ERNST, LENCEVICIUS, PERKINS

Detection of Web Service substitutability and
composability

Michael D. Ernst

CSAIL
MIT
Cambridge, MA, USA

Raimondas Lencevicids

Nokia Research Center Cambridge
Cambridge, MA, USA

Jeff H. Perking

CSAIL
MIT
Cambridge, MA, USA

Abstract

Web services are used in software applications as a stamaar@onvenient way of ac-
cessing remote applications over the Internet. Web seswie@ be thought of as remote
procedure calls. This paper proposes an approach to dergb service substitutability
and composability. Because web services may be unrelifibtiing other services substi-
tutable for an existing one can increase application uptiFieding composable services
enables applications to be programmed by composing sevetatervices (using one ser-
vice's output as an input to another web service). We havdeimented our technique
and evaluated it on 14 freely available web services pro@ué2 outputs. Our approach
correctly detects all composable and substitutable welcgsr from this set.

Key words. web services, composition, testing, dynamic analysis

L Email:mernst @sail . nmit.edu
2 Email: Rai nondas. Lencevi ci us@oki a. com
3 Email:j hp@sail . nit.edu

International Workshop on Web Services Modeling and Testing (WS-MaTe 2006)

ERNST, LENCEVICIUS, PERKINS
1 Web serviceintegration problem

Web services13] are software building blocks that can be accessed overnthe |
ternet in a standard programmatic way using SOAP messadihgy allow pro-
grammers to access data from remote providers without @xtgait from HTML

web pages or using proprietary protocols. Web services sgd in various areas:
customized stock tracking and trading applications, pebdearch and ordering,
address validation, and so on. Programmers can select fik@m1®0 services
listed on XMethods.orgl] and other web service providers. Businesses are also
adopting and publishing web services for business-toA@ssi communication.

It can be difficult to integrate web services, since most efittwere never de-
signed to work together. In theory, semantic informatioMi&DL [14] files was
supposed to solve this problem. In practice, it is often fingent. In most web
services we considered, the web service operation pararnygies are indicated
simply as strings, floats, and integers. It is impossibledade from a WSDL file
if the input string is a stock ticker or a town name, or what aimés of the output
guantity are. Some services are even worse, returning &singyped XML object
instead of a typed set of outputs. Because currently WSD4 dia’t carry enough
information to decide substitutability or composabilityere is a need for automatic
technigues to deduce this information. The web servicegrcawide variety of
domains. Considering semantic hints from web service namdperations, hu-
mans might guess that some operations may be substitutatienposable. Some
of those guesses could be wrong. For example, some of thk gtmte services
return a variety of different results such as the previowosiclg price, the opening
price, the current price, the daily high and low price, thawad high and low price,
etc. The only semantic information available is the nameachearameter. Those
names are not always clear. One stock service we considassolitput parameters
named “HIGH” and “LOW". It is not clear whether those are ttelghigh and low
or the annual high and low. Our tool discussed in this papmrgver, was able to
determine that they were substitutable with output pararset a different service
named “DayHighPrice” and “DayLowPrice”.

Our goal is to enable creation of applications that delivew rfunctionality
by integrating web services. In the long run, the integrattan indicate which
services are compatible with one another; substitute onaceefor another; and
transform inputs or outputs in order to make them compatile wish to support
the integration performed by programmers writing softwéseusers who compose
services, or even by applications as they discover newsvMWe discuss each of
these scenarios in turn.

Information about web service composability or substitiliy can be very
useful for programmers. Suppose that a new informationcgoar sink becomes
available. As noted above, existing documentation is noésgarily adequate for
the programmer’s purpose. However, given the informatioarse or sink, and
an example application that uses it, tools based on our igeés will enable the
programmer to explore the semantics of the feed in order teermgaickly build

124

ERNST, LENCEVICIUS, PERKINS

applications that properly use it.

End users can discover web services and may wish to compese Buppose
that a user discovers two services created without knovdedgne another, and
they do not adhere to a common standard. Tools should erableser to create
a new application on the fly by connecting them. A compositirard would
permit the user to make sensible connections between thegetting nonsensi-
cal ones, and converting the representation of those witpedible semantics but
incompatible formats. For example, a motion detector'potinight not be a sen-
sible input to a shopping application, but could be providedpatial control for
aiming a video camera. As another example, today a differendata format ren-
ders an application completely unable to use a data souasedBon observations
of use, a future system could infer transformations thatinethe meaning. Triv-
ial examples are centigrade—Fahrenheit and polar—Carntesiordinates, but future
work should address more ambitious ones as well.

Currently, the stability of web services is not guarantdadding substitutable
web services allows application developers to increasedpglication uptime. For
example, suppose that a blogger posts a local weather ffepora home meteoro-
logical station. A weather application could notice thismeformation source and
determine that it is (imperfectly) correlated with otheratlger data, perhaps after
transformations. If the primary weather service becomewaihable, the applica-
tion automatically converts the blogger’s informationoirat form compatible with
the application and uses it to approximate the missing métion. As another ex-
ample, the system could determine when multiple servicegge interchangeable
functionality and choose the one that is cheapest, fasiestpst accurate, based
on user preferences. Such substitutability improves sysédiability.

Our work does not solve all of the above problems. Howevéakies a step to-
ward their solution by proposing and evaluating technicfoeautomatically com-
puting web service substitutability and composability.

The paper is organized as follows. Section 2 presents anmgarhhow sub-
stitutability and composability can be detected. Sectigardposes an approach
for detecting web service substitutability and composigbilSection 4 discusses
the web services used in our experiments, and Section 5 sth@iexperimental
results. The paper concludes with related work, future warid conclusions.

2 Substitutability and composability detection example

Here we present an example of the application of our tecleniqu

Consider two web services Stockl and Stock2, and suppogédve the par-
tial input/output behavior shown in the tables below, wheesleftmost column is
the input and the other columns are the output. Those valudd tiave been ob-
tained by testing, by random invocations, by observingrthetiual user over time,
or in any other way.

125

ERNST, LENCEVICIUS, PERKINS

Service Stock1: Service Stock2:
StockTicker| Price Stock | LatestPrice| Volume
ADBE 36.90 ADBE 37.00 1.9M
INTC 19.88 MSFT 27.39 34.9M
MSFT 27.40 QCOM 50.92 30.9M
QCOM 50.86 YHOO 30.80 24.8M

Our technique works in two phases. The first phase detectsvitriap of the
StockTicker and Stock inputs (ADBE, MSFT, and QCOM are thaes@puts) as
well as overlap with a margin of error of the Price and Latest#Poutputs. The
Volume output of the service Stock2 does not overlap with aitner column of
inputs or outputs. Since there are no inputs of one serviaedberlap outputs
of another service, there is no potential for composabilidpwever, since there
are inputs that overlap inputs and outputs that overlapuisighe services are
potentially substitutable.

The second phase aligns the invocations of the two servaceké overlapping
inputs and outputs, and finds the best match of differentlappmng outputs. In
our example, the ADBE 36.9 invocation of Stock1 aligns wite ADBE 37 invo-
cation of Stock2, MSFT 27.40 aligns with MSFT 27.39, and solbthus aligned
invocations match well (as they do in our example), the sesviare considered
substitutable.

3 Approach

This section describes our algorithm for computing webisereomposability and
substitutability. Our approach assumes that trace datzaitahle from executions
of a set of web services. Then it finds similarities betweenitiputs and outputs
of different web services.

A single web service contains one or more operations. Eaehatipn takes
zero or more inputs and produces one or more outputs. Ouritdgotreats each
operation independently. We use the term “param” to mean@nt ior output.

Our algorithm is a dynamic one; that is, it infers composabénd substi-
tutability by observing actual executions of the web sexvi8imply put, it searches
for outputs that match inputs to determine composabilitg, iisearches for inputs
that match inputs and outputs that match outputs to detersubstitutability. The
notion of “matching” is parameterizable; different matatpisub-algorithms can be
plugged into our framework.

Suppose that there are two operatiops and op,, in different web services.
The algorithm observes, at run time, many invocationggfand many invocations
of op,; for each invocation, the observed trace data indicates pa@m value (in-
put and output value). There are two challenges. First, lip@righm must deter-
mine which invocations ofp, are related to which invocations op,. Second, the
algorithm must determine which paramsmf, are related to which params ap,.

As an example, suppos®, takes a movie as input, and it outputs the names

126

ERNST, LENCEVICIUS, PERKINS

and zip codes of theaters showing the movie. Supposevihatakes a zip code
and a location as input, and it outputs the approximatemtsthetween them. The
first challenge is to determine which invocationsopf, are related to invocations

of op,. An invocation ofop, matches an invocation e@p, if op, outputs the same

zip code as the one used as inputdpy. Many invocations obp, will not match

any invocation ofop,, and vice versa. Once the invocations have been aligned, the
second challenge is to determine which params are relatethelexample, only

the zip codes are related, and no other params are.

The algorithm works in two phases. The first phase alignsdations of dif-
ferent services. The second phase builds on those resultpeaforms a second,
potentially looser matching operation to match params. rApiately, the first
phase indicates composability (though composability ¢dnd refined by the sec-
ond phase), and the second phase computes substitutability

3.1 Algorithm

Figure 1 contains the algorithm in pseudocode. Tdeéfraction and listfraction
constants are selected empirically.

Both phase 1 and phase 2 of the algorithm perform a value nngtchtep to
determine the percentage of matching values. These twaatioms OfVALUE -
MATCH can and should be different. In phaseB™=MATCH should use a relatively
low setfraction, because arbitrary executions are not likely to line up \adtgn,
but a rather strictALUE-MATCH (such as exact equality) to avoid false positives.
By contrast, in phase 2sT-MATCH should have a highistfraction cutoff (if the
invocation matching occurred properly, then any true matabuld be overwhelm-
ingly common), but the value matching might be made lessroig® (to permit
floating-point roundoff rather than requiring an exact rhatar to permit different
printed representations) to avoid false negatives.

The algorithm treats operations as logical units; for exi@mnip many invoca-
tion alignments are possible, the best one is chosen, andnfmparam matchings
are possible, again the best one is chosen. An alternatw®agh that considers
each output as an independent operation would simplify lgparighm but degrade
its quality. For example, consider two stock services. Bale a stock ticker and
return a number of output parameters such as OpenPrice, iDalHce, DayLow-
Price, LastPrice, etc. Depending on the volatility of thecktand the time of day
the services were executed, many of the output parametgis fmve very similar
values. For example, on a day when prices are rising DayHigaPnhay often be
very similar to the LastPrice. Thus, there may be many dfiecombinations of
output parameters that exceledfraction. Itis important to choose the best among
them, and not to match any one param to multiple params irhanoperation.

When at least one input and output param match up, then uhethfzarams
may indicate constant parameters or mappings. As an exashpleonstant pa-
rameter, a movie service that returns the movies playingaegp code may take a
zip code and a radius. The radius is not a critical paramkiteray always have the

127

ERNST, LENCEVICIUS, PERKINS

> PHASE 1:
for every paranp; from an operatiorvp, of a web service;
do for every paranps from an operatiorvp,, of a web services # s;
do if SEFMATCH (valuesof (p1), valuesof (p2)) > setfraction
then if 1IS-INPUT-AND-OUTPUT(p1, p2)
then markp; andp, as composable
else markop, andop, as potentially substitutable

OO WNPE

> PHASE 2:
for every pair{op,, op,) of potentially substitutable operations (from Phase 1)
do > First, find an alignment between invocations
Choosey;, from op, andp- from op, be such that
IS-INPUT-AND-OUTPUT(p1, p2) @ndSET-MATCH (p1, p2) is maximal
10 An invocation ofop, corresponds to (is aligned with) an invocationof,
if VALUE-MATCH (p1,p2)
(In the remainder of the algorithm, ignore non-aligned itations.)

© 0 ~

11 > Second, find a mapping among params
12 Choosen to be the mapping between the params@f andop,,

that maximizes, ., LIST-MATCH (valuesof (p1), valuesof (m(p1)))
13 > Third, mark well-matched params as substitutable
14 for each pairp,,p2) € m > p; andp, are corresponding params
15 do if LIST-MATCH(p1, p2) > listfraction
16 then markp; andp, as substitutable.

SET-MATCH(sety, seto)

> Return the fraction of elements eft; andset, that match

> Example:seMATCH({1,2,3},{1,3,4,5}) — min(.67,.5) — .5
matchy — {v1 € sety : vy € sety : VALUE-MATCH (v1, v2) }
matche — {vy € sety : Juy € sety : VALUE-MATCH (v1, v2) }
return min(|matchy| / |set1], |matcha| / |seta])

LIST-MATCH (listy, lista)

> Return the fraction of corresponding list elements thatamat
> Example:LIST-MATCH([1, 2, 3,4, 5], (1,4, 3,2,5]) — .6
return|{i : VALUE-MATCH (list1[i], lista[i])}| 1 |list1|

VALUE -MATCH (v1, v2)

> Return true if the two values match

> VALUE -MATCH is set by the specific instantiation of our framework. Exaesgdre:
> return vy, = vo

> return (v /v < 1+¢€)and (ve /vy < 1+¢€)

> return (vq is a prefix ofvs) or (v is a prefix ofv;)

IS-INPUT-AND-OUTPUT(p1, p2)
return (p; is an input angb, is an outputpr (p; is an output ang, is an input)

Fig. 1. Algorithm for determining Web Service composapiliind substitutability.

same value (as in our experiments), or its value may be masorably supplied
by the user rather than extracted from the outputs of thesethiat yielded the zip
code. As an example of a mapping, consider two currency exgghaervices. One
takes two country names as input and returns the exchange Tae other takes
two currency names as input and returns the exchange rageexidnange rate out-

128

ERNST, LENCEVICIUS, PERKINS

Service & operation #Inputs & description | #Outputs & descrip.
stock_wsx.GetQuote 1| ticker 16 | quote info
stock_gama.GetlLatestStockDailyValue | ticker, exchange | 1 | quote
stock_xmethods.getQuote 1| ticker 1 | quote
stock_sm.GetStockQuotes 1 | ticker 10 | quote
weather_global.GetWeather 2 | city, country 10 | weather info
currency_exchange.getRate 2 | country, country | 2 | exchange rate
currency_convert.ConversionRate 2 | currency, currency 1 | exchange rate
gold.GetLondonGoldAndSilverFix 0 10 | gold, silver info
region_ab.abbrevToRegion 1 | state abbrev 4 | state name
region_name.regionToAbbrev 1 | state name 4 | state abbrev
geoip.GetGeolP 1 | IP address 5 | country
location.getCity 1| zip code 1 | city
Zip_ripe.ZipCodeToCityState 1| zip code 1 | city, state
Zip_ripe_city.CityStateToZipCode 2 | city, state 1 | zip code
airport.getAirportinfoByAirportCode | 1 | airport code 16 | airportinfo
movies.GetTheatersAndMovies 1 | zip code, radius 6 | movieinfo

Fig. 2. Web services used in our experiments.

put parameter can be used to line up the results in the firggpbbthe algorithm,
but the input parameters will not match in the second phasmveider, a consis-
tent mapping can be found from country name to currency namidevece versa
(e.g., “United States” and “USD”, “Europe” and “Euro”, etcOnce the mapping
Is determined, the two services become substitutable.

Duplicated values, which occur frequently in a parametatseset, carry little
information even though they may match well. For exampl@psse that two
Boolean operations each retutrue half of the time. These match well, but the
mapping carries little information content in terms of nfatg invocations to one
another. So on lind2 of Phase 2, the algorithm discards matches where a single
item matches multiple items. An alternative formulationulbconsider multiple
params as necessary, until the matching was unique.

4 Experimental methodology

This section describes the web services and test data used @xperiments.

41 \Web services

We used 14 different web services and invoked 16 differeetrajmons (methods)
on them. These operations produce 92 different outputs. A seevice operation
may produce multiple outputs.

The 92 outputs include 16 outputs that are constants andpfitsuhat are du-
plicates of an input in the same operation. Our tool ignomsstant and duplicate
outputs. 10 of the output constants are from the gold oparatt this service does
not have an input, so it returns the same values every tinsecdlled.

Figure2 is a synopsis of the web services, their operations, inpudsoaitputs.
Figure3 gives the WSDL addresses of these web services.

129

ERNST, LENCEVICIUS, PERKINS

Service/operation and WSDL file

stock_wsx.GetQuote

http://ww. webser vi cex. coml st ockquot e. asnmx?WSDL
stock_gama.GetLatestStockDailyValue

http://ww. gama- syst em com webser vi ces/ st ockquot es. asmx?wsdl
stock_xmethods.getQuote

http://services. xnet hods. net/ soap/ urn: xmet hods- del ayed- quot es. wsdl
stock_sm.GetStockQuotes

http://ww. swanandnokashi . com HonePage/ WebSer vi ces/ St ockQuot es. asmx?W5DL
weather_global.GetWeather

http://ww. webser vi cex. coni gl obal weat her . asnx?WsDL
currency_exchange.getRate

http://ww. xnet hods. net/ sd/ CurrencyExchangeSer vi ce. wsdl
currency_convert.ConversionRate

http://ww. webser vi cex. conl CurrencyConvertor. asnk?wsdl
gold.GetLondonGoldAndSilverFix

http://ww. webser vi cex. net/ LondonGol dFi x. asnmx?WsDL
region_ab.abbrevToRegion

http://ww. synapticdi gi tal.com webservi ce/ public/regions. asnx?WsDL
region_name.regionToAbbrev

http://ww. synapti cdi gi tal.com webservi ce/ public/regions. asnx?WsDL
geoip.GetGeolP

http://ww. webser vi cex. conl geoi pservi ce. asnmk?WsDL
location.getCity

http://webservices.imacination. coni di stance/ Di stance. jws?wsdl
zip_ripe.ZipCodeToCityState

http://ww. ri pedev. com webser vi ces/ Zi pCode. asnx?WSDL
zip_ripe_city.CityStateToZipCode

http://ww. ri pedev. com webservi ces/ Zi pCode. asnx?WSDL
airport.getAirportinfoByAirportCode

http://ww. webservi cex. conf ai rport.asnx?wsdl
movies.GetTheatersAndMovies

http://ww. ignyte.conl webservices/ignyte.what sshowi ng. webservi ce/ novi ef uncti ons. asnx?wsdl

Fig. 3. WSDL files for the web services of Figuze

4.2 Test data

We obtained experimental data from each service by caltibg times, choosing
input parameters at random from a predefined set of posdibiees (see Figuré).
We used the same set for each input parameter of the sameBstple combination
of input values is used at most once for each service. The auwibchoices is
constrained to generate data similar to the real-world tretwould be generated
by a few users of a service. For example, users probably wasgdhe service to
check for movies in their local geographical area.

Figure 4 shows the values used for each parameter. Wesueuction of
60% andlistfraction of 80%. BOthSEF-MATCH andLIST-MATCH use an almost
exactvALUE-MATCH function that allows only 1% difference for floating number
matches.

5 Experimental results

We have applied our tool to detect and determine substitityedind composability
of the web services of Sectiagh

Before looking at the results generated by our tool, we fixplan what sub-
stitutions and compositions can be found in the ideal case.d¥¥ermined these

130

http://www.webservicex.com/stockquote.asmx?WSDL
http://www.gama-system.com/webservices/stockquotes.asmx?wsdl
http://services.xmethods.net/soap/urn:xmethods-delayed-quotes.wsdl
http://www.swanandmokashi.com/HomePage/WebServices/StockQuotes.asmx?WSDL
http://www.webservicex.com/globalweather.asmx?WSDL
http://www.xmethods.net/sd/CurrencyExchangeService.wsdl
http://www.webservicex.com/CurrencyConvertor.asmx?wsdl
http://www.webservicex.net/LondonGoldFix.asmx?WSDL
http://www.synapticdigital.com/webservice/public/regions.asmx?WSDL
http://www.synapticdigital.com/webservice/public/regions.asmx?WSDL
http://www.webservicex.com/geoipservice.asmx?WSDL
http://webservices.imacination.com/distance/Distance.jws?wsdl
http://www.ripedev.com/webservices/ZipCode.asmx?WSDL
http://www.ripedev.com/webservices/ZipCode.asmx?WSDL
http://www.webservicex.com/airport.asmx?wsdl
http://www.ignyte.com/webservices/ignyte.whatsshowing.webservice/moviefunctions.asmx?wsdl

ERNST, LENCEVICIUS, PERKINS

stock_wsx.getQuote.input.parameters.symbol 71 Nasdaq stocks, most of which are in
stock_gama.GetLatestStockDailyValue.input.paramsetegtock the Standard and Poors 500
stock_xmethods.getQuote.input.symbol

stock_sm.getStockQuotes.input.parameters.QuoteTicke

stock_gama.GetLatestStockDailyValue.input.paramset#Exchange constant = “nasdaq”
weather_global.getWeather.input.parameters.CityName 68 Massachusetts airport names
weather_global.getWeather.input.parameters.Couiatmy®l constant = “United States”
currency_exchange.getRate.input.countryl 12 countries
currency_exchange.getRate.input.country2
currency_convert.ConverstionRate.input.parametesmiEurrency 151 currencies
currency_convert.ConverstionRate.input.parametef3Lifrency
region_ab.abbrevToRegion.input.parameters.regioeCod 50 US state abbreviations
region_name.regionToAbbrev.input.parameters.regamsl 50 US state names
geoip.getGeolP.input.parameters.|PAddress all possible IP addresses
location.getCity.input.zip 72 Massachusetts zip codes

zip_ripe.ZipCodeToClityState.input.parameters.Zip€od
movies.GetTheatersAndMovies.input.parameters.zigCod

Zip_ripe_city.CityStateToZipCode.input.parameteity.C 72 Massachusetts cities
Zip_ripe_city.CityStateToZipCode.input.parametetat& constant = “ma”
airport.getAirportinfoByAiportCode.input.parametesportCode 68 airport codes (primarily in MA)

Fig. 4. Values used for testing. Unless otherwise notedyé#hees for a parameter were
chosen at random from the distribution listed in the rigHtiom of the table.

by careful hand examination of the services, including toldal experimentation
where necessary.

5.1 Substitutability results

There are 13 possible direct substitutions. All of theséateveen the various stock
services. The two zip code to city conversion services deubstitute because one
returns just the city name while the other returns the city state. The one that
returns just the city has a separate operation that retlnstate. So in theory
it might be possible to substitute one service for the ottéowever, this is not
handled by our tool at the moment. The two currency convessgervices do not
substitute because one uses countries as input and theisdseturrencies as input.

The execution of our tool on the data automatically findsiadlat substitutions.
The tool does not find any false positives, and there are e fatgatives.

5.2 Composability results

There are 6 possible direct compositions. A compositionsigis of a service
whose output is a valid input to a different service. We asstimat the output ser-
vice must provide all of the non-constant parameters tortpatiservice, although
in some cases, it might make sense to propose compositiomsubparameters in-
dependently and allow the user to specify the other paramaliges or use separate
services for other parameters.

Two of the compositions have input operations with two pagters. In both
cases one of the parameters is a constant in our data, sodle#fiectively one input
for our purposes. Our tests always set the second paraniéterdip_ripe_city.City-
StateToZipCode operation to “Massachusetts”. Our tegiaya set the radius pa-
rameter (distance from the zip code of interest) of the n@m@etTheatersAnd-

131

ERNST, LENCEVICIUS, PERKINS

Movies operation to O.

The tool finds all direct compositions and does not find angefglositives.
There are two more complex possible compositions that arf®uood. currency_ex-
change.getRate takes two countries, neither of which isteoih geoip.GetGeolP
returns the country for a specific IP address. One could ineagh interesting
composition which takes the country from an IP address afalileges the cur-
rency exchange with a constant country (e.g., the UniteteStaOur tool does not
find this composition because it chooses IP addresses aimaadd there was not
a good correlation with the country names used.

The Zip_ripe.ZipCodeToCityState operation outputs astite as a single string
such as “Cambridge, MA’. The Zip_ripe_city.CityStateTpZiode operation takes
two input parameters (city and state). By parsing the city state from the output
of the first operation, the second operation could be contpesth it. Our tool
does not find compositions that require a single output todysqa into multiple
outputs.

6 Reated work

None of the related work discussed in this section uses sisaby runtime infor-
mation as our approach does.

Dong et al.] have built a web service search engine, Woogle, that suppor
searching for web service operations similar to a given dine. tool also supports
searching for web service operations composable with engwe. The tool only
uses information available in WSDL files, but clusters isé@don the names of the
fields, in an effort to extract semantically meaningful cepis. The work of Dong
et al. is orthogonal to ours and could be used as a compleremirtdynamic
substitutability and composability detection.

Majithia and others{] propose the Triana toolkit, which allows interactive web
service composition. Triana checks the types of paramet&SDL and even per-
forms type conversions. However, the toolkit does not cifgr automatic detection
of composability.

Most of the research on discovering web service composglaiisumes that
web services are annotated with semantic information (béyWwSDL) and uses
that information to detect substitutability or composayil Such semantic infor-
mation might be available in the future; however, the welvises available now
lack it. Sirin, Hendler, and Parsid], 12] assume annotations in OWL-S (DAML-
S in the first paper). Lassila and Dix#@][propose a similar scheme using a subset
of OWL-S (called DAML-S Lite at the time).

Much research is dedicated to matching user requests to @eveice or their
composition. This is related to our search for substitditgbiPaolucci et al. 9]
propose to achieve this with a matching engine using DAMIeiSise descriptions.
Rao, Kungas, and Matskid(] use a propositional linear logic prover to compose
web services according to user requests. Pistore eBpprppose a tool WS-
Gen; given a set of web services with semantic descriptiodsaauser request, it

132

ERNST, LENCEVICIUS, PERKINS

generates a composed web service. Kim andSppfopose a tool that interactively
guides the user from their request to a composition of weldses achieving that
request. Their tool uses semantic information to find sessicomposable to the
ones already in the composition. Pistore et al. and Kim arfd Gork could be
potentially used on the services we find to be composable.

BPEL4WS }] is a language to specify web service composition. As such it
does not address the issue of finding composable servicess hugood tool to
implement and present the composed services.

7 Futurework

Our promising preliminary results suggest that automaétection of web ser-
vice composability and substitutability is a promisingedition for future research.
However, additional work is required to make the technigaetical. Here we note
some directions that we plan to pursue.

We would like to experiment with additional web servicegluding commer-
cial ones. We would also like to apply our techniques to meinformation ser-
vices that are not packaged as web services, for instancedogen scraping” the
results of web forms. We expect that our technique could la¢sapplied to other
software services, and we plan to experiment with compaefrthe Nokia mobile
phone architecture.

Our framework is parameterized by matching algorithms. \ldm po experi-
ment with more sophisticated matching algorithms. Foransg, when provided
with sufficient data, an approximate matching algorithmldaletermine that “$5”
and “5” stand for the same quantity, or that the string “5” ahd number 5 are
the same. Other machine learning techniques, such as th@sgkon [3], could
indicate properties of parameters (for example, zip codesbadigit strings that
are composed solely of digits). Such an approach could alsistan determining
when substitutability is not symmetric. For example, a kteervice that supports
all exchanges can be substituted for one that only hand|e3IM¥® stocks, but not
vice versa; this can be though of as a form of subtyping.

Once our algorithm has aligned invocations and matchedhpeteas, correla-
tions could be inferred among un-matched parameters. Fanpbe, if all other
parameters match, it could be inferred that “US” in one walsise must mean the
same thing as “United States” in another. This is just onetwalgal with constants
and with multiple inputs; we plan other approaches to thesblpms as well.

We would like to apply our technique to real data collectexhfithe field; our
current approach relies on inputs that we made up. Real ditewveal how much
repetition of values occurs and will aid us in tuning our aityons.

8 Conclusion

With web services becoming standard software buildinghd@ccessible over the
Internet, it becomes important to automatically find substble and composable

133

ERNST, LENCEVICIUS, PERKINS

services. Finding substitutable web services allows appbn developers to in-
crease their application uptime by replacing unreliableises on the fly. Finding
composable web services helps programmers and users tbitgtesting appli-
cations using web service compositions. This paper deszabmethod to discover
substitutability and composability of web services. Weéapplied this method
to 14 freely available web services. The technique dis@xvénat parameters in 6
pairs of operations are substitutable (for each pair, atl-constant inputs match,
and at least one output parameter matches), and 6 addipairalof services are
composable (an output of one service is sensible as an iophietother). Our
tool is precise: it does not find any false positives. We hoyae dur approach will
enable more powerful tools for web service programming asel u

Acknowledgments

The authors thank Alexander Ran, Karel Driesen, and theyanous reviewers for
comments on the paper.

References

[1] Xmethods.org, 2006.

[2] Xin Dong, Alon Y. Halevy, Jayant Madhavan, Ema Nemes, &md Zhang. Simlarity
search for web services. E)Proceedings of the Thirtieth International Conference
on Very Large Data Bases (VLDB2004), pages 372—-383, Toronto, Canada, August 31
- September 3 2004.

[3] Michael D. Ernst, Jake Cockrell, Wililam G. Griswold, @nDavid Notkin.
Dynamically discovering likely program invariants to sapp program evolution.
|EEE Trans. Software Eng., 27(2):99-123, 2001.

[4] IBM. Business Process Execution Language for Web Services version 1.1.

[5] Jihie Kim and Yolanda Gil. Towards interactive compimsitof semantic web services.
In in Proceedings of the AAAI Soring Symposium on Semantic Web Services, 22nd -
24th March 2004.

[6] Ora Lassila and Sapna Dixit. Interleaving discovery ammposition for simple
workflows. Inin Proceedings of the AAAI Spring Symposium on Semantic Web
Services, 22nd - 24th March 2004.

[7] Shalil Majithia, Matthew S. Shields, lan J. Taylor, armthlWang. Triana: A graphical
web service composition and execution toolkit. iim Proceedings of the |IEEE
International Conference on Web Services (ICWS 04), pages 514-523, San Diego,
California, June 6-9 2004.

[8] M.Pistore, P.Bertoli, E.Cusenza, A.Marconi, and P/€rao. Ws-gen: A tool for the
automated composition of semantic web services, Novermiidr2004.

134

[9] Massimo Paolucci, Takahiro Kawamura, Terry R. Payned #&atia P. Sycara.
Semantic matching of web services capabilities The Semantic Web - 1SWC 2002,
First International Semantic Web Conference, pages 333—-347, Sardinia, Italy, June
9-12 2002.

[10] Jinghai Rao, Peep Kingas, and Mihhail Matskin. Logisddl web services
composition: From service description to process model.inlRroceedings of the
IEEE International Conference on Web Services (ICWS 04), pages 446453, San
Diego, California, June 6-9 2004.

[11] Evren Sirin, James Hendler, and Bijan Parsia. Senwvraatic composition of web
services using semantic descriptions. InProceedings of Web Services: Modeling,
Architecture and Infrastructure Workshop at | CEIS 2003, Angers, France, April 2003.

[12] Evren Sirin, Bijan Parsia, and James A. Hendler. Hiligand selecting semantic web
services with interactive composition techniquesEE Intelligent Systems, 19(4):42—
49, 2004.

[13] World Wide Web Consortium (W3C)\eb Services Activity, 2006.

[14] World Wide Web Consortium (W3C)Web Services Description Language (WSDL),
2006.

135

