
0.9
2.3.36

2.0

1.0 1.2

1.05

1.1

2.4.18
1.1

??
?

Formalizing Lightweight
Verification of Software
Component Composition

Stephen McCamant and Michael D. Ernst

{smcc,mernst}@CSAIL.MIT.EDU

http://pag.csail.mit.edu/
MIT Computer Science and Artificial Intelligence Laboratory

Upgrade safety

Xaw 7

Emacs 21.2.1

Xpm 4.11

X11 4.2.0

ncurses

Linux 2.4.18

5.26b

glibc 2.2.5−43

glibc 2.3.2

JPEG

I Will it still work with this new component?

I We have a system that vetted this upgrade

Overview

I Technique assesses upgrade safety
I Unsound tool builds abstractions
I Check property of combined abstractions

I Goal: prove checking step sound
I Results to date:

I Formalization of upgrade safety problem
I Approach for relative soundness proof
I Improvements to previous algorithm
I Proof outline for soundness result

Our approach

Abstractions:

I should be stated in an expressive

language

I should describe concrete

implementations

I should be created automatically

I need not be sound over arbitrary

executions

Comparison of run-time behavior

I Compare run-time behaviors of
component

I Old component, in context of the
application’s use

I New component, in context of vendor
test suite

I Compatible if the vendor tests all the

functionality that the application uses

(and gets the right output)

Operational abstraction

I Abstraction of run-time behavior

I Set of program properties —

mathematical statements about module

behavior
I For x++:

I Precondition: x is an integer
I Postcondition: x ′ = x+ 1

I Depends on how the module is used

I Obtained using the Daikon tool

Operational abstraction

I Abstraction of run-time behavior

I Set of program properties —

mathematical statements about module

behavior
I For x++, used on even values:

I Precondition: x is even
I Postcondition: x ′ = x+ 1, x ′ is odd

I Depends on how the module is used

I Obtained using the Daikon tool

Operational abstraction

I Abstraction of run-time behavior

I Set of program properties —

mathematical statements about module

behavior
I For x++, used on even values:

I Precondition: x is even
I Postcondition: x ′ = x+ 1, x ′ is odd

I Depends on how the module is used

I Obtained using the Daikon tool

Modules: inputs and outputs

Module

Module

Module

I Consider just the behavior of modules at their
boundaries

I The outputs of one module are connected to
the inputs of another via procedure calls and
returns

I Connections just represent identity

Flow and summary relations

M 1
a

b

c d

e

Flow relations M1(b |a), M1(e | c, d)
b.x > a.y, e.y = c.y+ e.z

M 2

z

yu

v

x

Summary relations M2(v |u), M2(z | x, y)
v.ret = u.arg + 3, x.i 6= z.j · y.j

Formalizing the upgrade condition

I Combined flow relations must imply

summaries

I Do we have the right combination?

I Snag: what formal property to aim for?
I Describe idealized version that should

be sound
I Postulate existence of sound abstractions

I Final result is relative soundness, up to

abstractions

Abstraction and formalization

Concrete program

⇒ Formal program

(in a simple language)

⇓

⇓

Daikon

∃

⇓

⇓

Operational

Idealized

abstraction

⇒ abstraction

(sound)

Abstraction and formalization

Concrete program ⇒ Formal program

(in a simple language)⇓ ⇓
Daikon ∃⇓ ⇓

Operational Idealized

abstraction ⇒ abstraction

(sound)

A formal imperative language

I Consider a simple language:

C ::= C ; C | skip | assert(P) | v := E
| if P thenC elseC|v := M.f(v1, . . . , vk)

I Procedures f are grouped in modules M

that share some variables

I ‘assert’ doesn’t affect control flow

I Goal: Correct execution without

assertion failure

Example of modules

call
b

Module B

b
c

c

d

d

i

i

i

i

i

Module Main

b

enter

exit
b

call

call

call

call

ret

ret

ret

ret

exit

exit

c

d

i

Module C

Module D

Module Inc

denter

center

ret

enter

exit

Example of modules

call
b

Module B

b
c

c

d

d

i

i

i

i

i

Module Main

b

enter

exit
b

call

call

call

call

ret

ret

ret

ret

exit

exit

c

d

i

Module C

Module D

Module Inc

denter

center

ret

enter

exit

Inc.i(x): r := x + 1

Example of modules

call
b

Module B

b
c

c

d

d

i

i

i

i

i

Module Main

b

enter

exit
b

call

call

call

call

ret

ret

ret

ret

exit

exit

c

d

i

Module C

Module D

Module Inc

denter

center

ret

enter

exit

C.c(v): r := Inc.i(v)

Example of modules

call
b

Module B

b
c

c

d

d

i

i

i

i

i

Module Main

b

enter

exit
b

call

call

call

call

ret

ret

ret

ret

exit

exit

c

d

i

Module C

Module D

Module Inc

denter

center

ret

enter

exit

B.b(y): r := C.c(2*y) +

D.d(2*y + 1)

Example of modules

call
b

Module B

b
c

c

d

d

i

i

i

i

i

Module Main

b

enter

exit
b

call

call

call

call

ret

ret

ret

ret

exit

exit

c

d

i

Module C

Module D

Module Inc

denter

center

ret

enter

exit

Main.m(x): r := B.b(x);

assert(r > 4*x)

Ideal flow relations

I Idealized flow relations are sound over a

module’s code

I Valid properties for any possible module

inputs

I Some represent pure data flow

I Others also model control flow, with a

‘guarding condition’

Reality vs. formalism

I Real operational abstractions are correct
only with respect to observed inputs

I ‘if x = 271828 then y := 2 else y := 1’
might produce ‘y = 1’

I Idealized abstractions come are sound
with respect to any input

I Could be ‘y = 1∨ y = 2’

Ideal summary relations

I Idealized summary relations guarantee

no assertion failures

I If they hold over module inputs,

assertions in the module will succeed

I Capture the well-tested subset of

behavior

I Includes program input-output relation

as a special case

Consistency condition

I If holds, combined system satisfies

expectations
I (

∧
iφi) ⇒ σ

I Flow relations φi
I Summary relation σ

I To construct:
I Find relevant flow relations
I Transform relations for sound

combination
I Conjoin

Context-free language reachability

)[

(]

I Graph with edges labelled by symbols

I Context-free language over the symbols

I Is there a path from u to v whose labels are a
word of the language?

I Determine by dynamic programming

Selecting relevant flow relations

I Label calls and returns with parenthesis

kinds

I Exclude paths with mismatched returns
I Data-flow edges can reset the ‘stack’

I Gadget allows arbitrary returns then calls

I Take anything on a CFL path

Soundness transformations

I Goal: consistent variable references, so

conjunction (
∧
iφi) is sensible

I Guard conditional flows

I Duplicate procedures by calling

context

I Mix data flow between replicas

Guarding conditional control flow

I Suppose u is only sometimes followed

by v

I From v, looks like ψ(u, v)

I Rewrite as γ(u) ⇒ ψ(u, v) where γ

holds only on those instances of u

followed by v.

Duplication by calling context

I If Inc.iexit is procedure exit and C.iret is

return in caller, Inc.iexit.r = C.iret.x

I Similarly Inc.iexit.r = D.iret.x for second

call site

I Uh-oh, but C.iret.x 6= D.iret.x in

general

I Avoid problem if every call is distinct

Mixing data flow

I After duplicating, what about pure data

flow (e.g. from shared state)?

I Conservatively allow flow between any

replicas

I Every input gets at least one output,

but not vice-versa

Soundness proof outline

I Suppose (
∧
iφi) ⇒ σ

I Each φi is sound by assumption

I Conjunction is legitimate, by

transformations

I LHS is true, so RHS (σ) must be true

I Summary relation truth implies safety

Contributions

I Model and algorithm correct bugs in

previous versions

I Formalization for soundness checking

I Complete proof for single component

case (see paper)

I Proof outline for general case

Future work

I Avoid need for duplication
I Sound treatment of repeated calls

I Complete detailed soundness proof
I Add more language features

I Loops, recursion, higher-order procedures

Questions?

