may be unpredictable

• Treat exceptional returns as a special case

• Components may only work when upgraded
together (e.g., producer and consumer)

• Characterize inter-component communication. . .
Predicting Problems Caused by Component Upgrades p. 41

Discovering cross-component links

−new("foo")→ −open("foo.in")→

−write(OVWRT, 1)→ Low-Level

AppM−write(OVWRT, 2)→ LibraryM Library

−sync()→ −rwrite(OVWRT, 2)→

−destroy()→ −close(3)→

• Match argument values with other recent calls
to guess data flow

• open_file = new_name+ ".in"

Predicting Problems Caused by Component Upgrades p. 42

Discovering cross-component links

−new("foo")→ −open("foo.in")→

−write(OVWRT, 1)→ Low-Level

AppM−write(OVWRT, 2)→ LibraryM Library

−sync()→ −rwrite(OVWRT, 2)→

−destroy()→ −close(3)→

• Recognize common interfaces

• write_mode one of {OVWRT, APPND}

• write_mode = rwrite_mode

• rwrite_mode one of {OVWRT, APPND}

Predicting Problems Caused by Component Upgrades p. 43

Discovering cross-component links

−new("foo")→ −open("foo.in")→

−write(4, 1)→ Low-Level

AppM−write(4, 2)→ LibraryM Library

−sync()→ −rwrite(4, 2)→

−destroy()→ −close(3)→

• Allow consistent changes

• write_mode one of {4, 8}

• write_mode = rwrite_mode

• rwrite_mode one of {4, 8}

Predicting Problems Caused by Component Upgrades p. 44

Linux C library case study

• Unmodified binary applications and library
versions

• Capture behavior by dynamic-library
interposition

• Can efficiently compare abstractions with
hundreds of functions

• Main challenge: avoiding false alarms

Predicting Problems Caused by Component Upgrades p. 45

Getting to Yes

• Rejecting an upgrade is easier than approving it

• Application postconditions may be hard to prove
• Can explain the reason for the rejection

• Highlight only cross-version failures

• Grammar of operational abstractions may be
inappropriate
• Theorem prover may not be powerful enough

• Application’s use may be a novel special case
• Improve automatic selection of splitting conditions

Predicting Problems Caused by Component Upgrades p. 46

Outline

• The upgrade problem

• Solution: Compare observed behavior

• Comparing observed behavior (details)

• Example: Sorting and swap

• Case study: Perl modules

• Scaling to larger systems

• Conclusion

Predicting Problems Caused by Component Upgrades p. 47

Contributions

• New technique for early detection of (some)
upgrade problems

• Compares run-time behavior of old and new
components

• Technique is
• Application-specific

• Lightweight, Pre-integration

• Source-free, Specification-free

• Blame-neutral

• Output-independent

Predicting Problems Caused by Component Upgrades p. 48

	.
	Upcoming Zeminars
	Outline
	Upgrade safety
	Terminology
	Previous solutions
	Behavioral subtyping
	Outline
	Run-time behavior comparison
	Operational abstraction
	Dynamic invariant detection
	Outline
	Testing upgrade compatibility
	Verifying unchanged behavior
	New abstraction must be stronger
	New abstraction must be stronger
	New abstraction must be stronger
	New abstraction must be stronger
	New abstraction must be stronger
	New abstraction must be stronger
	Comparing operational abstractions
	Highlighting new failures
	Reasons for behavioral differences
	Outline
	Sorting application
	Swap component
	Upgrade to swap component
	Compare abstractions
	Compare abstractions
	Compare abstractions
	Compare abstractions
	Another sorting application
	Compare abstractions
	Compare abstractions
	Outline
	CPAN case studies
	BigFloat::bcmp()
results
	BigFloat::bmul()
results
	Date::Simple results
	Outline
	Challenges of larger systems
	Discovering cross-component links
	Discovering cross-component links
	Discovering cross-component links
	Linux C library case study
	Getting to Yes
	Outline
	Contributions

