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Program Analysis: A Hierarchy

Andreas Zeller
Lehrstuhl f̈ur Softwaretechnik

Universiẗat des Saarlandes, Saarbrücken, Germany
zeller@acm.org

Abstract

Program analysis tools are based on four reasoning
techniques: (1) deduction from code to concrete runs,
(2) observation of concrete runs, (3) induction from obser-
vations into abstractions, and (4) experimentation to find
causes for specific effects. These techniques form a hier-
archy, where each technique can make use of lower levels,
and where each technique induces capabilities and limits of
the associated tools.

1. Introduction

Reasoning about programs is a core activity of any pro-
grammer. To answer questions like “what can happen?”,
“what should happen?”, “what did happen?”, and “why did
it happen?”, programmers use four well-known reasoning
techniques:

Deduction from an abstraction into the concrete—for in-
stance, analyzing program code to deduce what can or
cannot happen in concrete runs.

Observation of concrete events—e.g. tracing, monitoring
or profiling a program run or using a debugger.

Induction for summarizing multiple observations into an
abstraction—an invariant, for example, or some visu-
alization.

Experimentation for isolating causes of given effects—
e.g. narrowing down failure-inducing circumstances
by systematic tests.

These reasoning techniques form a hierarchy (Figure1),
in which each “outer” technique can make use of “inner”
techniques. For instance, experimentation uses induction,
which again requires observation; on the other hand, deduc-
tion cannot make use of any later technique.

The interesting thing about this hierarchy is that the very
same reasoning techniques are also the foundations of auto-
matedprogram analysistools. In fact, each of the reasoning
techniques induces a specific class of tools, its capabilities
and its limits. This is the aim of this paper: to provide a
rough classification of the numerous approaches in program
analysis—especially in dynamic analysis—, to show their
common benefits and limits, and to show up new research
directions to overcome these limits.

2. Deduction

Deduction is reasoning from the general to the particular;
it lies at the core of all reasoning techniques. In program
analysis, deduction is used for reasoning from the program
code (or other abstractions) to concrete runs—especially for
deducing what can or cannot happen. These deductions take
the form of mathematical proofs: If the abstraction is true,
so are the deduced properties.

Since deduction does not require any knowledge about
the concrete, it is not required that the program in question
is actually executed—the program analysis isstatic.Static

Deduction

Observation

Induction

Experimentation

Figure 1. A hierarchy of reasoning techniques

http://www.st.cs.uni-sb.de/~zeller/
http://www.st.cs.uni-sb.de/
mailto:zeller@acm.org
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program analysis was originally introduced in compiler op-
timization, where it deduces properties like

• Can this variable influence that other variable? (if not,
one can parallelize their computation)

• Can this variable be used before it is assigned? (if not,
there is probably an error)

• Is this code ever executed? (if not, it can be ignored)

Deduction techniques are helpful in program understand-
ing, too—especially for computingdependenciesbetween
variables. A variablev′ at a statements′ is dependent on
a variablev at a statements if altering v at s can alter the
value ofv′ at s′; in other words, the value ofv at s is apo-
tential causefor v′ at s′. By tracing back the dependencies
of some variablev, one obtains asliceof the program—the
set of all statements that could have influencedv [13, 14].

As an ongoing example, consider the following piece of
C code. Ifp holds, a is assigned a value, which is then
printed into the stringbuf .

3 char *format = "a = %d";
4 if (p)
5 a = compute value();
6 sprintf(buf, format, a);

Let us assume that after executing this piece of code, we
find thatbuf contains"a = 0" . However,a is not sup-
posed to be zero. What’s the cause of"a = 0" in buf ?

By deduction, we find that the stringbuf is set by the
sprintf function which takesa as an argument; hence,
buf depends ona at line 5. Likewise,a depends onp at
line 4 (since alteringp may altera) and on the result of
compute value() . To find out whya is zero, we must
trace back these dependencies in the slice. More impor-
tant than the slice itself are the statementsnot included in
the slice—e.g. a statement likec = d + e; The analy-
sis proves that these cannot influencea or buf in any way;
hence, they can be ignored for all further analysis.

Unfortunately, proving that executing some statement
cannot influence a variable is difficult. Parallel or dis-
tributed execution, dynamic loading or reconfiguration of
program code, unconstrained pointer arithmetic, or use of
multiple programming languages are obstacles that are hard
to handle in practice.

The biggest obstacle for deduction, though, isobscure
code: If we cannot analyze some executed code, anything
can happen. Thesprintf function above, is typically part
of the C runtime library and not necessarily available as
source code. Only if we assume thatsprintf works as
expected can we ensure thatbuf depends ona.

3. Observation

Observation allows the programmer to inspect arbitrary
aspects of an individual program run. Since an actual run
is required, the associated techniques are calleddynamic.
Observation brings in actualfactsof a program execution;
unless the observation process is flawed, these facts cannot
be denied.

For observing program runs, programmers and re-
searchers have created a big number of tools, typically
called “debuggers” because they are mainly used for de-
bugging programs. A debugger allows to inspect states at
arbitrary events of the execution; advanced tools allow a
database-like querying of states and events [3, 12].

The programmer uses these tools tocompareactual facts
with expected facts—as deduced from an abstract descrip-
tion such as the program code. This comparison with ex-
pected facts can also be conducted automatically within the
program run, using specialassertioncode that checks run-
time invariants. Specific invariant checkers have been de-
signed to detect illegal memory usage or array bound viola-
tions.

By combining slicing with observation, one obtainsdy-
namic slicing: a slice that is valid for a specific execution
only, and hence more precise than a slice that applies for all
executions [1, 6, 11]. In principle, a dynamic slicing tool
does not require source code as long as it can intercept all
read/write accesses to program state and thus trace actual
dependencies.

As an example of dynamic slicing, assume that after the
execution of the code above, we find thatbuf contains
"a = 0" and thatp is true. Consequently, a dynamic slice
tool can deduce from the code that the value ofa can only
stem fromcompute value() ; an earlier value ofa can-
not have any effect onbuf (that is, unlessa is being read
in compute value() ).

Let’s now introduce a little complexity: By observation,
we also find thatcompute value() returns a non-zero
value. Yet,buf contains"a = 0" . How can this be?

4. Induction

Induction is reasoning from the particular to the general.
In program analysis, induction is used tosummarizemul-
tiple program runs—e.g. a test suite or random testing—to
some abstraction that holds for all considered program runs.
In this context, a “program” may also be a piece of code
that is invoked multiple times from within a program—that
is, some function or loop body.

The most widespread program analysis tools that rely on
induction arecoverage toolsthat summarize the statement
and branch coverage of multiple runs; such results can be
easily visualized [10]. Most programming environments
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support coverage tracing and summarizing. In program
visualization, call traces and data accesses are frequently
summarized [2].

On a higher abstraction level,invariant detectionfilters
a set of possible abstractions against facts found in multiple
runs. The remaining abstractions hold as invariants for all
examined runs [4, 7]. This approach relies only on observa-
tion of the program state at specific events; hence, it is not
limited by obscure code or other properties that make static
analysis hard.

Both techniques can be used to detectanomalies:One
trains the tool on a set of correct test runs to infer common
properties. Failing runs can then be checked whether they
violate these properties; these violations are likely to cause
the failures.

As an example, let us assume that we execute
the above C code under several random inputs, flag-
ging an error each timebuf contains "a = 0" .
An invariant detector can then determine that, say,
a < 2054567 || a % 2 == 1 holds at line 6 for all
runs where the error occurs. This is the common abstraction
for all abnormal runs:buf contains"a = 0" whenever
a is odd or smaller than 2,054,567. Obviously, something
very strange is going on.

5. Experimentation

As in our C example, most problems in program under-
standing can be formulated as a search forcauses:What
is the cause forbuf containing"a = 0" ? It may be sur-
prising that none of the techniques discussed so far is able
to find an actual cause—or, more precisely, toprove that
some aspect of a program is actually the cause for a specific
behavior. To prove actual causality, one needs two exper-
iments: one where cause and effect occur, and one where
neither cause nor effect occur. The cause must precede the
effect, and the cause must be aminimaldifference between
these experiments.

Searching for the actual cause thus requires a series of
experiments,refining and rejecting hypotheses until a mini-
mal difference—the actual cause—is isolated. This implies
multiple program runs that arecontrolledby the reasoning
process.

In our C example, our earlier induction step has already
refined the cause in the program state:a is the cause for
buf containing"a = 0" , because we can altera such
that buf has a different content. However, alteringa
in an experiment to, say,2097153 , makesbuf contain
"a = -2147483648" . Would we consider this non-
failing?

So, we decide thata is sane, and turn to thesprintf
call. Assuming thatsprintf works as specified, the only
cause that can remain is theformat string"a = %d" as

sprintf argument. Indeed, it turns out that%dis a format
for integers, whilea is declared as a floating-point value:

1 double a;

To verify that the format string is really the cause for
"a = 0" in buf , we experimentally change theformat
variable from"a = %d" to "a = %f" . Our observation
confirms thatbuf now has a sane value; this proves that the
format string was indeed the cause for the failure.

Where do we obtain such alterations from? Obviously,
a string likeformat can have an infinite number of possi-
ble contents. Finding the one format string that causes the
badbuf content to turn into the correct one is left to the
programmer; actually, this is part of writing a program that
works as intended.

Nonetheless, even the search for causes can be
automated—at least, if one has an alternate run where the
effect doesnot occur. Ourdelta debuggingapproach can
narrow down the initial difference between the two runs to
the actual cause in program input [8] or program state [15].
Delta debugging creates artificialintermediateconfigura-
tions that encompass only a part of the initial difference.
Testing such configurations and assessing the outcome then
allows to narrow down the actual cause.

Delta debugging has successfully isolated cause-effect
chains from programs that so far had defied all kinds of de-
ductive analysis, such as the GNU C compiler.

6. A Hierarchy of Program Analysis

By now, we have seen four techniques which are the
foundation of program analysis tools. Each of these tech-
niques induces aclassof program analysis tools, defined by
thenumber of program runsconsidered:

Deductive program analysis (“static analysis”) generates
findingswithout executingthe program.

Observational program analysis generates findings from
asingle executionof the program.

Inductive program analysis generates findings from
givenmultiple executionsof the program.

Experimental program analysis generates findings from
multiple executionsof the program, where the execu-
tions arecontrolledby the tool.

As in Figure1, these classes form a hierarchy where tools of
each “outer” class may make use of the techniques in “in-
ner” classes. Hence, dynamic slicing (observation) makes
use of static slices (deduction); invariant detection (induc-
tion) relies on observation; delta debugging (experimenta-
tion) relies on observation and induction.

The classes also induce capabilities and limits:
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• To determine causes, one needs experiments.

• To summarize findings, one needs induction over mul-
tiple runs.

• To find facts, one needs observation.

• And deduction, perhaps to some surprise, cannot tell
any of these—simply because it abstracts from con-
crete program runs and thus runs the risk of abstracting
away some relevant aspect.

However, deduction effectively proves what can and what
cannot happen in the examined abstraction level; hence, it
is an excellent guidance on what to observe, where to induce
from and what to experiment.

7. Conclusion and Future Work

Program analysis tools can be classified into a hierar-
chy along the used reasoning techniques—deduction, ob-
servation, induction, and experimentation. Each class is
defined by the used knowledge sources which impose ca-
pabilities and limits. This allows for a finer distinction of
dynamic analysis techniques; names like observation, in-
duction, or experimentation link directly to the techniques
that programmers use in program comprehension.

While deduction and observation are quite well-
understood, we have only yet begun to automate induc-
tion and experimentation techniques. Research in machine
learning and data mining has produced a wealth of induc-
tion techniques. All of these can be applied to program runs
in order to find patterns, rules, and anomalies—in runs and
in code.

While induction works on a given set of program runs,
we can use experimentation to gather more data from new,
generated runs. The challenges here are when to use addi-
tional experimentation, how to generate runs that satisfy de-
sired properties, and how to guide the experimentation pro-
cess. The capability to design, run, and assess experiments
automatically is unique to dynamic program analysis; we
should make use of it.

Finally, program analysis can greatly benefit from fur-
ther integration of “inner” tools and “outer” tools. Inte-
grating experimentation with further inductive or deduc-
tive techniques is the main challenge in dynamic program
analysis—and its greatest chance.

Acknowledgments.Silvia Breu, Holger Cleve, Jens Krinke
and Tom Zimmermann provided substantial comments on
earlier revisions of this paper.
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1. Introduction 
 

Performance profiling consists of tracing a software 
system during execution and then analyzing the obtained 
traces. However, traces themselves affect the performance 
of the system distorting its execution [5]. Therefore, there 
is a need to minimize the effect of the tracing on the 
underlying system’s performance. To achieve this, the 
trace set needs to be optimized according to the 
performance profiling problem being solved. Our position 
is that such minimization can be achieved only by adding 
the software trace design and implementation to the 
overall software development process. In such a process, 
the performance analyst supplies the knowledge of 
performance measurement requirements, while the 
software developer supplies the knowledge of the 
software. Both of these are needed for an optimal trace 
placement. The following sections expand on this 
position. 

 
2. Performance profiling 
 

Performance profiling is the means of determining 
where a software system spends its execution time. It uses 
trace instrumentation to gather event data. Various types 
of event information can be obtained with traces, such as 
component entry and exit, function calls, software 
execution states, message communication, resource usage, 
etc. However trace instrumentation comes at a cost — it 
impacts the performance of a software system [3][6].  For 
example, resource tracing is most of the time more 
intrusive then tracing function calls.  

Not only does event tracing take some time, adding 
traces changes the behavior of the software system 
because of additional memory and I/O accesses [1]. In 
addition, in a real-time software system, instrumentation 
could possibly result in violation of real-time constraints 
and timing requirements. Trace instrumentation reduces 
the validity of performance profiling, so instrumentation 
has to be kept to a minimum.   

 

2.1. Minimizing Performance Impact 
 

There is a need to minimize the performance impact 
of trace instrumentation. To achieve this, we need to 
create efficient instrumentation. To instrument 
effectively, it is essential to know what events to monitor 
during execution of the software system and what 
information to collect when the event occurs. When 
instrumenting the software, it is essential to understand 
the purpose and goals of each trace and how it will affect 
the instrumented software component. From the 
performance profiling point of view, a "good" trace not 
only records the required event information; it also 
minimizes the impact on the system's performance, and 
does not violate any constraints and requirements.  

In choosing the instrumentation granularity, it is 
important to address the trade-off between the amount of 
event information required and the performance impact 
of the trace instrumentation.  For example: permanent 
OS traces in the scheduler report when a task switch 
occurs. These traces do not indicate if the task switch is 
due to preemption by a higher priority task or 
completion of the current running task.  The duration of 
a task activity cannot be calculated based on OS 
scheduling traces only. It requires additional 
instrumentation. However, these additional traces will 
further impact the performance of the software system. 

It should be noted that creating an efficient 
instrumentation does not eliminate the performance 
impact of trace instrumentation but rather tries to 
minimize the performance impact.  

Let us summarize what we just talked about: efficient 
instrumentation for performance profiling imposes the 
following requirements:  

• minimize the number of instrumentation points  
• minimize the runtime overhead, and 
• guarantee constraints and requirements. 

 
2.2. Efficient Instrumentation 
 

We need to establish instrumentation that meets the 
requirements outlined in the previous section. This can 
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be a complicated task, particularly in industry, where 
software development and performance profiling are often 
performed by different individuals each with their own set 
of skills and knowledge. Software developers have 
detailed knowledge of the software implementation.  They 
understand the purpose of each instrumentation point and 
are able to assess the impact the instrumentation will have 
on the functional behavior of a software component.  
However, developers lack the understanding of what 
event data is needed. In addition, they may not be eager to 
insert event traces simply because they will not use them. 
On the other hand, performance analysts know what 
events need to be traced and understand what information 
needs to be recorded when an event occurs. However, 
performance analysts lack a detailed understanding of the 
software. We propose to draw upon the knowledge and 
skills software developers and performance analysts bring 
with them and use this knowledge to create efficient trace 
instrumentation.  

To achieve this, we need to add trace instrumentation 
for performance profiling to the software development 
process. During the requirements phase the performance 
analyst should identify system-level performance 
requirements such as response time, throughput, and 
resource utilization, and start determining the events that 
need to be traced to check these requirements. For 
example, if the system level performance requirements 
state a maximum response time then the software’s main 
entry and exit events (events e1 and e2 in Figure 1) need 
to be traced. However, it is not always possible to identify 
instrumentation points for all system level performance 
requirements during the requirements phase. For example, 
validation of resource utilization requirements requires 
knowledge of the software’s execution states, which are 
not known until the design phase. Furthermore, only 
system level performance requirements are known during 
the specification phase. During the design phase, the 
performance analyst should identify lower level 
performance requirements such as messaging latency, 
interrupt response times, real-time deadlines, and time 
spent in the kernel. Next, the performance analyst should 
determine the events that need to be traced to check these 
requirements (for example, events e3 and e4 in Figure 1 
as well as other events marked with black dots) and 
specify the event data that needs to be recorded when the 
event occurs. Typical events that need to be traced 
include: component entry and exit points, function calls, 
state transitions, message send and receive, and resource 
accesses. The developer then incorporates all the 
instrumentation requirements into the software design by 
identifying the corresponding instrumentation points. 
During implementation, the developer inserts traces at 
each event point, both manually and by activating (a 
subset of) permanent traces. The developer should plan to 
incrementally introduce the traces through iterations to 

minimize the impact of the instrumentation code on 
software system operations.  During this process, the 
performance analyst should provide guidance to the 
software developer on choosing the instrumentation 
granularity (e.g., trace events e5 and e8, but not events 
e6 and e7 in Figure 1).  

Specification phase

Design phase

Implementation phase

Software
system

e1 e2

e4

e6

e5

e3

e7

e8

Figure 1: Trace design and implementation process 

To illustrate this approach, let us look at an example. 
In mobile devices, power consumption is an important 
performance requirement [2].  The power consumption 
varies depending on the hardware resources used.  
During execution the software accesses hardware 
resources. These accesses need to be monitored to 
determine when a hardware resource is used, but should 
all access events be traced or is it enough to just trace 
enable and disable events? This question is best 
answered by the performance analyst. During the 
requirements phase the performance analyst identifies 
the power consumption requirements of the hardware 
resource. At design time, the performance analyst 
identifies the hardware access events that need to be 
traced to check the power consumption requirements. 
When tracing hardware access events in a mobile device 
it is very easy to violate real-time constraints and timing 
requirements. In addition, driver software of each 
hardware resource is unique. Instrumenting hardware 
drivers requires a detailed understanding of the software, 
and the developer is best suited for this task. During the 
design and implementation phase the developer 

jcook
11



 

incorporates the instrumentation requirements set by the 
performance analyst into the driver software.  

A good follow through by both the performance 
analyst and software developer is essential for the success 
of the proposed approach. For example: during the actual 
performance profiling phase, the performance analyst 
should relay any kind of trace instrumentation 
inefficiencies to the developer. The developer in turn 
should make the necessary instrumentation improvements 
and provide the performance analyst with an updated 
instrumented software build in a timely manner. 

The approach to adding trace instrumentation for 
performance profiling to the software development 
process addresses the requirements outlined in section 2.1. 
In addition, this approach would yield some other  
incentives: 

• allows for creating built in ‘standardized’ 
performance trace instrumentation, and 

• provides formatting rules for performance event 
data. 

Smith and Williams [4] proposes a systematic 
approach to software performance engineering.   They 
focus on estimating the performance of a software system 
during each stage of the software development process. 
Our approach attempts to optimize the performance 
impact of trace instrumentation for performance profiling 
by adding the software trace design and implementation 
to the overall software development process. 
 
3. Summary 

 
In this position paper, we described an approach to 

optimize trace instrumentation for performance profiling. 
The approach involves adding trace instrumentation for 
performance profiling to the software development 
process.  It draws upon the knowledge and skills software 
developers and performance analysts bring with them — 
using this knowledge to create efficient trace 
instrumentation. 

The proposed approach has the potential to decrease 
the number of instrumentation points. It would yield 
sufficient traces to profile the performance, yet it would 
not trace more event data than needed.  In addition, the 
proposed approach would reduce the impact of trace 
instrumentation on software system performance. 
 
4. References 
 
[1] D. Konkin, G. Oster, R. Bunt, Exploiting Software 

Interfaces for Performance Measurement, Proceedings of 
the 1st International Workshop on Software and 
Performance, 1998, pp. 208–218. 

[2] R. Lencevicius, E. Metz, A. Ran, Software Validation using 
Power Profiles, Proceedings of the 20th IASTED 

International Conference on Applied Informatics (AI), 
2002, pp. 143–148. 

[3] J. Moe, D. Carr, Understanding Distributed Systems via 
Execution Trace Data, 9th International Workshop on 
Program Comprehension, 2001, pp. 60–67. 

[4] C. U. Smith and L. Williams, Performance solutions: A 
practical guide to creating responsive, scalable solutions, 
Addison-Wesley, 2002. 

[5] D. Stewart, Measuring Execution Time and Real-Time 
Performance, Embedded Systems Conference (ESC), 
2001. 

[6] J. Vetter, D. Reed, Managing Performance Analysis with 
Dynamic Statistical Projection Pursuit, Proceedings of the 
1999 ACM/IEEE Conference on Supercomputing, 1999. 

jcook
12



Dynamic Analysis from the Bottom Up

Markus Mock
University of Pittsburgh

Department of Computer Science
6405 Sennott Square, Pittsburgh, PA 15260, USA

mock@cs.pitt.edu

Abstract

Changes in the way software is written and deployed to-
day render static analysis increasingly ineffective. Unfor-
tunately, this makes both traditional program optimization
and software tools less useful. On the other hand, this also
means that the role and importance of dynamic analysis is
continuing to increase. In the future, we believe dynamic
analysis will be successful both in program optimization
and in software tools. One important ingredient to its suc-
cess lies in efficient profiling methods. This paper looks at
how this goal can be realized by exploiting already existing
hardware mechanisms and possibly new ones. We believe
that this will lead to software tools that are both effective
and minimally invasive, easing their adoption by program-
mers.

1. Introduction

From its early beginnings, static analysis has been a huge
success story. It is routinely used in optimizing compil-
ers to ensure the correctness of code improving transfor-
mations. It is also commonly used in programming tools
(e.g., smart editors) and software tools designed to facilitate
the debugging and evolution of software, for instance, in
program slicers. On the one hand, static analysis has been
so successful because its use is unintrusive and does not
require running the program or any other user intervention,
and typically the user is completely unaware of its presence.
On the other hand, to achieve practically useful results, typ-
ically the whole program, or large parts thereof have to be
available to the analysis.

Unfortunately, this traditional model has been eroding
over the last years thereby rendering traditional static anal-
ysis methods ever less effective. Since software is now
routinely deployed as a collection of dynamically linked li-
braries, and more recently, also as Java bytecode that is de-
livered dynamically and on demand, static analysis in com-

pilers and other programming tools knows less and less of
the finally executing program. This forces it to make con-
servative assumptions that result in analysis results that are
too imprecise to be useful either for program optimization
or program “understanding” tasks.

While traditional static analysis is of limited effective-
ness in these new dynamic software environments,dynamic
program analysis[3] will play an increasingly important
role to realize tasks that have become inefficient with static
analysis alone. Moreover, dynamic analysis will enable new
powerful techniques – both in optimization and program un-
derstanding – that are impossible to achieve with static anal-
ysis alone.

For some time now, dynamic (i.e., run-time) informa-
tion has been used in optimizing compilers in the form of
feedback-directed optimization where run-time information
is used to aid the static program optimizer to make better
optimization decisions – decisions, that would otherwise
have to rely on static heuristics, which generally result in
less effective optimization. More recently, run-time infor-
mation has been exploited in dynamic compilation systems
and just-in-time (JIT) compilers to which the complete pro-
gram is available, which makes their analyses often quite
successful [1].

While leveraging dynamic information in such systems
has become quite popular, the use of dynamic analysis in
software tools designed to assist the software engineer is
still in its infancy. While the use of dynamic information
in program optimization systems is always confined by the
constraint of soundness – a potentially faster but possibly
incorrect program has to be avoided –, tools designed to
assist a human in a software engineering task are free of this
restriction. Moreover, in many cases the results of a static
analysis, although sound, may be considerably less useful
than the potentially unsound result of a dynamic analysis,
for instance, if it overwhelms the user with too much data.

For all the foregoing reasons, we believe that dynamic
analysis algorithms, modeled after classical static analyses
will be both important and useful in future software de-

jcook
13



velopment environments. Unconstrained by the yoke of
soundness, dynamic analysis is likely going to be even
more successful in software engineering applications than
the promise it has already shown in run-time optimization.
Crucial to the wider success of dynamic analysis, however,
is the creation of efficient profiling methods to collect dy-
namic information unintrusively and with little performance
overhead.

Therefore, we propose to design dynamic analysis sys-
tems “from the bottom up”. Currently existing hardware
mechanisms can be exploited to make the collection of run-
time information more efficient. Software engineers inter-
ested in dynamic analysis should also work with hardware
designers and compiler writers to participate in the design
of new architectures that enable the efficient collection of
data that can assist them in building more powerful and ver-
satile dynamic analysis systems.

The rest of this paper is organized as follows: Section 2
discusses two future directions in the application of dy-
namic analysis. Section 3 looks at how to achieve efficient
profiling methods as one essential ingredient in making dy-
namic analysis successful. Section 4 discusses related work
and Section 5 concludes.

2. Future Directions in Dynamic Analysis

As the usefulness of static analyses decreases, dynamic
analysis approaches are becoming more attractive. We see
several interesting research directions for dynamic analysis
in the coming years:

• research on how to effectively exploit run-time infor-
mation to optimize programs;

• research on the application of dynamic analysis to im-
prove software tools that assist programmers in the un-
derstanding, maintenance, and evolution of software;
since such tools do not necessarily have to produce
sound results this may be the “killer application” for
dynamic analysis;

• research on the efficient collection of run-time in-
formation; this includes research into combined
hardware-software approaches that will lower the cost
of collecting run-time information.

In the following two sections, we will briefly discuss the
first two items, which represent two broad application areas
for dynamic analysis. In Section 3 we will then elaborate on
the last point, which is fundamental for the wider success of
dynamic analysis.

2.1 Program Optimization with Dynamic Analy-
sis

To achieve good program performance, increasingly run-
time information will be necessary to perform effective
code-improving transformations. The fundamental con-
straint for program optimization, though, is soundness,
which is at odds with the unsound nature of dynamic analy-
sis. However, we believe that a symbiosis of static and dy-
namic analysis will not only be effective but in fact crucial
for the success of program optimization of future software
systems.

Results of static analysis are always conservative ap-
proximations of actual run-time behavior; when programs
are only partially known, this problem is exacerbated be-
cause worst case assumptions have to be made for all un-
known code parts. On the other hand, program properties
may in fact be true in most, if not all, runs despite the in-
ability of static analyses to demonstrate this. For instance,
[9] has shown that the statically computed sets of potential
pointer targets in pointer dereferences in C programs are
several orders of magnitude larger than the number of actu-
ally observed targets. Consequently, optimizing compilers
are often not able to allocate variables to registers because
of aliases through pointer accesses,1 even though those ac-
cesses at run-time never or almost never overwrite the vari-
able’s value.

Fortunately, static and dynamic analysis may be com-
bined in this case to improve what can be done with static
analysis alone. One approach consists of generating mul-
tiple code versions, one, in which code is optimized ag-
gressively assuming that no aliasing occurs even though the
static analysis is not able to ascertain this. The decision
when this specialized code should be generated would be
based on a dynamic analysis that checks at program execu-
tion whether aliasing does occur. A run-time check would
then be inserted in the code to select the correct code ver-
sion and ensure soundness.

Similarly, other program properties that are usually in-
ferred by static program analysis, might be observed at run
time. Static analysis would then be used to generate appro-
priate run-time checks to ensure the soundness of program
transformations that depend on the correctness of those
properties. Investigating what properties are both useful
and efficiently derivable by dynamic analysis, is an interest-
ing research area for the combination of static and dynamic
analysis as well as the exploration of synergies arising from
that combination.

1Alternatively, if they are allocated to registers, after every possibly
aliased write through a pointer, the register value has to be reloaded, which
may neutralize the benefit of register allocating the variable.
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2.2 Improving Software Tools with Dynamic
Analysis

Whereas dynamic analysis will generally have to be
complemented by static analysis to be applicable in pro-
gram optimization, software engineering tools may enjoy
the benefits of dynamic analysis in many cases even with-
out supporting static analysis. As has been observed by sev-
eral researchers, in many cases unsound information may be
just as useful or even more useful than sound information in
software engineering applications.

The key to the usefulness of dynamic analysis again is
the (increasing) imprecision of static analyses. While static
analyses may provide a sound picture of program proper-
ties. this picture may be too complex to be useful in prac-
tice. As an example, consider again pointer analysis. A
static points-to analysis2 may compute several hundreds or
even thousands of potential pointer targets for a dereference.
When a user wants to understand what are in fact the fea-
sible targets, a points-to set of that size will be too large to
be examined completely. Moreover, the static analysis does
not provide any insights into which of those targets are more
likely than others to show up in practice.

On the other hand, a dynamic points-to analysis [9]
shows only those points-to targets that have actually oc-
curred at run time. While this set may not be sound, i.e.,
miss some targets that may in fact be feasible, since dy-
namic points-to sets are typically very small, they can be
much more useful because the enable the programmer to
focus on definitely feasible targets, which in addition, may
be prioritized by the frequency of occurrence, so that any
subsequent task can be focused to examine the more im-
portant (more frequent, or more likely) analysis results first.
Dynamic pointer information has been used, for instance, to
improve program slicing [8].

3 Dynamic Analysis from the Bottom Up:
Achieving Efficient Profiling

One of the fundamental challenges for the success of dy-
namic program analysis lies in the creation of instrumen-
tation and profiling infrastructures that enable the efficient
collection of run-time information. Current approaches typ-
ically result in significant program slowdowns [9, 5] so that
they are confined to offline use. They are also not invisi-
ble to the user and typically additional effort is required to
integrate them with current software tools. While this may
be acceptable when the result is directly consumed by the
user of a dynamic analysis tool, when the dynamically de-
rived information is subsequently used to transform a pro-

2A points-to analysis computes for each pointer dereference in a pro-
gram the set of potential targets accessed by the dereference, called the
points-to setof the dereference.

gram for instance, faster turnaround times will significantly
enhance the usability of tools based on dynamic analysis.
Moreover, if dynamic analysis can be performed with min-
imal overheads during normal program executions, it may
become routine and not require any additional effort from
software engineers to tap into the generated information.

In our opinion, one particularly promising approach to
reduce profiling overhead lies in the collaboration with
computer architects. Processor designers dispose of more
hardware resources than ever so that it is not unreasonable
to expect that additional structures to support efficient dy-
namic analysis may be placed on chips if they provide a
significant enhancement of functionality. Moreover, very
simply hardware structures may suffice and can potentially
make a big difference in performance. For example, the ad-
dition of hardware data watchpoints in modern processors
(for example the Intel Pentium), enables a debugger such as
gdb to monitor all memory accesses to a particular variable
(or set of variables) without noticeable performance degra-
dation on the program. When such hardware support is not
present, monitoring the contents of a variable becomes of-
ten prohibitively expensive – typical software implemen-
tations based on trapping after every instruction, result in
slowdowns of a factor of 100.

The additional hardware required to support data watch-
points, on the other hand, is minimal. Similarly, for many of
the properties we are interested in dynamic program analy-
sis it may be possible to achieve big performance improve-
ments with simple hardware support. Current processors al-
ready have many hardware performance counters, which are
used in profiling for program performance. Maybe future
architectures will have “analysis counters” to assist soft-
ware engineers in building fast dynamic analysis tools. If
we can show that such support is useful for the software
community as a whole, we should have a good case for their
realization in silicon.

The following sections will look at potential mechanisms
to aid in two particular dynamic analysis tasks: points-to
profiling and invariant detection.

3.1 Example One: Points-To Profiling

Maintaining a mapping from the current addresses of
local and heap-allocated variables to their compile-time
names accounts for the major part of the cost of points-to
profiling.3 If the compiler could simply load the monitored
addresses into a hardware table and all load and store in-
structions would automatically be checked against this table
(simultaneously updating the associated access statistics),
points-to profiling would only add a small amount of extra

3The addresses of local variables usually change with each invocation
and multiple addresses are usually associated with the same memory allo-
cation site.
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work (the initialization of the address table at procedure en-
try and at each malloc site). In current software implemen-
tations, for every load and store instruction tens or hundreds
of instructions have to be executed resulting in slowdowns
of one to two orders of magnitude [9].

Some current processors, e.g., the Intel Itanium, already
support a similar, though more limited hardware structure
(the ALAT table [7]), which, however, cannot be directly
loaded by the compiler (it is manipulated indirectly through
special load instructions used for optimization). Therefore,
it appears not unreasonable to assume that a more general
mechanism similar to the one described above, may eventu-
ally be implemented in hardware.

3.2 Example Two: Invariant Detection

Another field where compiler and architecture support
can be used to improve the applicability of dynamic analysis
is invariant detection. In the Daikon [5] system, invariants
are detected offline after a profiling urn of an instrumented
program. Obviously, for dynamically updated software this
two-phased approach does not directly work since the pro-
gram needs to be re-instrumented as it is running. More-
over, it may actually be desirable to detect some invariants
as the program is running, for instance when invariants rep-
resent security-relevant properties.

Arnold and Ryder [2] present an approach to reduce the
cost of instrumented code by providing a mechanism to dy-
namically enable and disable the profiling of selected pro-
gram parts. Their approach could be combined with Daikon
in a run-time system that would automatically instrument
dynamically changing code. The dynamically updated code
could then be gradually profiled to detect its (local) invari-
ants and as soon as invariants stabilize, profiling would be
disabled until the next software update. This would enable
invariant detection while a system is running, at potentially
very little overhead, so that invariant detection could remain
in place even in deployed software.

This would make exciting new applications possible. For
instance, software could be shipped with previously de-
tected or specified invariants. As the system runs, these
invariants could be compared against those detected in the
field. Discrepancies, which might indicate, for example, in-
sufficient testing, could then be reported back to the devel-
oper to either correct the software or the invariants.

4. Related Work

PREfix [4] was one of the first tools that tried to over-
come the imprecision of static program analysis by a sys-
tematic exploration of program execution paths along which
certain program properties were checked. It was shown to
be very effective in detecting program errors that were not

detectable by static analysis. Ernst [5] has focused on de-
tecting likely program invariants, which can then be used to
reason about programs or in error detection. The DIDUCE
system [6] uses dynamic program analysis to detect unusual
program states which are likely to indicate program bugs.

5. Conclusions

Due to changes in the way software is written and de-
ployed today, the effectiveness of static analysis is decreas-
ing. Therefore the importance of dynamic analysis will con-
tinue to increase. Consequently, improving the usability of
dynamic analysis tools by making them less intrusive and
more efficient is one of the main challenges for dynamic
analysis researchers today. By designing dynamic analy-
ses from the bottom up, and in collaboration with compiler
writers and computer architects, we believe that efficiency
and ease of use will be achieved and make dynamic analysis
a standard feature of future software systems.
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Abstract 
 

The specifications of a program can be dynamically 
inferred from its executions, or equivalently, from the 
program plus a test suite. A deficient test suite or a subset 
of a sufficient test suite may not help to infer 
generalizable program properties. But the partial 
specifications inferred from the test suite constitute a 
summary proxy for the test execution history. When a new 
test is executed on the program, a violation of a 
previously inferred specification indicates the need for a 
potential test augmentation. Developers can inspect the 
test and the violated specification to make a decision 
whether to add the new test to the existing test suite after 
equipping the test with an oracle. By selectively 
augmenting the existing test suite, the quality of the 
inferred specifications in the next cycle can be improved 
while avoiding noisy data such as illegal inputs. To 
experiment with this approach, we integrated the use of 
Daikon (a dynamic invariant detection tool) and Jtest (a 
commercial Java unit testing tool). This paper presents 
several techniques to exploit the synergy between testing 
and inferred partial specifications in unit test data 
selection. 
 
1. Introduction 
 

Given that specifications play an important role in a 
variety of software engineering tasks and that the 
specifications are often absent from a program, 
dynamically inferring program specifications from its 
executions is a useful technique [3]. The output of the 
dynamic specification inference has been used to aid 
program evolution in general [3] and program refactoring 
in particular [7]. Most of the applications can achieve 
better results if the inferred specifications are closer to the 
oracle specifications. Like other dynamic analysis 
techniques, the dynamic specification inference is also 
constrained by the quality of the test suite for the program. 
Usually it is unlikely that the inferred properties are true 
over all possible executions. When properly applied, static 

verification tools can filter out false positives in the 
inferred specifications [8]. 

Different from previous applications that use the final 
inferred specifications from all the available tests, two 
recent approaches have begun to use the intermediate 
partial specifications inferred from a subset. Both are 
based on the fact that the inferred specifications may 
change when new tests are added to the existing test suite. 
The first, called the operational difference (OD) 
technique, makes use of the differences in inferred 
specifications between test executions to generate, 
augment, and minimize the test suites [5]. The second, as 
implemented in the tool DIDUCE, can continuously check 
a program’s behavior against the incrementally inferred 
partial specifications during the run(s), and produce a 
report of all violations detected along the way [4]. This 
can help detect bugs and track down the root causes. It is 
noteworthy that “partial specification” also carries the 
denotation that the specification is not complete or 
accurate in terms of an oracle specification. Thus there is 
a convergence of the two meanings when the 
specifications inferred from the whole test suite are used 
to approximate the oracle specification. 

In this research, we further exploit the synergy between 
testing and inferred partial specifications. All available 
tests in this context are a small size of the existing unit test 
suite plus a large size of the automatically generated unit 
tests. The purpose is to tackle the problem of selecting 
automatically generated tests to augment the existing unit 
test suite. Violations of the inferred partial specifications 
from the existing unit test suite can help this unit test data 
selection. Moreover, selectively augmenting the existing 
test suite can prevent introducing noisy data, e.g. illegal 
inputs, from negatively affecting the specification 
inference. 
 
2. Background 
 

The “test first” principle, as advocated by Extreme 
Programming (XP) development process [1], requires unit 
tests to be constructed and maintained before, during, and 
after the source code is written. Developers need to 
manually generate the test inputs and oracles based on the 
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requirements in mind or in documentation. They need to 
decide whether enough test cases have been written to 
cover the features in their code thoroughly. Some 
commercial tools for Java unit testing, e.g. ParaSoft Jtest 
[10], attempt to fill the “holes” left by the execution of the 
manually generated unit tests. These tools can 
automatically generate a large number of unit tests to 
exercise the program. However, there are two main issues 
in automatic unit test generation. First, there are no test 
oracles for these automatically generated tests unless 
developers write down some formal specifications or 
runtime assertions [2]. Second, only a relatively small size 
of automatically generated tests can be added to the 
existing unit test suite. This is because the unit test suite 
needs to be maintainable, as is advocated by the XP 
approach [1]. 

 Two main unit test selection methods are available. In 
white box testing (e.g., the residual structural coverage 
[11]), users select tests that provide new structural 
coverage unachieved by the existing test suite. In black 
box testing, the operational difference (OD) technique is 
applicable in augmenting a test suite [5]. However, the 
OD technique for this unit test augmentation problem 
might select a relatively large set of tests because the 
specification generator’s statistical tests usually require 
multiple executions before outputting a specification 
clause. Additionally, OD requires frequent generation of 
specifications, and the existing dynamic specification 
generation is computationally expensive. Therefore, 
instead of using OD in the unit test selection, we adopt a 
specification violation approach similar to DIDUCE [4].  

Our approach is implemented by integrating Daikon 
and Jtest. Daikon [3], a dynamic invariant detection tool, 
is used to infer specifications from program executions of 
test suites. The probability limit for justifying invariants is 
set by Daikon users. The probability is Daikon’s estimate 
of how likely the invariant is to occur by chance. It ranges 
from 0 to 100% with a default value of 1%. Smaller 
values yield stronger filtering. Daikon includes a 
MergeESC tool, which inserts inferred specifications to 
the code as ESC/Java annotations [12]. ParaSoft Jtest 
[10], on the other hand, is a commercial Java unit testing 
tool, which automatically generates unit test data for a 
Java class. It instruments and compiles the code that 
contains Java Design-by-Contract (DbC) comments, then 
automatically checks at runtime whether the specified 
contracts are violated. We modified MergeESC to enable 
Daikon to insert the inferred specifications into the code 
as DbC comments. Since ESC/Java has better 
expressiveness than Jtest’s DbC, a perl script is written to 
filter out the specifications whose annotations cannot be 
supported by Jtest’s DbC. After being fed with a Java 
class annotated with DbC comments, Jtest uses them to 
automatically create and execute test cases and then verify 
whether a class behaves as expected. It suppresses any 

problems found for the test inputs that violate the 
preconditions of the class under test. But it still reports 
precondition violations for those methods called indirectly 
from outside the class. Note that DIDUCE tool reports all 
precondition violations [4]. By default, Jtest tests each 
method by generating arguments for them and calling 
them independently. In other words, Jtest basically tries 
the calling sequences of length 1 by default. Tool users 
can set the length of calling sequences in the range of 1 to 
3. If a calling sequence of length 3 is specified, Jtest first 
tries all calling sequences of length 1 followed by all those 
of length 2 and 3 sequentially. 
 
3. Specification Violation Approach 
 

This section describes the specification violation 
approach. Section 3.1 introduces the basic technique of 
the approach. Section 3.2 presents the precondition guard 
removal technique to improve the effectiveness of the 
basic technique. Section 3.3 describes the iterative process 
of applying these techniques. A preliminary experiment is 
conducted on a Java class of the bounded stack that is 
used to store unique elements of integer [13]. Detailed 
experimental results for this example are described in 
[14]. 
 
3.1. Basic Technique 

      Figure 1. An overview of the basic technique 
 
In our approach, partial specifications are inferred from 

program executions of the existing unit test suite by using 
Daikon (Figure 1). The partial specifications are inserted 
into the code as DbC comments. The resulting code is fed 
to Jtest. Initially, Jtest’s calling sequence length is set to 1 
and Jtest is run to automatically generate and execute test 
data. When a certain number of specification violations 
have occurred before Jtest exhausts its testing repository, 
it stops generating test data and reports specification 
violations. For each reported specification violation, i.e., 
the violated specification and the violating test, 
developers inspect them to decide whether to equip the 
test with an oracle and add it to the existing test suite. 
Then developers disable each violated specification by 
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commenting them out and rerun Jtest repeating the above 
procedure until no specification violations are reported. 
The whole process is iteratively applied by setting the 
length of calling sequences as 2 and subsequently 3. 

The rationale behind the basic technique is that if a 
new test violates an inferred partial specification, it is 
likely that this test exercises a new feature of the program 
uncovered by the existing test suite. This technique 
guarantees that the new test does not overlap with any 
others from the existing test suite in terms of the violated 
specification. In addition, the violating tests have a 
relatively high probability of exposing faults in the code if 
there are any. It is because that running the existing test 
suite on the code exhibits the normal behavior reflected by 
the inferred specifications and the violating tests might 
make the code exhibit the abnormal behavior. 

The symptoms of specification violations can be that 
the boolean value of a specification predicate is false or 
exceptions are thrown. In order for the inferred 
specifications to be violated, we set the probability limit 
to be 100%. The specification violations indicate 
deficiencies of the existing test suite. However, some 
violations might not be very helpful for the unit test 
selection. For example, the existing test suite for the stack 
implementation only push the integer element of 2 or 3 
into the stack and thus one of the inferred specifications is 
that the stack element is 2 or 3. The automatically 
generated tests that push the element of 1 into the stack 
violate this specification.  Since the element of 1 is not so 
different than 2 or 3 for the purpose of testing this stack 
implementation, developers might not select the violating 
test to the existing test suite. 
 
3.2. Precondition Guard Removal 
 

In our basic technique, when the existing test suite is 
deficient, the inferred preconditions might be so 
restrictive as to filter out those legal test data inputs in 
Jtest test data generation and execution. This over-
restrictiveness of preconditions also makes static 
verification of inferred specifications less effective [8]. 
Even if a static verifier could confirm an inferred post-
condition specification given some over-restrictive 
preconditions, it is hard to tell whether it is generalizable 
to the actual preconditions.  

To assure better quality of the unit under test, we need 
to exercise the unit under more circumstances than what is 
constrained by the inferred preconditions. Before the code 
that is annotated with DbC comments is fed to Jtest, all 
precondition comments are removed. In the preliminary 
experiment, we observed that precondition guard removal 
techniques reported more violations and exposed more 
faults than the basic technique (Section 3.1). Indeed, 
removing precondition guards produces more false 
positives by allowing some illegal inputs. Yet the tool 

only reports those illegal inputs that cause postcondition 
or invariant violations. 
 
3.3. Iterations 
 

After the new test augmentations using the 3.1 and 3.2 
techniques, all the violating tests with legal inputs, 
whether selected or unselected, can be further run together 
with the existing ones to infer new specifications. 
Although those unselected violating tests with legal inputs 
might not exercise any interesting new features, running 
them in the specification inference can relax the violated 
specifications to reduce the false positives in the next 
iteration. The same process described in Section 3.1 and 
3.2 is repeated until there are no specification violations 
or no test data selected from the violating tests. In the 
preliminary experiment, most of the specification 
violations were observed in the first iteration, and all 
specification violations were observed before the third 
iteration. 

 
4. Effect of Inferred Specifications on Test 
Generation  
 

In previous sections, we showed that the inferred 
specifications can be used to select unit test data and 
improve the specification quality. Furthermore, we 
observed that the inferred specifications also had an effect 
on Jtest’s automatic test generation. As is described in 
Jtest’s manual [6], if the code has preconditions, Jtest tries 
to find inputs that satisfy all of them. If the code has 
postconditions, Jtest creates test cases that verify whether 
the code satisfies these conditions. If the code has 
invariants, Jtest creates test cases that try to make them 
fail. The preliminary experiment showed that 
preconditions have greater impacts on Jtest’s test 
generation than either postconditions or invariants. 
Sometimes Jtest, equipped with specifications, could 
automatically generate tests that achieve better code 
coverage than the one without specifications. For the test 
length of two, the former Jtest automatically generated 
more tests for the stack implementation than the latter one. 
It suggests that inferred specifications are able to guide 
Jtest to generate better tests.  
 
5. Concluding Remarks 
 

In sum, selecting automatically generated tests to 
augment the existing unit test suite is an important step in 
the unit testing practice. Inferred partial specifications act 
as a proxy for the existing test execution history. A new 
test that violates an inferred specification is a good 
candidate for developers to inspect for test data selection. 
The violating test also has a high probability to expose 

jcook
19



faults in the code. Instead of considering the test 
augmentation as a one-time phase, it should be considered 
as a frequent activity in software evolution, if not as 
frequent as regression unit testing. When a program is 
changed, the specifications inferred from the same unit 
test suite might change as well, giving rights to possible 
test violations. Tool-assisted unit test augmentation can be 
a means to evolving unit tests and assuring better unit 
quality. Moreover, augmenting unit test suite in a 
controlled way can lead to better quality of inferred 
specifications. In future work, we plan to apply the 
specification violation techniques in connecting system 
testing and unit testing. Specifications are to be inferred 
from system testing and specification violations by the 
generated unit tests are used to guide unit test data 
selection. Also, the partial specifications inferred from 
testing done by component providers are to be delivered 
as component metadata [9], which will aid component 
users to perform test augmentations. Finally, we plan to 
apply the specification violation techniques in other kinds 
of inferred specifications, e.g. sequencing constraints or 
protocols. 
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Abstract

Dynamic detection of program invariants is emerg-
ing as an important research area with many challeng-
ing problems. As with any dynamic approach, the accu-
racy of dynamic discovery of likely program invariants
depends on the quality of test cases used to detect in-
variants. Therefore, generating suitable test cases that
support accurate detection of program invariants is cru-
cial to the dynamic approach for invariant detection.

In this paper, we explore new directions in using the
existing test data generation techniques to improve the
accuracy of dynamically detected program invariants.
First we discuss the augmentation of existing test suites
to improve the accuracy of dynamically discovered in-
variants. The augmentation of the test suite may be
done prior to running the dynamic analysis if the vari-
ables and expressions whose values will be monitored at
runtime are known in advance. On the other hand, the
dynamic analysis may be run first using an available
test suite to obtain an initial guess of program invari-
ants. These guessed invariants may then be used to gen-
erate test cases to augment the test suite. We also pro-
pose the use of existing test data generation techniques
in improving the accuracy of invariants guessed using
an already available test suite.
Keywords - Test data generation, path testing, pro-
gram invariants, dynamic analysis, execution traces.

1 Introduction

Dynamic detection of program invariants is an
emerging area of research with many challenging
problems [3, 4]. The accuracy of dynamically dis-
covered invariants critically depends upon the test

suite used for detection of invariants. One param-
eter of the test suite that can be loosely related to
the accuracy of dynamic detection of invariants is
the size of the test suite. However, not all large
test suites can be expected to be equally effective
in accurate detection of invariants due to varying
degree of structural coverage obtained. Thus, it
is crucial to conduct research on what properties
make a test suite suitable for dynamic invariant de-
tection.

In prior work [3, 4], randomly generated and
grammar generated test suites have been used
for invariant detection. Randomly generated test
suites have poor coverage and are most effec-
tive at highly peculiar bugs [10]. In the experi-
ments reported in [4], the randomly generated test
suites failed to execute many portions of a pro-
gram. These randomly generated test suites did
not detect many of the invariants that were de-
tected using hand-crafted input cases. The experi-
ments using randomly generated test suites from a
grammar describing valid inputs detected more in-
variants than completely randomly generated test
suites. However, generating test cases using gram-
mar rules is a black box approach to test case gen-
eration and in general can fail to cover a significant
part of the implementation.

In this paper we explore new research directions
in generation of test cases to support dynamic in-
variant detection. We discuss the augmentation
of existing test suites to improve the accuracy of
dynamically discovered invariants. The augmen-
tation of the test suite may be done prior to run-
ning the dynamic analysis if the variables and ex-
pressions, whose values will be monitored at run-
time, are known in advance. On the other hand, the
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dynamic analysis may be run first using an avail-
able test suite to guess program invariants. These
guessed invariants may then be used to generate
test cases to augment the test suite. We also pro-
pose the use of existing test data generation tech-
niques to improve the accuracy of dynamically dis-
covered likely invariants.

The organization of the paper is as follows. We
discuss the background work in test data genera-
tion and dynamic detection of program invariants
in section 2. In section 3, we propose new research
directions to improve the accuracy of dynamically
discovered invariants. Finally, we summarize the
contributions of this paper and our future work.

2 Background

Test Data Generation Problem We consider the
problem of generating input data that forces execu-
tion through a given path in a program. Symbolic
evaluation [1, 2] and program execution based ap-
proaches [7, 8, 5, 11] have been proposed for gener-
ating test data for a given path in a program. The
problem of test data generation for a given path is
defined as follows.

Problem Statement: Given a program path
�

which
is traversed for certain evaluations (true or false)
of branch predicates � ����� � �����	�
� � ���

along
�

,
generate a program input 
������ � � � ������� � ����� in the
input domain of the program that causes the branch
predicates to evaluate such that

�
is traversed.

The selection of paths for which the test input
needs to be generated depends upon the testing
strategy. For example, if the testing strategy is to
ensure coverage of all branches in the program, the
test paths are selected so that each branch is exer-
cised by at least one test path among those selected.

Dynamic Invariant Detection. We consider the
approach to dynamic discovery of invariants pre-
sented in [3, 4]. In this approach the invariants
are dynamically detected from program traces that
capture the variable values at program points of
interest. The user runs the target program over a
test suite to create execution traces of the program.
An invariant detector determines which properties
hold over both explicit variables and other expres-
sions. Variable and expressions for which these
properties hold over the traces, and also satisfy
other tests such as being statistically justified, not
being over unrelated variables and not being im-
plied by other invariants, are reported as likely in-

variants. The set of likely invariants reported de-
pends on the test suite used to discover invariants.

3 Test Data Generation for Dynamic
Invariant Detection

In this paper we explore the relationship be-
tween the test data generation problem and dy-
namic discovery of program invariants. First we
illustrate that the test suites satisfying the state-
ment and branch coverage criteria may not be good
enough for accurate detection of program invari-
ants. We propose new approaches to to augment
these test suites with additional test cases that can
help in improving the accuracy of detected invari-
ants. Second we illustrate the use of test data gen-
eration techniques in improving the accuracy of
detected invariants.

3.1 Augmenting a Test Suite for Invariant De-
tection

We first illustrate the limitations of using ex-
isting structural coverage test suites for dynamic
discovery of program invariants and propose how
these test suites may be augmented with additional
test cases to overcome these limitations.

0: int ��� �"!$#&% (int x, y)
1: '
P1: if (x ( 0)
2: a=3;
3: c=6;
4: else
5: a=3;
6: c=9;
7: endif
P2: if (y ( 0)
8: b=4;
9: d=2;
10: else
11: b=3;
12: d=1;
13: endif
14: /* Monitored Property: (a*b == c*d) */
15: printf(“ a*b == c*d”)

16:
...

17: )
Figure 1. An example code segment

Let us consider the code segment shown in Fig-
ure 1. Let the expression (a*b == c*d) in line 15 rep-
resent a property to be monitored during every ex-
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ecution of this code segment. The code segment
has been instrumented so that the value of this ex-
pression is written into every execution trace for
this code segment. Let us say the test suite � � con-
sists of the following two input cases.
� � ��� ��� ��� ��� �
	 � � ��� �
��� ��� �
��� ���
Note that executing the code segment in Figure

1 with test cases in � � executes every statement in
this code segment. In addition, every branch out-
come of the two branch predicates

� � and
� 	 are

executed by this test suite. Also note that every
definition-use pair in this code segment is also ex-
ercised by this test suite. The property tested in
line 15 will also hold for this test suite � � . But it
is easy to see that this property does not hold for
the test case ��� ��� ��� ����� � . This simple example
illustrates that code coverage (each statement ex-
ecuted at least once by some test case) and even
branch coverage (each branch outcome is evalu-
ated at least once by some test case) are very weak
criteria for the test suite to be adequate for dynamic
invariant detection.

However, the above example provides insight
into the limitations of using coverage based test
suites for detecting invariant properties at differ-
ent points in the programs. These test suites are
designed to test structural coverage of the program
and may not contain test cases that are specifically
helpful in verification of properties being moni-
tored for invariant discovery. What is needed is
the augmentation of these test suites with test cases
specific to the properties being monitored.

In the above example, we need test cases for
all possible combinations of branch outcomes by
which the program execution can reach the criti-
cal point where the property of interest is being
monitored. But in general, the number of paths
reaching the critical point may be unbounded due
to the presence of loops. So the crucial problem is
how to identify the important paths reaching the criti-
cal point so that augmenting the structural coverage
test suites with the test cases for these paths gives
higher confidence in the value of the property be-
ing monitored during execution.

One approach we propose is to select the paths
that exercise different definition-use pairs that are� ����� at the critical point where the invariant prop-
erty is being monitored. However, in order to com-
pute the live definition-use pairs at the critical point,
we need to know the expression or the variable that
is being monitored at this point. If the explicit vari-
ables and other expressions whose properties are
collected in the executions traces are available in

advance, then the live definition-use pairs for these
variables and expressions can be computed.

On the other hand, if the explicit variables and
expressions whose properties are to be monitored
are not available in advance, then runtime analy-
sis [3, 4] can be used to discover likely invariants
with an existing structural coverage test suite. The
live definition-use pairs for the discovered likely in-
variants (at the relevant program points) can then
be used to guide the selection of paths important
for verification of these discovered invariants. The
test inputs for these paths can be generated and
the structural coverage test suite can then be aug-
mented with these test inputs. Now if the run-
time analysis [3, 4] is done with the augmented test
suite, it is expected that some of the spurious in-
variants that were reported earlier with the struc-
tural coverage test suite may not be reported any
more. This is because the augmented test suite
contains test cases specific to verification of those
likely invariant properties that were reported ear-
lier by the structural coverage test suite. The sub-
set of the properties reported (from among those
reported with the coverage test suite) by the aug-
mented test suite is expected to be more accurate
than the original set of likely invariants reported
with the structural coverage test suite. We are cur-
rently exploring the effectiveness of this approach
in our ongoing research. In the next section, we
illustrate a different dimension of the relationship
between the test data generation problem and the
accuracy of reported program invariants.

3.2 Formulating Invariant Detection Problem
as a Test Data Generation Problem

We propose to formulate the invariant detection
problem as a data generation problem to improve
the accuracy of dynamically discovered invariants.
We illustrate this with the example in Figure 1. Let
us replace line 15 in the code segment shown in
Figure 1 by lines

���
, ��� , ��� and ��� shown in Fig-

ure 2.
We call the new branch predicate

���
introduced

in the code segment in Figure 3 as the invariant
checking predicate. Let us consider the problem
of generating test data to execute the branch de-
noted by the line

���
followed by line ��� , i.e., the

false branch outcome of predicate
���

. Now, if test
data can be generated for the false branch of an invari-
ant checking predicate, then the corresponding property
does not hold irrespective of the information collected
from the execution traces using the already available test
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0: int ��� �"!$#&% (int x, y)
1: '
P1: if (x ( 0)

...
7: endif
P2: if (y ( 0)

...
13: endif
14: /* Monitored Property: (a*b == c*d) */
P3: if (a*b == c*d)
15: printf(“Property holds”)
16: else
17: printf(“Not an invariant”)

18:
...

19: )
Figure 2. Modified example code segment

suites. As can be seen for the example in Figure 2,
test data for the false outcome of

���
will be easily

generated by program execution based techniques
in [9, 12].

The above example illustrates an important ap-
plication of the test data generation techniques in
support of dynamic invariant detection. If test data
can be generated to exercise the false branch of an
invariant checking predicate, then the correspond-
ing guessed invariant must be discarded. This is
because this test input serves as a counterexample
to this guessed invariant. Although, in general it
is undecidable whether there exists an input to ex-
ecute a given path in an arbitrary program, tech-
niques [1, 2, 7, 8, 5, 11] have been developed for
automatic generation of test data for a given path
in a program. Different test data generation tech-
niques have different strengths and the difficulty of
test data generation for a path depends on the com-
plexity and interdependence of branch predicates
along the path. However, whenever test data gen-
eration techniques can generate an input exercising
the false branch of an invariant checking predicate,
the accuracy of the reported invariants can be sig-
nificantly improved.

4 Conclusions and Future Work

In this paper we have provided insight into the
relationship between test cases used for detecting
invariants and the accuracy of invariant proper-
ties thus detected. We have proposed approaches
for augmenting test suites for accurate detection of
invariants. We are currently exploring these ap-

proaches for their effectiveness in accurate discov-
ery of program invariants. We have also proposed
the use of test data generation techniques to im-
prove the accuracy of dynamically discovered pro-
gram invariants.
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Abstract

This paper presents two sets of observations relating
static and dynamic analysis. The first concerns synergies
between static and dynamic analysis. Wherever one is uti-
lized, the other may also be applied, often in a complemen-
tary way, and existing analyses should inspire different ap-
proaches to the same problem. Furthermore, existing static
and dynamic analyses often have very similar structure and
technical approaches. The second observation is that some
static and dynamic approaches are similar in that each con-
siders, and generalizes from, a subset of all possible execu-
tions.

Researchers need to develop new analyses that comple-
ment existing ones. More importantly, researchers need to
erase the boundaries between static and dynamic analysis
and create unified analyses that can operate in either mode,
or in a mode that blends the strengths of both approaches.

1. Background

This section briefly reviews some facts about traditional
static and dynamic analyses, to set the stage for the rest of
the paper.

Static and dynamic analyses arose from different com-
munities and evolved along parallel but separate tracks. Tra-
ditionally, they have been viewed as separate domains, with
practitioners or researchers specializing in one or the other.
Furthermore, each has been considered ill-suited for the
tasks at which the other excels. This paper argues that the
difference is smaller than it appears and that certain of these
distinctions are unnecessary and counterproductive.

Static analysis examines program code and reasons over
all possible behaviors that might arise at run time. Com-
piler optimizations are standard static analyses. Typically,
static analysis is conservative and sound. Soundness guar-
antees that analysis results are an accurate description of the
program’s behavior, no matter on what inputs or in what en-
vironment the program is run. Conservatism means report-
ing weaker properties than may actually be true; the weak
properties are guaranteed to be true, preserving soundness,

but may not be strong enough to be useful. For instance,
given a functionf , the statement “f returns a non-negative
value” is weaker (but easier to establish) than the statement
“f returns the absolute value of its argument.” A conser-
vative analysis might report the former, or the even weaker
property thatf returns a number.

Static analysis operates by building a model of the state
of the program, then determining how the program reacts
to this state. Because there are many possible executions,
the analysis must keep track of multiple different possible
states. It is usually not reasonable to consider every possi-
ble run-time state of the program; for example, there may
be arbitrarily many different user inputs or states of the run-
time heap. Therefore, static analyses usually use an ab-
stracted model of program state that loses some informa-
tion, but which is more compact and easier to manipulate
than a higher-fidelity model would be. In order to maintain
soundness, the analysis must produce a result that would be
true no matter the value of the abstracted-away state com-
ponents. As a result, the analysis output may be less precise
(more approximate, more conservative) than the best results
that are in the grammar of the analysis.

Dynamic analysis operates by executing a program and
observing the executions. Testing and profiling are a stan-
dard dynamic analyses. Dynamic analysis is precise be-
cause no approximation or abstraction need be done: the
analysis can examine the actual, exact run-time behavior of
the program. There is little or no uncertainty in what con-
trol flow paths were taken, what values were computed, how
much memory was consumed, how long the program took
to execute, or other quantities of interest. Dynamic analysis
can be as fast as program execution. Some static analyses
run quite fast, but in general, obtaining accurate results en-
tails a great deal of computation and long waits, especially
when analyzing large programs. Furthermore, certain prob-
lems, such as pointer or alias analysis, remain beyond the
state of the art; even exponential-time algorithms do not al-
ways produce sufficiently precise results. By contrast, de-
termining at run time whether two pointers are aliased re-
quires a single machine cycle to compare the two pointers
(somewhat more, if relations among multiple pointers are
desired).
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The disadvantage of dynamic analysis is that its results
may not generalize to future executions. There is no guar-
antee that the test suite over which the program was run
(that is, the set of inputs for which execution of the program
was observed) is characteristic of all possible program exe-
cutions. Applications that require correct inputs (such as
semantics-preserving code transformations) are unable to
use the results of a typical dynamic analysis, just as applica-
tions that require precise inputs are unable to use the results
of a typical static analysis. Whereas the chief challenge
of building a static analysis is choosing a good abstraction
function, the chief challenge of performing a good dynamic
analysis is selecting a representative set of test cases (inputs
to the program being analyzed). (Efficiency concerns affect
both types of analysis.) A well-selected test suite can re-
veal properties of the program or of its execution context;
failing that, a dynamic analysis indicates properties of the
test suite itself, but it can be difficult to know whether a
particular property is a test suite artifact or a true program
property.

Unsound dynamic analysis has been traditionally
denigrated by the programming languages community.
Semantics-preserving program transformations such as
compiler optimizations require correct information about
program semantics. However, unsoundness is useful in
many other circumstances. Dynamic analysis can be used
even in situations where program semantics (but not per-
fect program semantics) are required. More importantly,
humans are remarkably resilient to partially incorrect infor-
mation [10], and are not hindered by its presence among (a
sufficient quantity of) valuable information. Since in most
domains human time is far more important than CPU time,
it is a better focus for researchers. As a result, and be-
cause of its significant successes, dynamic analysis is gain-
ing credibility.

2. Static and dynamic analysis: synergies

As noted in Section 1, static and dynamic analysis have
complementary strengths and weaknesses. Static analysis
is conservative and sound: the results may be weaker than
desirable, but they are guaranteed to generalize to future ex-
ecutions. Dynamic analysis is efficient and precise: it does
not require costly analyses, though it does require selection
of test suites, and it gives highly detailed results regarding
those test suites.

The two approaches can be applied to a single problem,
producing results that are useful in different contexts. For
instance, both are used for program verification. Static anal-
ysis is typically used for proofs of correctness, type safety,
or other properties. Dynamic analysis demonstrates the
presence (not the absence) of errors and increases confi-
dence in a system.

This section considers the use of static and dynamic anal-
ysis in tandem, to complement and support one another.
First, static and dynamic analyses enhance each other via
pre- or post-processing. Second, existing static and dy-
namic analyses can suggest new analyses. Third, static and
dynamic analyses should be combined into a hybrid analy-
sis.

2.1. Performing both static and dynamic analysis

Static or dynamic analyses can enhance one another by
providing information that would otherwise be unavailable.
Performing first one analysis, then the other (and perhaps
iterating) is more powerful than performing either one in
isolation. Alternately, different analyses can collect differ-
ent varieties of information for which they are best suited.

This well-known synergy has been and continues to be
exploited by researchers and practitioners alike. As one
simple example, profile-directed compilation [1] uses hints
about frequently executed procedures or code paths, or
commonly observed values or types, to transform code. The
transformation is meaning-preserving, and it improves per-
formance under the observed conditions but may degrade
it in dissimilar conditions (the correct results will still be
computed, only consuming more time, memory, or power).
As another example, static analysis can obviate the collec-
tion of certain information by guaranteeing that collecting a
smaller amount of information is adequate; this makes dy-
namic analysis more efficient or accurate.

2.2. Inspiring analogous analyses

Both static and dynamic analysis can always be applied
to a particular program, though possibly at different cost,
and their results have different properties. Whenever only
one of the analyses exists, it makes sense to investigate the
other, which may be able to use the same technical ap-
proach. In many cases, both approaches have already been
implemented by different parties.

One simple example is static and dynamic slicing [14].
Slicing indicates which parts of a program (may) have con-
tributed to the value computed at, or the execution of, a par-
ticular program expression or statement. Slicing can oper-
ate statically, dynamically, or both.

As a more substantive example, Purify [8] and
LCLint [6] are tools for detecting memory leaks and uses of
dead storage. (Each has capabilities missing from the other,
but this discussion considers only the intersection of their
capabilities.) Purify performs a run-time check, essentially
by use of tagged memory. Each byte of memory used by the
program is allocated a 2-bit state code indicating whether
that memory is unallocated, uninitialized, or initialized; at
each memory access, the memory’s state is checked and/or
updated by instructions that Purify inserts in the executable.
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LCLint operates statically, checking user-supplied annota-
tions that indicate assumptions. It performs a dataflow anal-
ysis whose abstract state contains includes definedness and
allocation state; each program operation has particular re-
quirements on its inputs and produces certain results. The
rules and abstract states used by Purify and LCLint are es-
sentially identical: they perform the same analysis, Purify
dynamically and LCLint statically.

As another example, consider program specifications,
which are formal mathematical abstractions of program be-
havior. When used to verify behavior, the standard static
technique is theorem proving, which typically requires hu-
man interaction. The dynamic analog of theorem-proving
is theassert statement, which verifies the truth of a par-
ticular formula at run time. Specifications are best written
by the designer before implementation commences. When
specifications are synthesized after the fact, the typical ap-
proach is a static one that proceeds by examining the pro-
gram text. This task is sometimes done automatically with
the assistance of heuristics, but very frequently it is done
by hand. The dynamic analog to writing down a specifica-
tion is generating one automatically by dynamic detection
of likely invariants [4, 5]. The invariant detection technique
postulates potential invariants, tests them over program ex-
ecutions, and then prunes them via static analysis, statistical
tests, heuristics, and other techniques. As a result, its output
is often close to the ideal (over its grammar) that a perfect
static analysis or human would produce [11].

Dynamic invariant detection was invented as a direct re-
sult of considering the duality between dynamic and static
analysis. There existed static analyses that could generate
specifications (or formulas syntactically identical to speci-
fications, if the term “specification” is reserved for human-
produced formulas), but no dynamic analyses existed. (Dy-
namic techniques for other varieties of specifications al-
ready existed [2].) This led to a new technique that has
since been applied to refactoring, bug detection, fault isola-
tion, test suite improvement, verification, theorem-proving,
detection of component incompatibilities, and other tasks.
Other researchers would be well advised to look for other
missing analyses, in order to inspire development of new
analyses by comparison with their existing analogs. Where
just one (static or dynamic) analysis exists, the other is
likely to be advantageous.

2.3. Hybrid static-dynamic analysis

Presently, tool users must select between static and dy-
namic analysis. (Section 2.1’s noted cooperative strategies
use one analysis as a prepass for the other, but the overall
output is that of the final analysis.) In some cases, one or the
other analysis is perfectly appropriate. However, in other
cases, users may prefer not to be forced to choose between
the two approaches.

A better alternative is to create new, hybrid analyses
that combine static and dynamic analyses. Such an anal-
ysis would sacrifice a small amount of the soundness of
static analysis and a small amount of the accuracy of dy-
namic analysis to obtain new techniques whose properties
are better-suited for particular uses than either purely static
or purely dynamic analyses.

The hybrid analyses would replace the (large) gap be-
tween static and dynamic analysis with a continuum. Users
would select a particular analysis fitted to their needs: they
would, in a principled way, turn the knob between sound-
ness and precision. It seems unlikely that one extreme or
the other is always the appropriate choice: users or system
builders should be able to find the “sweet spot” for their
application. Indeed, different analyses (both static and dy-
namic) already use different amounts of processing power
to produce results of differing precision. This could be a
starting point for the work. Another starting point could be
use of only a subset of all available static information, much
as already practiced by some tools [12, 7]. A third starting
point is an observation about the duality of static and dy-
namic analysis, noted immediately below in Section 3. One
potential barrier is different treatments (optimistic vs. con-
servative) of unseen executions.

3. Static and dynamic analysis: duals

Static and dynamic analysis are typically seen as distinct
and competing approaches with fundamentally different the
techniques and technical machinery. (Section 2.2 noted that
in some cases, the underlying analyses are quite similar.)
This section argues that the two types of analysis are not
as different as they may appear; rather, they are duals that
make many of the same tradeoffs.

The key observation is that both static and dynamic anal-
ysis are able to directly consider only a subset of program
executions. Generalization from those executions is the
source of unsoundness in dynamic analysis and imprecision
in static analysis.

A dynamic analysis need not be unsound. A sound dy-
namic analysis observes every possible execution of a pro-
gram. If a test suite contains every possible input (and ev-
ery possible environmental interaction), then the results are
guaranteed to hold regardless of how the program is used.
This simple goal is unattainable: nontrivial programs usu-
ally have infinitely many possible executions, and only a
relatively small (even if absolutely large) set of them can
be considered before exhausting the testing budget (in time,
money, or patience). Researchers have devised a number of
techniques for using partial test suites or for selection of par-
tial test suites [13]. These techniques are of interest solely
as efficiency tweaks to an algorithm that works perfectly in
theory but exhausts resources in practice.
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A static analysis need not be approximate. A perfectly
precise static analysis considers every possible execution of
a program, maintaining, for each execution, the program’s
full state (or, rather, all possible states). This is not typ-
ically feasible, because there are infinitely many possible
executions and the state of the program is extremely large.
Researchers have devised many abstractions, primarily of
state but also of executions, that permit them to consider a
smaller state space or a smaller number of executions, re-
ducing the problem to one that can often be solved on to-
day’s computers. The abstractions are of interest solely as
efficiency tweaks to an algorithm that works perfectly in
theory [3] but exhausts resources in practice.

Both dynamic and static analyses consider only a sub-
set of all possible executions, but that subset is chosen dif-
ferently. (Executions not in the set may be dealt with dif-
ferently, as well. In particular, the unobserved executions
may be treated conservatively and pessimistically or may be
treated optimistically, which often means simply ignoring
them. This distinction between sound and unsound analysis
is important but is omitted for reasons of space and because
it is orthogonal to the main point.)

The set of executions considered by a dynamic analysis
is exactly those that appear in the test suite or that were ob-
served during execution. This set is very easy to enumerate
and may characterize a particular environment well; how-
ever, the set may be difficult to formalize in mathematical
notation. The set of executions considered by a static anal-
ysis is those that induce executions of a certain variety. For
instance, thek-limiting [9] abstraction considers in detail
only the executions that create data structures with pointer-
directed paths of length no more thank; another popular ab-
straction considers only executions that traverse each loop
either zero or one times [6, 7].

Each of the descriptions is simpler in some respects and
more complicated in others. Given a data-structure-centric
description like those used for static analysis, it is difficult to
know what executions induce the data structures or whether
particular programs or execution environments will suffer
degradation of analysis results. Given a set of inputs or ex-
ecutions, analysis is required to understand what parts of a
program are exercised, and in what ways.

Recognition of this duality — both analyses consider a
subset of executions — should make it easier to translate ap-
proaches from one domain to the other and to combine static
and dynamic analyses, or at least to a better understanding
of the gap between them.

4. Conclusion

This paper has listed some widely-recognized distinc-
tions between static and dynamic analysis, notably sound-
ness versus precision. It noted ways that static and dynamic

analysis can interact: by augmenting one another, by inspir-
ing new analyses, and by creating hybrid analyses that com-
bine them. Some of these seem to have been overlooked by
previous authors. Finally, it noted a duality between static
and dynamic analysis, both of which consider (differently-
specified) subsets of program executions. We encourage
other researchers to join us in bringing these research ideas
to fruition.
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Abstract
Design pattern instance recognition is often done by static
analysis, thus approaches are limited to the recognition of
static parts of design patterns. The dynamic behavior of pat-
terns is disregarded and leads to lots of false positives during
recognition. This paper presents an approach to combine the
advantages of static and dynamic analyses to overcome this
problem and improve the design pattern instance recognition.

1. Motivation
Reverse engineering large industrial legacy systems is hard

work. They consist of several thousand or up to million lines
of code and often lack of documentation. The systems have
grown over several years and were developed by different
programmers with different programming styles.

Design recovery, which means extracting design documents
from source code, is a way to assist the reengineer understan-
ding and maintaining those systems. As a basis for design
documentation design patterns first presented by Gamma et
al. [4] are suitable. By recognizing instances of design pat-
terns in the system’s source code, the implicit design may be
recovered and documented. Further enhancements can then
be applied to the system.

Most approaches to design recovery use static analysis
techniques on the system’s source code [1, 6, 7, 12]. Some
of them are text-search tools based on regular expressions.
Other approaches use graph representations of the source co-
de, such as control flow or data flow graphs or even abstract
syntax trees.

In object-oriented languages those static analyses are not
sufficient. Polymorphism and dynamic method binding pre-
vent the correct analysis of method invocations that are es-
sential to recover patterns with behavioral aspects such as
the Chain of Responsibility pattern [4] depicted in Figure 1.

Some parts of a Chain of Responsibility pattern such as
the inheritance between the abstract class Handler and their
concrete children classes or the self-association successor of
the class Handler can be found by static analyzing techni-
ques. Method calls such as the delegation between a Handler
object and its successor can be found statically, but the con-
crete invoked method and the concrete object the method
is invoked on can only be analyzed during runtime.

Thus a precise recognition of design pattern instances with

∗This work is part of theFinite project funded by the German
Research Foundation (DFG), project-no. SCHA 745/2-1.

Handler

handleRequest()


ConcreteHandler1

handleRequest()


Client


ConcreteHandler2

handleRequest()


successor

0..1


successor.handleRequest()


if can handle {...}

else {

successor.handleRequest()

}


Figure 1: Chain of Responsibility pattern

dynamic behavior requires dynamic analysis. A complete
reengineering process based on dynamic analysis only is not
appropriate, because static parts of design patterns can be
identified easier in static analysis. So a smart combination
of static and dynamic analysis is desirable.

The combined reengineering process starts with the static
analysis of the source code. As a result of this first part of
the process a set of pattern instance candidates is produced.
This set is the input for the dynamic analysis part of the
process. It reduces the search space for the dynamic analysis.
During runtime of the program pattern instance candidates
only have to be investigated.

In the following an overview of our pattern-based design
recovery process is presented. An example for a pattern in-
stance is then given to clarify the limitations of static ana-
lysis. To lift this restrictions dynamic analysis is added to
design pattern instance recognition based on static analysis.
The paper closes with related work and some conclusions.

2. Pattern-based Design Recovery
In our approach described in [8, 9] we use an abstract

syntax graph (ASG) representation of the source code. This
ASG is produced by parsing the source code. It contains sta-
tic information about classes, attributes, methods including
method bodies and inheritance. Our approach is not bound
to any particular programming language. As a case study
we analyzed software systems written in Java.

We use additional nodes to enrich the ASG with infor-
mation gathered during analyses. Those nodes added to the
ASG are called annotations. They are linked to the nodes in
the ASG that have to be annotated with information.
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A tool-based design recovery needs formalized rules for
the analysis. We developed a graphical rule definition lan-
guage based on graph-rewrite-rules with a left and a right
side. Each pattern that should be searched for is defined by
the left side of such a graph-rewrite-rule. The right side of
the rule consists of the pattern together with the annotati-
on node that has to be added to the ASG. By successfully
applying these rules to the ASG, pattern instances are reco-
vered. The information of a found pattern instance is stored
by the annotation node linked to the ASG elements that are
participating in the pattern’s instance.

By defining new rules, existing rules can be reused. Sim-
ple rules may be combined to new more complex and more
abstract rules. As a result a pattern rule catalog is formed
where rules depend on each other.

To support reverse engineering tasks where up to milli-
on lines of code are analyzed we developed a highly scala-
ble design recovery process. We showed that our approach
is applicable to real life software systems such as the Java
Abstract Windowing Toolkit (AWT) [11] with more than
140.000 lines of code [8, 9].

3. Static Analysis
Pattern-based design recovery is a deductive analysis pro-

blem where patterns, or rules, are repeatedly applied to a
representation of the source code to arrive at the most com-
plete characterization of the code permitted by the rules.
Pure deductive analysis algorithms typically apply the rules
involved level by level - bottom-up - according to their na-
tural hierarchy. Results from other researchers, such as [13]
and [10], suggest that a reverse engineering tool providing
fully automatic analysis based on this approach cannot scale
for larger software systems.

We developed a combined bottom-up and top-down stra-
tegy. The rules in the pattern rule catalog are sorted by
their natural dependency hierarchy. The analysis starts in
bottom-up mode with rules at the lowest level which are
rules that do not depend on others. After successfully app-
lying such a rule, consequent rules at the next level will be
triggered. If any rule depends on precondition rules that ha-
ve not yet applied, the strategy switches into the top-down
mode. After evaluating all preconditions the strategy chan-
ges back to bottom-up mode. The whole analysis algorithm
which ensures a highly scalable process can be found in [8].

In our ASG representation of the source code method bo-
dies are also contained as mentioned before. This enables
our static analysis to analyze parts of the dynamic behavior
of methods. The existence of method calls can be identified
but dynamic method binding and polymorphism prevents
to identify the actual called method and the actual object
the method is invoked on. It can only be a first indication
of dynamic behavior.

Figure 2 depicts an instance of a Chain of Responsibility
pattern shown in Figure 1. This example shows a part of
a model for a graphical user interface. There is an abstract
class GUIElement that implements a multiple self-reference
children. Concrete subclasses of this abstract class are a Win-
dow, a Panel and a Button. They override a method from
their superclass. The dotted line of the inheritance relation
denotes an indirect inheritance. So there are other classes in
between the inheritance hierarchy.

Suppose a pattern rule is defined to identify a Chain of
Responsibility pattern instance as shown in Figure 1. The

GUIElement

mousePressed()


Window

mousePressed()


Button

mousePressed()


children

0..n


Panel

mousePressed()


Figure 2: Concrete instance of a Chain of Responsi-
bility pattern

source code to be reengineered contains a Chain of Responsi-
bility pattern instance as depicted in Figure 2. During static
analysis there are some elements of uncertainty that prevent
an exact matching of this pattern instance.

The multiple self-reference of the abstract superclass GUI-
Element is different from the single reference successor of
the Chain of Responsibility pattern. This could be a coun-
ter indicator for a Chain of Responsibility pattern instan-
ce, because a chain element has always only one successor.
Another uncertainty derives from the indirect inheritance
hierarchy. The original pattern describes a direct inheritan-
ce between the abstract handler and its concrete handlers.
Furthermore the method call delegation from a handler to
its successor can not be identified exactly. A method call
from a handler to another handler can be statically identi-
fied, but it is not for sure that this call is forwarded in a
chain of objects.

This leads only to an inexact match. There are two ways
to handle this match. Firstly, this match can be discarded,
because it is different from the original defined pattern. Se-
condly, it could be accepted as a pattern instance candidate
with a low certainty of being a correct pattern instance. This
certainty is expressed as a fuzzy value. In [9] we describe how
to handle inexact pattern matches by fuzzy values.

The result of the overall static analysis is a set of pattern
instance candidates each rated by a fuzzy value. For some
of the candidates the certainty (fuzzy value) that they are
actual pattern instances is not very high because of dynamic
behavior that can not be analyzed statically as stated before.
Some of them may even be false positives. Dynamic analysis
can help to make these results more precise.

The analysis restricted to the candidates reduces the input
for dynamic analysis. To further reduce the search space,
our static analysis process provides the analysis of method
bodies as part of the ASG. Structural information about
method bodies such as a method call within a loop can be
used for refining the rules. This reduces not only the number
of candidates but also the number of methods that have
to be investigated by dynamic analysis. Methods that are
probably not participating in the pattern can be separated
from those that are relevant to the pattern.

4. Dynamic Analysis
The design patterns descriptions used by Gamma et al. [4]

are informal in most parts, for example the motivation, ap-
plicability, consequences and implementation. More formal
parts of a pattern description are the structure and some-
times the collaboration parts. The collaboration parts often
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contain UML sequence diagrams with typical behavior of
the pattern constituents. Figure 3 shows such a sequence
diagram for the Chain of Responsibility pattern. Those des-
criptions of the dynamic behavior of patterns can be used by
the reverse engineer to formally define rules for tool-based
design recovery.

a:Handler
 c:Handler
b:Handler


handleRequest()


handleRequest()


Figure 3: Sequence diagram pattern for a Chain of
Responsibility

For each pattern with dynamic behavior a pattern for a
UML sequence diagram is added to the pattern’s rule. It
describes typical sequences of method calls between objects
that participate in the pattern. The diagrams can only be
samples for object interaction. Figure 3 for example only
shows three objects acting as a Chain of Responsibility. Ac-
tual chain of responsibilities may consist of more than three
objects.

Reengineering a program often aims at changing or adding
features. The program’s part to be reengineered is therefore
precisely defined. So the execution of the program for dyna-
mic analysis can be restricted to those parts. The execution
has to be done manually by the reengineer.

Information will be gathered during program execution
by debugging the program. Basic functionality of debuggers
allow to set breakpoints and record method traces. For each
pattern-relevant method from candidate classes breakpoints
are set. The pattern-relevant methods can be found by sta-
tic analysis as mentioned before. So object information and
their method traces are recorded during runtime. These in-
formation are stored as an attributed call graph and form
the data for the pattern instance recognition.

The procedure of the dynamic analysis is analog to static
analysis. After generating a call graph by executing the pro-
gram - which corresponds to parsing the source code into
an ASG in static analysis - the gathered information has to
be analyzed. The sequence diagrams are defined as graph-
rewrite-rules just like the static part of a pattern rule. The
matching of the sequence diagrams can now be done by ap-
plying their graph-rewrite-rules to the attributed call graph,
which again corresponds to applying the static pattern rules
to the ASG. Finally the results of both analyses - static and
dynamic - are rated by fuzzy values.

During runtime of the program there could be multiple
different object sets that are instances of one pattern instan-
ce candidate. For example a Chain of Responsibility-pattern
used in a program can be instantiated multiple times during
runtime. For each of these sets object type information and
method traces will be recorded. Polymorphism and dynamic
method binding enables method traces of the sets to differ
significantly from each other, even if they are instances of

the same pattern instance candidate. In our example there
could be object sets instantiated from the same Chain of Re-
sponsibility instance where the objects are different concrete
handlers. Method traces from those sets would be different.

:Window
 :Panel


mousePressed()


:Panel
 :Button


x()


y()


mousePressed()


mousePressed()


y()


Figure 4: Method trace from a candidate object set

Figure 4 depicts an example for a object set and its me-
thod trace. These objects are instances from the class dia-
gram of Figure 2. This object set is therefore an instance of a
pattern instance candidate. There is a mouse pressed event
that is delegated from a Window object to the responsible
Button object. Some method calls as x() or y() may have
been recorded, too. Others may have been suppressed, as
method calls to different objects that were not investigated.

The matching between the pattern sequence diagram and
the method trace can only be inexact. There are three ob-
jects in the pattern sequence diagram depicted in Figure
3 delegating the handleRequest() method call to their suc-
cessor. This situation can be found in the method trace of
Figure 4 if naming is not considered. There is one additio-
nal object and there are additional method calls that do not
match any method call in the pattern. So a matching can be
found but it is ambiguous and inexact. The grade of ambi-
guity and inexactness has to be rated for each object set and
its method trace. The rating is expressed by a fuzzy value
within a range between 0 and 1 like in static analysis.

Both results from static and dynamic analysis are then
presented to the reengineer and has to be interpreted. There
are three cases that have to be considered for each pattern
instance candidate.

Firstly, there were no object set that was instantiated from
the candidate during program execution. So there is only a
result from static analysis. That means the features executed
do not use the program’s part the pattern instance candida-
te belongs to. Therefore the reengineer is not interested in
that program’s part and design and the results from static
analysis can be ignored.

Secondly, there are one or more object sets with their
method traces for one pattern instance candidate. In this
case the fuzzy values from all object sets are combined to
three values: the minimum, the average and the maximum
fuzzy value.

Suppose in our example there are five object sets instan-
tiated from the pattern instance candidate of Figure 2. Four
of these sets have a fuzzy value of 0.9 and one set has a
fuzzy value of 0.4. The average fuzzy value is 0.8. The static
analysis result for the given example is a certainty of 0.6
of being an actual Chain of Responsibility pattern instance.
The maximum fuzzy value from dynamic analysis confirms
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this assumption. The minimum fuzzy value is a contraindi-
cation, but the average value shows that most of the fuzzy
values confirm the assumption. In the case of a low average
fuzzy value the result would indicate a false positive.

Thirdly, there are object sets for a pattern instance candi-
date, but the given sequence diagram could not be matched
to the call graph. All three fuzzy values - minimum, average
and maximum - will be null. This indicates that the pat-
tern instance candidate from static analysis can be clearly
identified as a false positive.

5. Related Work
Heuzeroth et al. [5] combine as well static as dynamic

analysis to detect interaction patterns. They approach is si-
milar to that presented in this paper. The source code is
represented by an abstract syntax tree (AST). Static pat-
terns are described as relations over AST node objects. The
computed relations are input to the dynamic analysis. Dyna-
mic patterns are described by protocols over a set of events.
The relations as well as the protocols have to be implemen-
ted manually, which means implementing the algorithms to
calculate the relations and to calculate the match of pro-
tocols. This restricts the usability of the approach because
of the complicated maintenance, adaption and creation of
patterns. Furthermore the approach for static analysis is li-
mited in recognizing implementation variants of patterns.
This leads either to lots of false positives or to missing pat-
tern instances. Lots of false positives in static analysis cause
then a higher complexity in dynamic analysis.

Eisenbarth et al. [2] combine static and dynamic analy-
sis as well. Their approach helps the reengineer identifying
components used for certain features. In contrast to the pre-
sented approach Eisenbarth et al. use dynamic analysis to
reduce the search space for static analysis. Scenarios for all
features that have to be located in the code are chosen for
the program’s execution. Concept analysis is then performed
to identify relationships between scenarios and subprograms.
These results are used in static analysis which is done by sli-
cing techniques and manual inspection. So the search space
should be small for static analysis.

6. Conclusions
An approach is presented to use dynamic program analysis

to confirm results from static analysis. The static analysis as
described in this paper is already implemented in our CASE
tool Fujaba [3]. The implementation of the dynamic analy-
sis is current work. Pattern rule specification and matching
for dynamic analysis will be realized by graph-rewrite-rules
as in static analysis. The inference algorithm [8] can there-
fore be reused.

We introduced the notion of fuzziness into our static ana-
lysis to rate pattern instance candidates [9]. This approach
is used for the rating in dynamic analysis, too. The combi-
nation of both results from static and dynamic analysis is
presented to the reengineer for each pattern instance can-
didate. The dynamic analysis results confirm or discard the
static analysis result. Thus, the combination is a good cri-
terion for the reliability of the results.
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Abstract 

Examining the behavior of a large legacy software 
system helps understand its functionality. Dynamic 
analysis techniques are well suited for this purpose. Run-
time information is typically represented in the form of 
execution traces; however, the amount of information 
contained in a trace, of even a small program, can be 
very large and usually overwhelming. It becomes 
important to filter these traces and present only the 
information that adds value to the comprehension 
process. Many researchers agree that analyzing 
recurrent patterns in a trace can be useful to bridge the 
gap between low-level system components and high-level 
domain concepts. This paper introduces an efficient 
algorithm that extracts patterns of procedure calls of 
large execution traces. We also present a set of matching 
criteria that can be used in procedural as well as object 
oriented software systems to decide when two patterns 
can be considered equivalent. 

Keywords:  
Reverse engineering, program comprehension, dynamic 
analysis, execution traces, trace patterns 

1. Introduction 
Understanding a poorly documented software system 

is not an easy task. Program comprehension techniques 
aim at overcoming this difficulty. Tools based on these 
techniques can indeed help software maintainers to 
complete their daily tasks in a more efficient way [9]. In 
general, reverse engineering tools can be categorized 
according to whether they perform a static analysis of the 
code or a dynamic analysis of the executing system. In 
[10], Stroulia and Systä presented a large set of reverse 
engineering activities where dynamic analysis can be 
used, such as, extracting system modularization, 
understanding the role of software artifacts and so on. 
Many other researchers use run-time information to solve 

the popular problem of feature localization – locating 
low-level system components that implement a particular 
software feature [4, 5, 13]. Moreover, Zayour and 
Lethbridge [14] experimented with a large real world 
telecommunication system and found that traces of 
procedure calls, once made usable, can be very useful to 
help maintainers perform cognitively taxing activities. 
Their tool, called DynaSee, uses techniques such as 
redundancy removal, pattern detection and routine 
ranking to overcome the size explosion problem of run-
time information. Among the features of DynaSee is the 
possibility for software engineers to replace a pattern of 
procedure calls (called trace pattern) with a textual 
description mapping low-level system components to 
high-level application domain concepts.  However, they 
did not present an algorithm that detects these patterns. 

In this paper, we present an efficient algorithm that 
extracts trace patterns. We also present a list of pattern 
matching criteria that can be used in procedural software 
systems to group similar but not necessarily identical 
patterns together. Our algorithm is based on a technique 
used to solve a problem known as the common 
subexpression problem [3, 6], which consists of 
transforming a rooted tree into its most compact form in 
such a way that all isomorphic subtrees are represented 
only once. Figure 1. illustrates this concept. 

 
Figure 1. The graph b) represents the compact form 

of the tree a) 

Jerding et al. [8] presented an algorithm that is 
similar, in principle, to the one provided in this paper. 
However, their algorithm has some limitations, as we 
will see in the related work section. The rest of this paper 
is organized as follows; the next section presents related 
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work. We define what we mean by trace patterns in 
Section 3. The algorithm that detects them is explained 
in Section 4. Section 5 describes a set of matching 
criteria that can be used to decide when two patterns are 
equivalent. Finally, we conclude in Section 6. 

2. Related work 
Jerding et al.[8] emphasized the importance of trace 

patterns for understanding the behavior of object oriented 
systems. They also presented an algorithm that identifies 
them. However, their algorithm considers all kinds of 
repetitions as patterns. This is probably due to the 
requirements of their visualization tool. For example, 
they considered contiguous repetitions as trace patterns 
(that is, candidate high-level concepts) at the same level 
as non-contiguous repetitions. We think that contiguous 
redundancies encumber the trace and do not add value to 
its content. They should be removed and replaced by the 
number of their occurrences, if necessary. The same 
choice was made by Zayour and Lethbridge [14] and De 
Pauw et al. [2]. In addition to that, their algorithm 
considers identical matches only. 

De Pauw et al. [2] considered patterns that are similar 
but not necessarily identical and presented an interesting 
list of matching criteria. However, they briefly discussed 
the algorithm that detects them. In addition to that, most 
of their matching criteria apply to object oriented systems 
only. 

3. Definition of a trace pattern 
Ideally, a trace pattern captures a high-level domain 

concept. In procedural software systems, these concepts 
are usually implemented in the form of interactions 
between the system procedures. Zayour and Lethbridge 
define a trace pattern as “a sequence of calls that occurs 
repetitively but non-contiguously in several places in the 
trace” [14]. This definition excludes patterns that are not 
identical but that exhibit some similarities. We add to 
this definition the fact that instances of this sequence of 
calls do not need to be identical but satisfy some pattern 
matching criteria. Enabling fuzzy similarity can be very 
beneficial to trace compression and visualization. The 
pattern matching criteria can vary depending on the 
system at hand. They can be either specified by the users 
or extracted automatically using heuristics.  

4. The algorithm 

A trace of procedure calls can be represented by a 
rooted, ordered, labeled tree. Each node corresponds to a 
procedure call. The node label can be the name of the 
procedure. The tree levels correspond to the nesting 
levels of the calls. A trace pattern is then represented as a 
repeated subtree. Our algorithm starts with a 
preprocessing stage that aims at removing contiguous 

repetitions due to loops and recursion. In [7], we 
presented a simple but efficient algorithm that does this. 
The hierarchical nature of the trace is maintained by 
adding a virtual call whose label starts with Seq followed 
by the number of occurrences of the repeated sequence. 
Please, note that this virtual call can be omitted in case of 
repetitions of single procedure calls as illustrated in 
Figure 2.  

 
Figure 2. Removing contiguous repetitions 

Now that the trace is preprocessed, we apply the 
pattern detection algorithm to extract trace patterns. As 
mentioned earlier, the idea behind this algorithm is based 
on transforming a rooted, ordered, labeled tree to its most 
compressed form by representing repeated subtrees only 
once. The result of this compression is a directed acyclic 
graph as shown in Figure 1. Flajolet et al. described a 
top-down recursive procedure that solves this problem in 
an expected linear time assuming that the degree of the 
tree is bounded by a constant [6]. Valiente presented an 
iterative version of Flajolet et al.’s algorithm with a 
slight improvement of its readability [12]. In our 
previous work, we used an adaptation of Valiente’s 
algorithm to compress a trace of procedure calls [7]. In 
what follows, we extend it to consider similar but not 
necessarily identical patterns as well as enabling the 
frequency analysis of the patterns.  

Before getting into the details of the algorithm, first, 
consider a function called Match(n1, n2) that takes two 
nodes n1 and n2 and returns true if the trees rooted at 
these nodes are considered similar according to 
predefined matching criteria. The function returns false 
otherwise. We discuss the specifics of this function in 
Section 5.  

The algorithm proceeds by traversing the tree in a 
bottom-up fashion (from the leaves to the root). Each 
node is assigned a certificate (a positive integer between 
1 and n, where n represents the size of the tree). The 
certificates are assigned in such a way that two nodes n1 
and n2 have the same certificate if and only if Match(n1, 
n2) returns true, that is, the trees rooted at them exhibit 
some similarities but are not necessarily isomorphic as is 
the case in Valiente’s algorithm. 

To compute the certificate, the algorithm uses a 
signature scheme that identifies each node. The signature 
of a node n consists of its label and the certificates of its 
direct children, if there are any. A global hash table is 
used to store the certificates and signatures and ensure 
that similar subtrees will always hash to the same 
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element. We added a new field to the table in order to 
select only patterns that satisfy a certain frequency 
threshold. Table 1. shows the resulting table that 
corresponds to applying the algorithm to the tree of 
Figure 1. The frequency field enables the frequency 
analysis of the trace. T. Ball showed that frequency 
analysis of dynamic information can help programmers 
cluster components according to their behavior and 
identify related computations [1]. 

Table 1. Result of the algorithm when applied to the 
tree of Figure 1. 

Certificate Signature Frequency 
1 B 1 
2 C 1 
3 A 1 2 2 
4 E 2 3 1 
5 M 3 4 1 

The complexity of the algorithm consists of the time it 
takes to traverse the tree, the time it takes to compare two 
subtrees, i.e. compute the function Match, and the time it 
takes to compute the signatures. If exact match is 
selected and the degree of the tree is bounded by a 
constant, the algorithm performs in expected linear time. 

One can easily see that the resulting table contains a 
compressed form of the tree. The last step of the 
algorithm is to walk through the table and extract the 
patterns that satisfy a given frequency threshold. The 
table is, first, sorted in order of descending certificates, 
i.e. the first element of the table is the one that has the 
highest certificate (this corresponds to the certificate of 
the root). We use a recursive procedure to display the 
components of each pattern. The frequency threshold can 
be specified by the user. Future work should focus on 
determining it automatically. 

5. Pattern matching criteria 
De Pauw et al. [2] studied situations where two 

sequences of calls can be considered as instances of the 
same pattern in object oriented systems. As a result they 
presented a list of matching criteria. We found that some 
of these criteria, namely, identity, repetition, depth-
limiting and commutativity can be applied to procedural 
software systems as well. In this section, we explain these 
criteria and introduce three new ones: utility, distance 
and flattening. The design of the function Match depends 
on the selected matching criteria. Some of these criteria 
can be combined together. Future work should determine 
how. 

5.1 Identity 
The identity criterion is probably the simplest one to 

compute. Two sequences of calls are similar if they have 
the same topology, which mean, they have the same call 

structure, order of calls and so on. This criterion might 
be useful for novices who wish to construct an initial 
understanding of the trace. 

5.2 Repetition  
The number of repetitions of contiguous sequences of 

calls does not really add too much value to the trace. 
These repetitions can be ignored. For example, the two 
subtrees of Figure 3 can be considered as instances of the 
same pattern.  

 
Figure 3. Repeated sequences can be ignored when 

looking for patterns 

5.3 Ordering 
This matching criterion is based on the commutative 

criterion presented in [2] without the restriction of 
considering objects of the same classes only, since, we do 
not deal with objects here. If the order of calls does not 
matter to software engineers, then it can be ignored. To 
generalize the algorithm to unordered trees, we need to 
sort the certificates that appear in the signatures before 
comparing them. If this criterion is used, it will certainly 
be beneficial to users who already have a certain 
understanding of the system. Future work should focus 
on determining the importance of the order of calls 
according to the tree levels where they occur. For 
example, the order may not be important at the leaf level 
where utility procedures are used. This is not necessary 
the case at higher levels. 

5.4 Depth-Limiting 
Depth-limiting allows comparing two subtrees up to a 

certain depth. The calls that are beyond this depth are 
ignored. In a layered system, components of one layer 
communicate with the components of the layer below.  
Patterns of the same layer can be grouped together. This 
is useful to users familiar with the system architecture. 
We intend to experiment with different execution traces 
to determine at which level of the trace tree this criterion 
could be applied. 

5.5 Utility  
Utility procedures are domain independent routines 

that implement specific tasks (e.g. sorting an array). 
Users may decide to ignore them when comparing 
patterns. There are different heuristics that are used to 
detect such procedures (e.g. compute fan-in and fan-out). 
Consider the two sequences of calls in Figure 4., where 
u1, u2, u3 and u4 are utility procedures. These two 
sequences can be considered similar if we decide to 
ignore the utility procedures.  

jcook
35



One way of implementing this concept is to group the 
utility procedures in one subsystem and then go through 
the trace and replace their occurrences by the name of 
this subsystem. This results in a trace with a higher level 
of abstraction. 

 

 
Figure 4. These two sequences can be considered 

similar if the utility procedures are ignored 

5.6 Distance 
Two patterns may have almost the same procedure 

calls but slightly different structures. For example, a 
control statement can lead to different execution paths 
depending on the program inputs. That is, the same 
program behavior might result in slightly different 
sequences of procedure calls. We would like to be able to 
group these sequences together as being one common 
pattern. For this purpose, we need to evaluate the 
difference between their structures. The tree edit distance 
can be used [11]. This criterion might be useful to expert 
users who are already familiar with the source code. 

5.7 Flattening 

This criterion does not consider the hierarchical 
structure of the patterns at all. Instead, it flattens them 
into a linear structure and compares them. If the same 
calls exist more than once then they are reduced to one 
occurrence. This subsumes most of the criteria presented 
in this paper and will certainly result in a very good 
compression rate. However, we need to analyze situations 
where it could be applied usefully.  

6. Conclusion and future work 
Dynamic analysis is important to understand the 

behavior of any software system whether it is based on 
OO concepts or not. Dynamic analysis tools should be as 
important as static analysis tools. In fact, the 
combination of both provides, without any doubt, the best 
solution to address program comprehension issues.  

Patterns of procedure calls can be used to bridge the 
gap between low-level system components and high-level 
domain concepts. In this paper, we showed an algorithm 
that extracts them in an efficient manner. We also 
presented a set of matching criteria that can be used, in 
conjunction with the ones presented in [2], to group 
similar patterns. Future work should focus on validating 
these criteria and classify their usage according the user’s 
knowledge of the systems. The long term goal is to 

determine heuristics that automatically select patterns 
that most likely correspond to high-level concepts. 
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Abstract

Differential Program Analysis is the task of analyzing
two related programs to determine the behavioral differ-
ence between them. One goal is to find an input for which
the two programs will produce different outputs, thus illus-
trating the behavioral difference between the two programs.
Because the general problem is undecidable, an unsound or
incomplete analysis is necessary. A combination of static
and dynamic techniques may be able to produce useful re-
sults for typical programs, by conducting a search for differ-
entiating inputs guided by heuristics. This paper defines the
problem, describing what would be necessary for this kind
of analysis, and presents preliminary results illustrating the
potential of this technique.

1. Introduction

Notkin has argued that the future of program analysis
lies in analyzing multiple versions of the same program to-
gether [4]. This allows us to amortize the cost of analysis
across the development cycle, as well as to direct analysis
efforts towards differences, and may allow kinds of analysis
that would otherwise be intractable. We agree that this is a
good strategy, and further argue that analyzing two versions
of a program to find a behavioral difference is an important
problem not just because it can reduce the cost of analysis,
but because finding behavioral differences is a useful goal
in itself: it can aid in understanding and maintaining a pro-
gram as well as in recognizing unintended side effects of
modifications.

When making a change to a program, either to correct
a known error or to add a new feature, the consequences
of the change are not always fully understood. The change
may have unintended side effects that were not anticipated
by the programmer, or may fail to accomplish the intended
goal. The change may even have no effect at all. In order to
prevent unintended side effects and verify that changes have
the intended effect, it would be helpful to have an automated

analysis showing the actual effect of the modification on the
program’s behavior.

Programs are frequently maintained by people who are
far removed from the original development process. The
intended purpose of modifications in the program’s history
is not always clear or documented. The actual effect on the
program’s behavior of the presence of a particular part of the
program may be unknown; a particular line may be crucial
or it may have no effect at all. An analysis that shows the
difference in behavior caused by the presence or absence of
a particular element would assist maintainers in understand-
ing the program.

Testing and dynamic analysis of programs could also
benefit from this sort of analysis. When a change to a pro-
gram is made, it is important that it is well tested. New
tests may need to be added to the regression test suite to test
the modification adequately. Many dynamic analysis tools
depend on the quality of the test suite for a program, and
may produce incorrect results if no tests exist that exercise
a particular modification.

What is needed is a set of automated techniques to an-
alyze the effect of modifications. We use differential pro-
gram analysis as a general term to describe analyses that
focus on the differences between two similar programs. In
the sections that follow, we outline what such an analysis
needs to do, propose some heuristics and techniques that
can be used to do this analysis, and present preliminary re-
sults showing the promise of this technique.

2. Problem Definition

One goal of differential program analysis is to generate
a test case that demonstrates the difference in behavior be-
tween the two programs. We assume that the behavioral dif-
ference is small relative to the input space (i.e., the two pro-
grams produce identical output for nearly all inputs). While
it would be interesting to analyze changes that affect the
result of every input to the program, this would require a
different kind of analysis. Our goal is to find behavioral dif-
ferences, not to analyze known ones. Once a difference is
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found, existing techniques such as Zeller’s Delta Debugging
method [9] can be used to analyze the difference.

We concentrate on analyzing two versions of the same
program. The structural difference between the two pro-
grams must be small relative to the size of the program:
only a few lines of code or a few procedures in the program
should be different. We would like to develop techniques
that take advantage of the similarities between the two pro-
grams, rather than use existing techniques to analyze the
programs independently and compare the results.

Because our goals include finding unanticipated side-
effects of changes, we cannot assume that an existing re-
gression test suite is able to find all interesting behavioral
differences. Regression testing finds differences in behav-
ior that were anticipated by the designers (or testers) and
specifically checked. While regression test selection [1] is
a useful technique for reducing the cost of testing, it can-
not reveal new differences that are not already tested by the
suite. We also would like to be able to analyze undocu-
mented programs that may not have test suites.

We assume we have a generator capable of producing a
differentiating test case, but that it is not reasonable to do
an exhaustive search of the input space. It is not necessary
for all generated inputs to be valid; the search will elimi-
nate inputs that both programs consider to be errors. If the
difference in behavior is small relative to the input space,
and we have a generator that can produce the right inputs,
the analysis problem becomes one of performing a directed
search to find inputs which reveal behavioral differences.

3. Approach

This kind of analysis requires solving several subprob-
lems: we must find inputs that reach the syntactic differ-
ence, generate differences in state between the two pro-
grams, and propagate these differences to the output.

The two programs will always produce the same output
for a given input unless, at some point, they execute dif-
ferent instructions. Therefore, in order to find test cases
that result in different output, we must first figure out how
to reach the syntactic changes to the program. This sub-
problem is itself undecidable, but incomplete solutions have
been proposed for it using search techniques such as simu-
lated annealing [6] or genetic algorithms [3] [5]; these tech-
niques use fitness functions to generate test inputs that reach
particular parts of a program. Symbolic execution and con-
straint solving is also a possible approach.

Once the syntactic changes in the program have been
reached, it is also necessary for a difference in state to re-
sult, and for this difference to be propagated through the
programs far enough to result in different output. It is pos-
sible for a modification to produce changes in intermediate
values without producing any difference in the end result.

Narrowing the input space to inputs that reach the modifi-
cation will not always be sufficient: it will still be necessary
to search this space to find inputs that result in actual differ-
ences in output.

Tracey et al. [6] show how to use simulated annealing
to evolve test inputs that cause a program to reach a spec-
ified point in the code. This is accomplished by determin-
ing what branches the program must take to reach the point
of interest, and developing a fitness function that evaluates
how close the program is to taking the correct branches. For
branches that the program should take, the condition for the
branch is transformed into an expression that measures how
close the program is to taking the branch, and these expres-
sions are combined to form a fitness function which is used
to evolve test inputs that cause the program to reach the de-
sired point. In order to apply this technique to finding dif-
ferences between programs, new fitness functions must be
constructed that compare the behavior of the two programs
and guide the search towards input that is likely to reveal
differences.

In order to direct the search towards an input that pro-
duces an actual behavioral difference, we must have some
way to measure how close a particular input is to achieving
this goal even if the goal has not yet been reached. While
not all inputs will produce a difference in output, some in-
puts may produce different intermediate values, or other
measurable differences in execution that may be important
cues for finding inputs that produce a behavioral difference.
We propose several heuristics that may be useful for guid-
ing a search towards inputs that produce actual differences
in output.

First, we note that boundary conditions in the two pro-
grams indicate what decisions the programs are making,
and that differences in behavior often lie along boundary
conditions. Selecting test cases that exercise boundary con-
ditions in the two programs is a promising way to find dif-
ferences. Focusing attention on boundaries that exist in one
program but not the other is particularly interesting, because
these decisions lead to paths that are not in both programs,
and reaching these paths may reveal different behavior. This
last heuristic takes advantage of known similarities between
the programs to focus on the difference, and has the poten-
tial to be more useful than approaches that analyze the pro-
grams separately.

If we evolve test sets, instead of evolving single test
cases, there are additional heuristics we can use. We can
select for test sets that maximize the total number of paths
executed, or other coverage metrics. We could modify these
coverage metrics to include only those paths that reach the
syntactic difference between the programs, which also takes
advantage of the similarities between the programs.

Evolving test sets also allows us to compare the ways
the two programs map the input space into paths through

jcook
38



the program. If program P1 maps two inputs I1 and I2 to
the same path, but program P2 maps inputs I1 and I2 to two
different paths, this reveals something about how the pro-
grams divide the input space, even if the output is the same.
Selecting for test sets that do not produce isomorphic map-
pings from inputs to paths in this way may lead to revealing
behavioral differences because they indicate regions of the
input space where the two programs do not handle the input
in the same way.

In addition to these heuristics, ongoing work by Xie and
Notkin [8] examines comparing program spectra combined
with various heuristics to identify possible faults in mod-
ified programs even in cases where no actual differences
in output result. Program spectra are signatures of program
behavior (such as the distribution of paths taken, procedures
executed, and values modified by the program) that can be
used to characterize the program’s execution. Harrold et
al. [2] also investigate the effectiveness of various program
spectra in identifying differences between programs. These
studies focus on identifying differences in execution that oc-
cur in regression tests of a program, not on guiding a search
for inputs that produce actual behavioral differences. How-
ever, some of the heuristics identified there may be useful
in constructing fitness functions that are useful for this pur-
pose.

If no differentiating test case can be found, this does not
necessarily mean that no behavioral difference exists. It
would be useful to have some way of measuring how thor-
ough a search has been conducted, because this would pro-
vide a measure of confidence that the two programs actually
have the same behavior. This could be done by estimating
how much of the relevant search space has been tested, or
by coverage of the modified parts of the programs. Mutation
analysis [7] has been used to evaluate the effectiveness of a
test suite by how well it can identify differences between
the original and modified programs. It may be necessary
to develop new coverage metrics that take into account the
special problem of covering differences in code.

4. Preliminary Results

We have developed a small system to explore some of
the techniques described above. The system uses less than
1,000 lines of Java code, and is capable of evolving test
cases that show behavioral differences in small programs.
The programs must be instrumented by hand to compute the
fitness functions, but this could be automated in the future.
We will illustrate the system using a simple example.

The short procedure in Figure 1 classifies a triangle by
comparing the lengths of its three sides: it returns a value
indicating whether or not the three lengths given can form a
triangle, and if so, whether the triangle is equilateral, isosce-
les, or scalene, and whether the largest angle is right, obtuse,

int classify( int a, int b, int c) �
int kind = UNKNOWN;
if (a + b � = c ��� b + c � = a ��� c + a � = b)

return INVALID TRIANGLE;

if ( a*a + b*b == c*c ��� b*b + c*c == a*a
��� c*c + a*a == b*b)

kind � = RIGHT TRIANGLE;
else if ( a*a + b*b � c*c

&& a*b + c*c � a*a
&& c*c + a*a � b*b)

kind � = ACUTE TRIANGLE;
else

kind � = OBTUSE TRIANGLE;

if (a==b ��� b==c ��� c==a )

if (a==b && b==c)
kind � = EQUILATERAL TRIANGLE;

else
kind � = ISOSCELES TRIANGLE;

else
kind � = SCALENE TRIANGLE;

return kind;�

Figure 1. Triangle classification procedure

or acute. A different version of this procedure (not shown)
lacks the || c==a (shown in the box).

This procedure is simple enough that we can easily see
the effect of the modification by inspecting it: it will, in
some cases, incorrectly classify an isosceles triangle as sca-
lene (for example, the triangle with sides (3,4,3) would be
classified as scalene, even though sides a and c are the same
length). However, we will use it as an example to demon-
strate how an automated tool could generate test cases that
demonstrate the difference using the boundary condition
heuristic.

The idea behind the heuristic is that test executions that
are at or near boundary conditions in the program are more
likely to reveal differences. We can develop such test
cases by instrumenting the program to compute a measure
of nearness to boundaries, and use this measure to guide
the search for differentiating test cases. At each decision
point in the program, the conditional expression is con-
verted into an expression measuring how far the program
was from making the opposite decision, similar to the tech-
nique Tracey et al. used to select inputs that reach a par-
ticular point in the program [6]. We use the minimum of
all of these values to measure how close the program was
to taking a different path for a particular test case. We can
then use this fitness function to guide a genetic algorithm to
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evolve test cases that cause the program to reach boundary
conditions.

Preliminary results show that this technique works for
the triangle classification example given above: the guided
search was able to find a differentiating test case using sig-
nificantly fewer test executions than a random, unguided
search. The graph in Figure 2 shows that fifty percent of the
time, the guided search was able to identify the difference in
120,000 trial executions or fewer, while the unguided search
required over a million trial executions before having a 50%
probability of finding one.

This technique works particularly well for this (admit-
tedly contrived) example because the behavioral difference
lies along one of the boundary conditions: c==a. For pro-
grams that have more complicated control flow, and a more
complicated relationship between the input and the control
flow, this is not sufficient. However, there are several ways
this technique can be improved. We are currently exploring
focusing on decisions that are made in only one program
but not in the other in order to guide the search, rather than
looking at all boundary conditions. We are also examining
the use of static analysis to determine which decisions are
most important and which decisions must be made to reach
the changed portion of the program.

5. Summary

The modern development process, using version control
systems like CVS and online repositories such as Source-
Forge, makes available many related versions of the same
programs. We should take advantage of this opportunity to
analyze related versions of programs to better understand
them. It is important to develop techniques to analyze two
versions of the same program together, not only because it
could reduce the overall cost of testing and analysis, but be-
cause it could reveal important facts about the differences

between the programs. This kind of information would be
useful in avoiding unintended side effects, understanding
the development history of undocumented programs, and in
identifying the actual effects of particular parts of the pro-
gram.

Many of the hard problems that must be solved before
we can achieve the goals of differential program analy-
sis have undergone rapid progress recently, such as using
global search techniques to evolve inputs that reach particu-
lar parts of programs [6], and using program spectra to com-
pare related versions of the the same program [2] [8]. We
are optimistic that we are near the point when techniques
can be combined in ways that enable useful and revealing
analyses of the differences between two similar programs.
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Abstract

Dynamic instrumentation has proven to be a valuable
technique for a variety of program analyses. However,
developing a new analysis based on dynamic instrumenta-
tion is difficult, error prone, and time-consuming. One
solution is to develop a common framework that would
enable quick and easy dynamic instrumentation for a vari-
ety of applications. Developing a practical solution along
these lines, however, requires that we understand and
effectively model how instrumentation can and should be
used. We suggest that an event-oriented framework based
on program analysis might be a viable approach to achiev-
ing such a practical solution.

1.  Motivation

Dynamic analysis has been used for a wide variety of
different applications, from simple profiling to program
understanding. We have been using it in a variety of
projects for performance analysis, visualization, program
modeling, and fault location. In most of the applications of
dynamic analysis, the technique has demonstrated itself as
an invaluable tool that is able to provide insights far
beyond those of static analysis.

Even so, dynamic analysis still sees only limited use in
day-to-day applications, in today’s programming environ-
ments, and by most programmers. There are several
reasons for this disparity, but most rise from the fact that
dynamic analysis is expensive, both in terms of the over-
head involved in collecting the appropriate data, in terms of
developing practical instrumenters, and in terms of devel-
oping tools that can use the data.

What is needed is a framework to support dynamic anal-
ysis that could be used practically for a variety of different
applications. If such a framework existed, it would be rela-
tively easy to develop new applications of dynamic analy-
sis and to incorporate them into today’s programming
tools. Some requirements, like minimizing instrumentation
overhead, are often too difficult to achieve for any single

application. Developing a framework that addresses them
would empower developers to use dynamic-analysis based
tools as part of their everyday programming.

In this position paper, we outline some of the interesting
research issues that arise in attempting to define (and later
implement) such a framework.

2.  Requirements

A practical dynamic analysis framework has to meet a
broad range of requirements. These are needed both to
make it applicable to a variety of different applications and
to ensure that it can be used on a variety of real systems.
These requirements include:

• Low usage overhead. The user should have to do as lit-
tle as possible to get the leverage of the tool. At best,
the user could run the tool externally, as with valgrind
[7]. At worst, the tool should require recompilation, but
in this case it should be integrated with the compiler,
and provided as an option within it or a script around it.

• Low execution overhead. The resource requirements of
the tool should be minimal. Minimizing the tools’ over-
head by intelligent, problem-specific instrumentation
should be the primary goal of the framework.

• Static selectivity. The user should be able to specify
what portions of the system should be instrumented and
what data should be collected. This should be available
at as fine a level as possible. The selection of what to
instrument and what data to collect should be based on
the structure and semantics of the program. This
implies that dynamic analysis should be predicated on
some underlying static analysis.

• Source anchoring. The debugging information pre-
served in binary formats is often inadequate to produce
meaningful messages for more complex program analy-
ses, especially in the presence of optimization. Depend-
ing on how close the tool is to the compiler, this is more
or less of a challenge. From the user perspective,
though, it should always seems as if the tool has all the
information the compiler has.
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• Temporal selectivity. Instrumentation should be limited
not only by specific portions of the program, but also by
those parts of the execution that are relevant to the task.
This temporal information might be determined a priori
or dynamically.

• Handling of real programs. A problem with today’s
dynamic instrumentation tools is they often are not
capable of handling the wide range of programs that
developers are interested in. The next three require-
ments follow from this.

• Handling of libraries. Much of the work in today’s
applications is done inside system or user libraries. To
do appropriate analysis, one often needs dynamic infor-
mation from these libraries. Moreover, to understand
the semantics of the application, one must often under-
stand the semantics of the libraries. This requirement
becomes more complex when one realizes that source is
often not available for many libraries. In any case, an
instrumentation framework should at least provide for
data collection at the boundary of libraries.

• Handling of multithreaded programs. Java and C# pro-
grams are often multithreaded. An instrumenter needs
to be able to deal with the underlying complexities both
in terms of collecting appropriate data and in terms of
not imposing additional synchronization points on the
application and thus changing its behavior.

• Handling of whole systems. Many of today’s programs
are actually multiple-process distributed systems. The
analysis and hence instrumentation that needs to be
done on these systems will require correlating data
accumulated from the different processes into a single
analysis.

• Usable Results. Another key problem in today’s instru-
menters is that the data that is produced is often very
specific to a particular application and not easy to reuse
in other applications. What we need is a relatively stan-
dard data format that can serve as the basis both for
immediate and deferred analysis.

Meeting these requirements will be difficult. However,
by using the collective experience from current instrument-
ers, static analyzers, aspect-oriented programming, and
other areas, it should be possible to develop an appropriate
framework.

3.  Framework Overview

We envision a framework that is built on two languages.
The first is used to let a tool define what portions of a
system should be instrumented and what information is
required from those portions. This will be used by a instru-

mentation tool to produce one or more event streams
describing appropriate portions of the execution.

The second language will let a tool define how these
event streams should be processed to produce the data
needed for analysis. This could involve generating higher-
level events streams, accumulating information, tracking
program or object states, or other analysis techniques. The
framework would use this description to process the events
as they were generated as efficiently as possible.

Central to this framework is the notion that both lan-
guages can make direct use of information about the
system being analyzed. This means that they should be
able to refer to basic blocks, to the definitions and uses of
particular variables or fields, to def-use chains, and to par-
ticular packages, libraries, and routines.

4.  Instrumentation Definition Language

The first part of this framework is dependent on a lan-
guage that lets the developer describe the information that
needs to be collected from dynamic instrumentation at a
fine level of detail. The actual instrumentation is addressed
by systems like EEL [4], SOOT [9], or JikesBT [3]. We
after a language similar to the languages for specifying
pointcuts in aspect-oriented programming [6,8].

This language should be geared toward generating event
streams. Events are a general purpose mechanism that
closely matches the methodology of run time instrumenta-
tion. The underlying framework will have to deal with
many types of parameterized events, including:

• Call/Return of a method;

• Definition/Use of a value;

• Enter/Exit of a basic block;

• Throw/Catch of an exception;

• Create/Start/Stop/Wait/IO/Run of a thread;

• Read/Write of a location or field;

• Allocate/Free of an object;

• Send/Receive of a message;

• Program specific events.

The set of events that are relevant to a particular
program or run needs to be specified in a high level way.
This will sometimes be done globally (e.g. interest in all
call/return events for profiling), and sometimes very
program specific (e.g. when does field X change in method
Y; when is method A called with parameter B). Moreover,
the set of events generally should be independent of the
code.

In both cases static analysis of the program, typically
done at the byte or machine code level, will be appropriate.
This analysis should let one specify, for example:
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• That one wants to detect the start of each basic block.
The resultant instrumentation could then make use of
control flow analysis to minimize the amount and size
of instrumentations.

• That one wants to track field accesses for a particular
set of field writes. This would require data flow analysis
to determine which reads in the program might be rele-
vant to the particular writes.

• That one wants to detect calls to a particular set of
methods for objects allocated at a certain point in the
program. For example, one might want to check that a
particular instance of a Java iterator is used correctly.

• That one wants to detect reads and writes of shared
storage. This would require static analysis to determine
what fields can be accessed by multiple threads and
which accesses to those fields should be considered
shared.

The research in this area is to attempt to put together a
language that allows an analysis application to specify
what set of events it wants from the program. This could
either be a language per se, an XML file describing the set
of events, or event an appropriate set of function calls and
callbacks.

This language will have to deal with all the issues out-
lined above — handling a wide range of events, being able
to specify those events to apply to the whole program or
large portions of it, being able to restrict those events to
particular locations based on semantic properties of the
program, and allowing a variety of different parameters to
be associated with each event.

To leverage such a language it is necessary to build an
appropriate implementation. This is again a research
problem involving what and how to do the static analysis
needed to minimize instrumentation, techniques for
dynamically inserting and removing instrumentation, and
automatic optimization of instrumentation based on
semantic information.

5.  Analysis Language

While event streams are a logical conceptual output
from an instrumentation front end, what is often needed is
the result of analysis based on the event stream rather than
the event stream itself. There are several different types of
such analysis that are particular to the applications of
runtime instrumentation. The inspiration comes from lan-
guages for higher level debugging, like COCA [2] and
QBD [5].

For visualization and some program understanding
applications, it will be desirable to map the event stream
into a sequence of higher-level events. This can occur
within an event stream (for example, mapping basic block

event to program path events), or it might occur among
multiple event streams (for example, taking information
about monitor entry and exit events from multiple threads
and using this to generate events denoting what threads are
blocking on what other threads).

For performance analysis and related applications, it is
desirable to accumulate information from the event
sequence. One might want to look at the total number of
calls of each method, the number of allocations of each
class, the time spent in each method, or the number of calls
of each method pair. This information might be further
confined by accumulating information by class or package
or event according to higher-level events such as user inter-
face interactions or remote procedure calls.

Another application area for run time instrumentation is
involves the dynamic checking of semantic properties of a
system. These properties are typically specified using finite
state systems (either using pure or extended FSMs, using
regular or path expressions, or using a language such as
LTL or CTL [1]). What one wants to get out of instrumen-
tation here is whether the actual program run satisfied or
did not satisfy the specification. This implies that the
sequence of run time events generated by the front end
needs to be filtered and then use to check against the under-
lying automata.

In each of these cases, the appropriate analysis can be
done either after the fact or while doing tracing. After the
fact analysis is easier in that one can isolate the analysis
from the instrumentation and can easily do several different
analyses of the same instrumented run. This is advanta-
geous, for example, in software visualization where the
user will want to see different views of the run and the
exact nature of those views might not be known in
advance.

In most applications, however, the raw event streams are
going to be substantially larger and more complex than the
results of the analysis. Here, it is much more effective to do
the event analysis on the fly, storing only the accumulated
result. An ideal instrumentation environment should
provide a stream-based processing language that would
facilitate this. Again, this could be a real language, a high-
level XML description of what needs to be done, or simply
a reasonable programming interface that facilitates the
appropriate processing.

We note that this language and facility will probably
need to have access to the semantic analysis that was used
in doing the actual instrumentation in order to correctly
interpret the events. This information will either have to be
recomputed or will be stored in auxiliary files as part of the
instrumentation process.

The interesting research issues here are first attempting
to determine the appropriate range of analyses that should
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be doable dynamically, in determining what is an appropri-
ate interface for doing these analyses, and in providing a
very efficient but generic implementation mechanism that
will support the analyses. Other research issues that come
up involve ways of combining multiple event streams in the
analysis milieu and doing all this without significantly
affecting the behavior of the program being instrumented.

6.  Example Approaches

While we have not built anything that meets the needs
outlined above, we have and continue to work on a variety
of different approaches that make us believe that the
general mechanisms described here can be achieved.

We currently support several different instrumenters for
different applications. For software visualization, we have
two instrumenters, one for C/C++ and one for Java. Both
are capable of instrumenting the user’s application and all
the appropriate libraries. Both handle multiple threads and
offer a limited degree of selectivity as to what information
to obtain. While the initial data is obtained as a set of inde-
pendent event streams, one per thread, this data is pro-
cessed dynamically into a common sequence. Additional,
on-the fly or after-the-fact processing can be done within
the system for a wide variety of different resultant analy-
ses. Still, one of the best experiences we have had with
such systems was in minimally modifying the profiling
library of the compiler to produce a trace of function calls
and returns. The system was very easy to implement. It was
also very easy to use, since it required as much effort as
profiling.

For dynamic visualization of software, we have devel-
oped an instrumenter that accumulates a variety of data
over millisecond time intervals and passes the accumulated
data to a front end. Using a variety of techniques, we were
able to limit the performance loss due to instrumentation
(which includes every call, return, allocation, thread state
change, and synchronization event) to a factor 2-3.

Finally, we are developing a tool for checking finite
state properties of programs through a combination of
static and dynamic checking. Given a description of a
program property, this tool is able to find the relevant loca-
tions in the source that affect that property, determine
whether the property needs to be checked dynamically or if
it can be determined statically, and, in the case where
dynamic checking is necessary, it actually determines
exactly what instrumentation is needed to check the prop-
erty.
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Abstract 
UFO is a framework for constructing dynamic analysis 

tools that require varying degrees of access and control 
over program executions. UFO combines run time and 
post-mortem techniques to perform required analyses. 
Declarative and imperative notations are provided for 
constructing monitors at appropriate semantic levels. 
Multiple analyses can be bundled into a given monitor, 
and multiple monitors can be applied to a given target 
program execution. This paper presents the central tenets 
of UFO, along with our current set of research 
challenges. 

 

1. Motivation 

Automatic debugging and program visualization are 
two of the most promising application areas of dynamic 
analysis, with potential to impact on crucial areas of 
software development and maintenance. We believe the 
slow rate of advancement in these areas is due to the high 
cost of developing new tools. We have previously focused 
on a language (FORMAN) and an architecture (Alamo) 
that reduce these costs [1][2][4]. FORMAN is a special-
purpose language for expressing dynamic analyses; it has 
been implemented previously for subsets of Pascal and C. 
Alamo is a lightweight architecture for program execution 
monitoring; it has been implemented for a subset of C and 
for the virtual machine used by the Icon and Unicon 
programming languages. The virtual machine 
implementation of Alamo is attractive for research 
because it provides high performance and superior ease of 
use for a full-size “real” programming language, allowing 
testing on large programs and the possibility of deploying 
successful tools to a user community. 

We recently merged the FORMAN and Alamo efforts 
to produce UFO (Unicon-FORMAN), a framework for 
rapidly constructing dynamic analyzers [3][4]. We have 
used UFO to construct a variety of simple automatic 
debuggers and visualization tools that run well on small 
and medium sized applications. Our next efforts must 
walk the tightrope of scaling up to production tools for 
large applications, while retaining the power and ease of 
use that are characteristic of the current research UFO 
system. With that in mind, this paper presents the central 
tenets of the UFO system, and concludes with an 

exploration of the current research problems and our plans 
to address them. 

2. Axioms 

UFO is primarily an implementation of FORMAN 
built on top of the Alamo monitor architecture. Early 
experiments showed the marriage to improve FORMAN 
speed by two orders of magnitude and shorten the lines of 
code necessary to write Alamo monitors by one order of 
magnitude. This section sketches the primary 
characteristics of UFO. 

•  A precise program behavior model, in which 
semantics of the monitored language are mapped 
to directed acyclic graphs of events. These graphs 
are defined using an event grammar, a notation 
that approximates the semantics of the language to 
be monitored. The behavior model is essential to 
provide general purpose capabilities for a wide 
range of tools. 

•  A declarative special-purpose monitoring 
language, tailored specifically for dynamic 
analyses expressed in terms of patterns within the 
graphs of events. This component is necessary to 
reduce the cost of developing new tools. Section 4 
provides some examples; shorthand refinements to 
improve the syntax could be explored after the 
main semantics and performance issues are 
resolved. 

•  An hybrid execution model, in which most 
analysis work is performed at run-time, and more 
complex analyses transparently combine run-time 
collection and partial analysis with more extensive 
post-mortem analysis. This element is necessary 
but not sufficient by itself to achieve acceptably 
high performance for large scale production 
systems. This important element is new in UFO, 
compared with previous FORMAN and Alamo 
efforts. It provides high performance. 

•  Automatic instrumentation provided by special-
purpose virtual machine support; static or dynamic 
configuration of VM instrumentation; no 
recompilation, relinking, or alteration of target 
program executables to be monitored. This 
provides substantial ease of use. 
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3. Some Research Issues and Challenges 

UFO’s chief design goals revolve around notational 
power and ease of use. The current prototype 
implementation of UFO [5][5] processes millions of 
events per minute. But, for large programs higher 
performance is needed. This goal motivates several open 
problems we are pursuing. 

Minimizing the number of context switches. UFO’s 
run-time execution model is based on lightweight 
coroutine switches between monitors and the program 
being observed. This separation is a compromise between 
intrusive in-line single-thread execution used in low-cost 
analysis tools such as profilers, and the complete 
separation imposed by high-cost analysis tools such as 
debuggers. One research goal is to retain the abstraction 
and low-intrusion benefits of the coroutine model without 
having to pay (so much) for it. 

Virtual machine configuration and customization.  The 
VM instrumentation can be turned off at multiple levels, 
including compile-time via #ifdef and run-time via a 
dynamic filter that controls whether instrumented or 
uninstrumented versions of functions are called, and 
whether an event report (via lightweight context switch) is 
performed for a given instrumentation site. This 
configuration can be further exploited by having the UFO 
compiler generate a custom VM with exactly the 
instrumentation it needs for a particular monitoring 
application. The central VM interpreter function (interp()) 
can benefit from a finer granularity of customization than 
the current instrumented-versus-uninstrumented options; 
it is critical to performance and contains 30 of the 119 
types of events instrumented in the VM. Generating a 
custom VM may greatly improve monitoring performance 
within this VM interpreter loop. The VM generation 
system needs to make it easy and convenient for the UFO 
compiler to generate custom VM’s and associate them 
with generated analyzers in a persistent manner. Custom 
VM’s should be shareable by monitors that use the same 
events. 

Inter-monitor optimizations. When multiple analyses 
are compiled together, substantial cost savings might be 
obtained by factoring common tasks such as event data 
collection. For example, a profiler that computes 
summaries and a visualizer that shows run-time details 
might operate on the same information, and might even 
share some common analysis structures. 

Meta-events and analysis hierarchies. UFO’s event 
model composes higher level events from lower level 
ones, but analysis tools create additional information 

which may constitute the input for higher level  analyses. 
This facilitates the sharing of analysis information among 
tools, reducing the cost of running multiple tools. 

4. Examples of debugging rules 

Alamo's goal was to reduce the difficulty of writing 
execution monitors to be just as easy as writing other 
types of application programs. UFO supports FORMAN's 
more ambitious goal of reducing the difficulty of writing 
automatic debuggers to the task of specifying generic 
assertions about program behavior.  

This section presents formalizations of typical 
debugging rules. UFO supports traditional precondition 
checking, or print statement insertion, without any 
modification of the target program source code. This is 
especially valuable when the precondition check or print 
statement is needed in many locations scattered 
throughout the code. 
 
Example #1: Tracing. Probably the most common 
debugging method is to insert output statements to 
generate trace files, log files, and so forth. It is possible to 
request evaluation of arbitrary Unicon expressions at the 
beginning or at the end of events. The virtual machine 
evaluates these expressions at the indicated time 
moments. 
 
  FOREACH   A: func_call &  
 A.func_name == “my_func” 
          FROM prog_ex 
    A.value_at_begin( 
         write(“entering my_func, value of X is:”, X) ) AND 
    A.value_at_end( 
       write(“leaving my_func, value of X is:”, X) ) 
 
    This debugging rule causes calls to write() to be 
evaluated at selected points at run time, just before and 
after each occurrence of event A. 
 
Example #2: Profiling. A myriad of tools are based on a 
premise of accumulating the number of times a behavior 
occurs, or the amount of time spent in a particular activity 
or section of code. The following debugging rule 
illustrates such computations over the event trace. 
 
  SAY( "Total number of read() statements: " 
           CARD[ r: input & r.filename == "xx.in" 
                      FROM prog_ex ] 
            "Elapsed time for read operations is: " 
            SUM [ r: input & r.filename == "xx.in" 
                       FROM prog_ex   APPLY r.duration] ) 
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Example #3: Pre- and Post- Conditions. Typical use of 
assertions includes checking pre- and post-conditions of 
function calls. 
 
  FOREACH A:func_call & A.func_name==”sqrt” 
          FROM prog_ex 
    A.paramlist[1] >=0 AND 
    abs(A.value*A.value-A.paramlist[1]) < epsilon 
  WHEN FAILS SAY(“bad sqrt(“ A.paramlist[1] 
                                  “) yields ” A.value) 

4.1 Generic Bug Descriptions 

Another prospect is the development of a suite of 
generic automated debugging tools that can be used on 
any Unicon program. UFO provides a level of abstraction 
sufficient for specifying typical bugs and debugging rules. 
 
Example #4: Detecting Use of Un-initialized Variables. 
Reading an un-initialized variable is permissible in 
Unicon, but often leads to errors. In this debugging rule 
all variables in the target program are checked to ensure 
that they are initialized before they are used. 
 
FOREACH V: variable  FROM prog_ex 

    FIND D: lhp FROM V.prev_path 
        D.source_text == V.source_text  
   WHEN FAILS SAY( " uninitialized variable " 
                                   V.source_text) 

 
Example #5: Empty Pops. Removing an element from 
an empty list is typical of expressions that fail silently in 
Unicon. While this can be convenient, it can also be a 
source of difficult to detect logic errors. This assertion 
assures that items are not removed from empty lists. 
 

FOREACH   a: func_call & 
 a.func_name == "pop" AND 
          a.value_at_begin( *a.paramlist[1] == 0) 
     SAY("Popping from empty list at event " a)  
 

5. Implementation Issues 

The most important of these issues is the translation 
model by which FORMAN assertions are compiled down 
to Unicon Alamo monitors. Debugging activities are 
written as if they have the complete post-mortem event 
trace, the DAG with events, event attributes, and 
precedence and containment relations, available for 
processing. This generality is extremely powerful; 
however, for most practical uses we have seen, assertions 
can be compiled down into monitors that execute entirely 
at runtime. Runtime monitoring saves enormously on 
memory and I/O requirements and is the key to practical 
implementation. For those assertions that require post-

mortem analysis, the UFO runtime system computes a 
projection of the execution DAG necessary to perform the 
analysis. 
The UFO compiler generates Alamo Unicon monitors 
from FORMAN rules. Each FORMAN statement is 
translated into a combination of initialization, run-time, 
and post-mortem code. Monitors are executed as 
coroutines with the Unicon target program. 

Monitors generated by the UFO compiler reduce 
complex assertions to the single event loop. Keeping 
event detection in a single loop allows uniform processing 
of multiple event types used by multiple monitors. The 
code generated by the UFO compiler integrates event 
detection, attribute collection, and aggregate operation 
accumulation in the main event loop. 

 Assertions in UFO may use nested quantifiers 
implying two nested loops, so code generation addresses 
this issue by flattening the main loop structure, and 
postponing assertion processing until required 
information is available. An hybrid code generation 
strategy performs runtime processing whenever possible, 
delaying analyses until post-mortem time when necessary. 
Different assertions require different degrees of trace 
projection storage; code responsible for trace projection 
collection is also arranged within the main loop. The 
following generation template gives a flavor of the UFO 
trace projection mechanism. 

 
Rules with two nested quantifiers of the form  
 
Quantifier A: Pattern_A  

Quantifier B: Pattern_B FROM A  
Body 

 
      utilize a monitor whose main loop follows the pattern: 
 
       Main Loop 
 Maintain stack of nested A events 

Accumulate events B in a B-list 
 If end of event A 
    Loop over B-list 
  Do Body 
 Endif 
 If stack of A is empty 
  Destroy B-list 
       End of Main Loop 
 

This requires accumulation of a trace projection for B-
events and may cause a mild overhead at the run time. 

5.1 Optimization Issues 

     The UFO approach combines an optimizing compiler 
for monitoring code with efficient run-time event 
detection and reporting. Since we know at compile time 
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all necessary event types and attributes required for a 
given UFO rule, the generated Unicon monitor can be 
very selective about the behavior that it observes.  
     For certain kinds of UFO constructs, such as nested 
quantifiers, the monitor must accumulate a sizable 
projection of the complete event trace and postpone 
corresponding computations until all required information 
is available. The presence of the previous_path and 
following_path attributes in UFO rules triggers this kind 
of optimization; previous_path and following_path are 
used in rules which specify preceding or following 
contexts for events of interest. 

For further optimization, especially in the case of 
programs containing a significant number of modules, the 
following FORMAN construct limits event processing to 
events generated within the bodies of functions 
F1, F2, … , Fn. 

WITHIN F1, F2, … , Fn DO 
 Rules 
END_WITHIN 

This provides for monitoring only selected segments of 
the event trace. 

Unicon expressions included in the value_at_begin 
and value_at_end attributes are evaluated at run time. 

Some other optimizations implemented in this version 
are: 

•  only attributes explicitly used in the UFO rule are 
collected in the generated monitor; 

•  an efficient mechanism for event trace projection 
management, which disposes from the stored 
trace projection those events that are no longer 
used after a certain rule has been fully evaluated; 

•  both event types and context conditions are used 
to filter events for the processing. 

UFO’s goal of practical application to real-sized 
programs has motivated several improvements to the 
already carefully-tuned Alamo instrumentation of the 
Unicon virtual machine. We are working on additional 
optimizations. 

We expect that the most promising optimizations are 
within the generation of instances of Virtual Machine 
tailored for a particular monitoring task. 

6. Conclusions 

     The architecture employed in UFO could be adapted 
for a broad class of languages such as those supported by 
the Java VM or the .net VM. Our approach to dynamic 
analysis uniformly represents many types of debugging-
related activities as computations over traces, including 
assertion checking, profiling and performance 
measurements, and the detection of typical errors. We 
have integrated event trace computations into a 
monitoring architecture based on a virtual machine. 

Preliminary experiments demonstrate that this 
architecture is scalable to real-world programs. 
   One of our next steps is to build a repository of 
formalized knowledge about typical bugs in the form of 
UFO rules, and gather experience by applying this 
collection of assertions to additional real-world 
applications. There remain many optimizations that can 
improve the monitor code generated by the UFO 
compiler; for example, merging common code used by 
multiple assertions in a single monitor, and generating 
specialized VMs adjusted to the generated monitor. 
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Abstract

Large scale system development and maintenance
projects often need to build scaffolding—tools that help
build the target system—that is customized to the
project. For some classes of tools, including dynamic
analysis, the cost barrier is too high to consider imple-
menting customized support that might be beneficial to
the project, and thus the project makes do with what-
ever off-the-shelf support is available.

This paper presents ideas and prototypes in offer-
ing generic support for high-level, flexible, and pro-
grammable introspection of software systems. Our hy-
pothesis is that “quick-and-dirty” scripting languages
such as Tcl/Tk and Python can be effectively used to
create ad-hoc dynamic analyses that help system engi-
neers better understand, develop, and maintain their
system.

1. Introduction

Many system development and maintenance activi-
ties need or can benefit from introspective and possibly
even manipulative capabilities in a running system. By
this we mean the ability to peer into a running system
and observe it, and even manipulate it to some extent.
But typical mechanisms for introspection are hard to
use, involve a great deal of low-level programming, and
require expert programming to be used correctly. Be-
cause of this, the effort in building introspection tools
is very high, and projects are often prevented from
building application-specific tools or rapidly prototyp-
ing new general-purpose tools.

It would seem natural to provide some generic and
easy-to-use mechanism to support these needs, and
that is precisely the point of the ideas described here.

Our vision is to provide a flexible, easy-to-use mech-
anism for introspection that allows not just complex

tools to be developed but allows the application pro-
grammers to easily build ad-hoc tools that meet a spe-
cific need at a specific time. Rather than try to pre-
define the capabilities we think might be needed, a
better approach to achieve this end is to re-use one of
the many scripting languages that are available.

Scripting languages allow extremely rapid develop-
ment of functionality, at the the cost of speed since
they are interpreted languages. But since they are full
programming languages, there is no limit to the type
of tools that might be built using them. While they do
have some downsides, they seem ideal for building the
scaffolding-type of software tools that must be built to
help manage, test, observe, and maintain a large pro-
duction software system.

In our initial prototypes we chose the Tcl/Tk script-
ing language because of its clean design, ease of
integration with traditional programming languages
(C/C++), and GUI capabilities. However, the prin-
ciples underlying our approach can be applied using
other languages.

2. Framework

Runtime issues in dynamic analysis have always had
to balance the low-level issues of how to instrument the
system under observation with the high-level issues of
how to make the customization of analysis accessible
to the user. A variety of solutions have been proposed
and implemented, from special purpose systems that
only allow a specific class of analyses to be performed,
to special languages (e.g., event processing languages
such as [1]) that can be used to specify the desired
analysis.

All of these have their place; however, eventually
one must consider that the scope of desired dynamic
analyses is, in the most inclusive sense, general com-
putation. Thus, why not enable general computational
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System Under Observation

interface + control

probes

Scripted Analysis

Figure 1. Scripted dynamic analysis architec-
ture.

environments for dynamic analysis? Furthermore, can
we make this programming of dynamic analyses more
accessible by using high-level programming ideas?

Figure 1 shows how these ideas might fit together.
The system under observation should have some mech-
anism, or at least the potential to insert a mechanism,
for observing its behavior. The framework implemen-
tor can do the hard task of building the probes on top
of this mechanism so that dynamic analysis tools can
be built. To hide this complexity, the probe points
and information they provide are made available to a
scripting language engine, so that a specific analysis
can be written in a scripting language, without needing
to reach down into the details of the instrumentation.

Our initial prototypes, described in Sections 4-
r̃efsec:java, have focused on method/function invoca-
tion interceptions, but our idea for the basic architec-
ture is to enable script-level access to more types of
instrumentation probes.

3. Tcl/Tk and other scripting languages

Tcl (Tool Command Language [8], pronounced
“tickle”) is a programming language in the class known
as “scripting” languages. Newer scripting languages
such as Tcl, Perl, Python, and PHP are much more ad-
vanced than the old shell scripting languages, yet they
retain the ease of use and the capability for extremely
rapid development of advanced functionality. Tcl and
most other scripting languages can be both easily ex-
ecuted from C/C++ and extended with custom com-
mands written in C/C++. It is rather misleading to
call these languages “scripting” languages, in that they
are very powerful interpreted languages, with built-in
data structures and functional-style programming lan-
guage constructs. Modules provide canned support for

web services, GUI interfaces, email, ftp, encryption,
and many other high-level abstractions.

The upside of scripting languages is that one can
create a great deal of functionality with relatively little
effort, and they are robust enough to be relied upon.
Indeed they can be found running much of the web
services we use every day, are used extensively as the
foundations of test harnesses, rapid prototyping envi-
ronments, and many other real world situations.

The downside to most scripting languages is that
they do not have a formal semantics but rather an op-
erational one, which can change based on the version
of the interpreter one is running! They are targeted
towards achieving practical usefulness, not theoretical
semantic correctness. However, compiled languages of-
ten reveal similar ambiguities [4]. Scripting languages
are also quite a bit computationally slower than sys-
tem programming languages, and their typically weak
typing is sometimes detrimental.

4. Realization in CORBA

The CORBA (Common Object Request Broker Ar-
chitecture) standard has defined cross-platform remote
object invocation for ten years [7]. From early on
CORBA had a proposed specification for object request
interceptors, but it was incomplete and optional. Co-
incident with version 2.4.2 and later versions, a new in-
terceptor specification was drafted, known as Portable
Interceptors [2]. With the Portable Interceptor stan-
dard, it is now possible to create debugging, monitor-
ing, and other introspection tools that will interoperate
with most vendor ORBs.

In our work, we built an intermediate interceptor
layer that took each interception point and invoked
a mirror in the scripting language Tcl/Tk. Although
not completely invisible to the application developer—
some CORBA implementations may require rebuilding
the application with different options—there is no low-
level programming needed, and CORBA analysis tools
that use interception-based data can be written com-
pletely in an easy-to-use scripting language.

CORBA Portable Interceptors are ORB-level inter-
ceptors that act upon method invocation requests and
replies. On the server side, the most basic interception
points are “receive request” and “send reply”. Thus,
CORBA interception points naturally give the analy-
sis tool access to the pre- and post-execution points of
an invocation. Also note that the interception points
are generic for the ORB rather than specific to the ob-
ject and method being invoked. Our interface makes
available to the scripting language an object ID, the
method name, and the values and types of the param-
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eters and return values. Thus, at the script level, the
analysis can perform computations specific to the ob-
ject and/or method, by inspecting the meta-data.

5. Realization in Unix shared libraries

Shared or dynamic link libraries offer an interest-
ing deployment opportunity for our ideas, because they
are so widely used and their components are relatively
simple (C functions). Nevertheless, the environment is
one where very little meta-information is available, and
with almost no runtime meta-programming ability. It
has potential access, though, because we can modify
the dynamic loading process to allow the possibility of
binding a function call not to the original target func-
tion but to whatever we want, namely a probe point.

Once we have the call intercepted, it is “only” a
matter of programming to implement the relay of the
function call to the scripted dynamic analysis, and to
ensure that the original function is still called, to effect
the correct execution of the program. While not trivial,
it is possible. Our work is currently in the context
of the ELF object and library file formats [6], and in
the Gnu shared library loader [5] as used in the Linux
operating system.

When creating an object file which has calls to func-
tions located in shared libraries, the compiler produces
a call that uses table-based indirection (we will call
them “jump tables”). In a somewhat simplified sce-
nario, this table entry initially points not to the actual
function (since its location is not known) but to the dy-
namic loader. Thus the first call invokes the dynamic
loader, which will look up the function (by name), load
the library if necessary, figure out the actual address
of the function being called, overwrite the table entry
with the actual function address, and then jump to the
function. All subsequent calls from that call site simply
pay a tiny (one instruction) penalty of a table lookup.

Although a static name interception capability al-
ready existed with the LD PRELOAD environment
variable, we have modified the Gnu dynamic loader to
enable dynamic control of the name resolution process,
for this and other work we are doing. The dynamic
control allows runtime remapping of names to alter-
native names, on a per-link-object basis rather than
at a global level. This functionality gives us the basic
interception capability.

To avoid the necessity of low-level programming of
the probes, we created a wrapper generator that takes
function prototype definitions and generates probe
wrappers that the dynamic linker can safely redirect
the execution to. These wrappers also instantiate the
argument and return data into Tcl-accessible data, and

Figure 2. Memory usage analysis in the
shared library framework.

invoke Tcl routines before and after the original func-
tion is invoked, so that pre- and post-execution analysis
can be performed.

Thus, a dynamic analysis of an existing system can
be written completely in Tcl, except for the function
prototypes needed to generate the wrappers. Figure 2
shows an simple memory allocation analysis of an ex-
isting binary executable (Ghostview) that was written
purely in Tcl/Tk.

An interesting difference between the interception
points in this framework and in the previous one
(CORBA) is that the C shared library interception
points are specific to each function that is being in-
tercepted. At the scripting level, a procedure must be
defined for each pre- and post-interception point, for
each function being intercepted. This is quite differ-
ent than the generic interception point offered by the
CORBA. The tradeoff between the two is that specific
interception points offer more direct access to perform
very specific ad-hoc analyses, while general needs such
as event logging are much easier with the generic inter-
ception points (and the appropriate meta-data).

We have devised a mechanism for generic intercep-
tion points in the shared library framework, but are
still in the process of implementing it, and need to do
more testing and make more meta-data available to
define the actual interception.

6. Realization in Java

In both the CORBA and shared library environ-
ments we were dealing with compiled programs, and
were able to utilize API’s for the (compiled) interpreter
of a scripting language (Tcl). In these settings, there
is a clear distinction between the machine-code rep-
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resentation of the system under observation and the
interpreted language that the dynamic analysis tool is
written in.

Java, however, presents an interesting case in that
it is already an interpreted language, at least at the
bytecode level. One might think that the Java envi-
ronment, then, does not really benefit from having dy-
namic analysis tools able to be written in a scripting
language. However, we feel that Java is a sufficiently
complex language to warrant exploration of making dy-
namic analyses easier to program.

While Java can access native code resources, and
thus could be integrated with external interpreters for
scripting languages, there has been enough interest in
the combination of Java and scripting languages that
open source versions of Java-based interpreters exist
for such popular languages as Tcl (Jacl, or Java Tcl)
and Python (Jython). This means that we can have the
scripted analysis running within the Java environment,
which reduces complexity considerably, and future en-
abling of other probe points should be easier.

To create the interface between the system under
observation with the scripting language, we have built
a class wrapper generator which uses the Byte Code
Engineering Library (BCEL [3]) to generate a wrap-
per for the public interface methods of a class. In
this wrapper we generate calls to the scripting anal-
ysis program, with the appropriate data. Thus, the
only code needed to be written by the developer inter-
ested in some ad-hoc dynamic analysis is the Tcl (Jacl)
or Python (Jython) code. As with the C library frame-
work, we offer pre- and post-execution points around
the method call, and the interception points are specific
rather than generic.

7. Conclusion

It is our hypothesis that developers would more of-
ten perform ad-hoc dynamic analyses on the system
they are building or maintaining if the cost of creating
these ad-hoc analyses was lower than it currently is. To
this end, we are experimenting with enabling the analy-
ses to be written in high level scripting languages, with
the low-level details hidden and not needing to be the
concern of the developers. We have built initial frame-
works in CORBA using the Portable Interceptor stan-
dard, in C using the dynamic linking phase of library
code access, and in Java using the BCEL toolset to ac-
cess class bytecode. Each of these is centered around
method or function call interception, but embody two
different styles of access. The CORBA framework en-
ables generic interception points, where all method
calls fire the same interception points; while the shared

library and Java frameworks enable function/method-
specific interception points. We plan to further en-
hance these frameworks and continue to explore the
bounds of usefulness for scripting languages in dynamic
analysis.
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