Toward Commoditized Verification

Todd Schiller
Michael Ernst

W

UNIVERSITY of
WASHINGTON

Verification: does the program fulfill
the specified contract?

class Queue{

/**

* @ requires x != null;

* @ ensures currentSize == \old(currentSize+l);
* @ exsures (QueueFullException) ...

*/

public void enqueue(Object x)
throws QueueFul IException

1
}

Verifying a Specification

Verification isn’t Cost-Effective

* Evidence: only used for safety critical systems

e Essential complexity

— Precision and completeness

Labor intensive
e Accidental complexity & Expert users

— Tool design tradeoffs
— Bad interface design

Worker Skill Spectrum

Verification
Experts

Programmers

.

111 Commoditization

Engine

Task-level
Crowdsourcing

Barriers to Commoditization

* Interface usability is limited

— Complicated internal representations

e Decomposition into subtasks is hard
— Module and methods interdependent

— Information loss

VeriWeb: a web IDE for writing verified
specifications of existing code

e More cost- and time-

& C [schillerlabs.com:B080/VeriWeb/VeriWeb.htm|?srv=vworker&id=splash&proj=Que.. ha m I @ =

L]
effective than a AR
Write Preconditions: Possible attempt to allocate array of negative length

theArray = new Object| capacity];
Actions: -

traditional interface

Condition (drag completed conditions here):

Scratch Pad (holds unlimited fragments): e

Jw
(Morall int l;E H i) * Construct the gueue.

wn)

public QueuedAr{ int capacity)

af

* Enables collaborative

front = 0;

Logic Comparison Variables Math Other pack = theArray.length - 1;

verification via T }
decomposition

/*& set theArray.owner this; =/

VeriWeb Workflow

VeriWeb Interface

YOy My
J OO @V&ri'ﬂeb *

&« C' | [J schillerlabs.com:8080/VeriWeb/VeriWeb.htm[?srv=vworker&id=splash&proj=Que... 77 E3 I @

Ry

Warnings &
Specifications

Contract Entry

Source Code

€ (&

Show Instructions What are

[schillerlabs.com:8080/VeriWeb/VeriWeb.html|?srv=vworker&id=oopsla-demo-2&proj=StackAr&srv=vworker i @

Write Preconditions:

i MNext
Sl Problem

Select writing mode: (=IDrag and Drop (_Typing

Condition (drag completed conditions here):

Scratch Pad (holds unlimited fragments):

Logic Comparison Variables

(\Mforall int i;

-

(\Mforall int j:

-

(Zforall int i, j; _iJ _lJ

Math

Other

==

Instructions:

Drag condition fragments from the palette to the condition box to form conditions that
MUST be true for the function to not throw an unexpected runtime exception. A
submit button will appear when the condition in the box is complete.

Some fragments have yellow holes that must be filled with other fragments. To fill a
hole, just drop a fragment onto it; you can later remove the fragment by clicking and
dragging the fragment. NOTE: You can only fill fragment holes in the scratch pad and
condition box.

You are done when there are no more errors detected; you can view ermors by hovering
your mouse over code that is underlined in red.

You can view a method or type's documentation by hovering your mouse over code
that is underlined in blue.

Additionally, you can toggle the inline specifications for a method by clicking methods

that are shown as huttunsi. &

ik
=

* Construct the stack.
* Eparam capacity the capacity.
*
public Stackar(int capacity)
{
theArray = new Object| capacity 1:
topOfStack = =1
/*8 set theArray.owner = this; */

VeriWeb Outputs a Partial Specification

1. Client code does not throw unexpected
exceptions

2. Properties (optionally) specified by the
feature developer

3. Plus other necessary properties for #1 and #2

Talk Outline

1. VeriWeb design principles
— Active guidance

— Explanations in context

2. Toward crowdsourcing: lessons learned

3. Challenges and open questions

Principle #1: Active Guidance

Prevent mistakes Suggest actions

Condition (drag completed conditions here):

X {\result == false) == (this.currentSize == 1)
h 4 {%result == false) == (this.thefArray[this.back] != null)
Scratch Pad (holds unlimited fragments):
h 4 {%result == false) == (this.thefArray[this.front] != null)
Caveat: being too restrictive % | (\result = true) == (this.currentSize == 0)
u 'x (this.currentSize == @) === (this.front =
annoyS users this.theArray.length - 1)
orall 1nt 1; ;| topofstack | == | theArray. length | - | 1
.......... k
Logic Comparison | Variables Math Other Caveat: too many suggestions
] this. thearray overwhelm users
this.theArray | [iil this.theArray.length
this, top0fstack

Principle #2: Explanations in Context

Give concrete feedback about what the tool
knows, and doesn’t know

Concrete Counter-Examples Contract Inlining
Name Before Call After Call ?ublic Object top()
4 i[] this theArray ref@6613606 ref@6613606 Lo pl Preconait ions

P rl-] ThiS.ThEJ"-".FFE",'[..] |'E'I'Ig1:|'l 2 Hength 2 TST: (\result == true) (this. topOfsStack

overwhelms users

Caveat: still must teach users
how to use feedback Caveat: irrelevant feedback

Talk Outline

2. Paying for verification: lessons learned

3. Challenges and open questions

Research Questions

1. What is the cost (time and money) of
program verification?

2. Can ad-hoc labor be used to crowdsource
program verification?

3. How does decomposition and
communication overhead affect the
performance of collaborative verification?

What is the Cost of Verification?

e Hired programmers on vWorker

— Workers bid hourly wage
— Accepted 18 of 22 bids (S6 - $22 per hour)
— No correlation between experience (skill) and wage

e Two treatments:
— ESC/Java2 Eclipse Plugin (Control)
— VeriWeb

e Learning effect control:
— Tutorial writing a verified specification for a toy program

— Comprehension quiz

Method Dependency Graph

Distance to nearest solution

VeriWeb Workers Finish Faster

Eclipse Plugin VeriWeb

35

30

20

15

W AR ¥
I '\ 0

T

3
Distance to nearest solution

\

T T

0 60 120 180 240 300 360 420 480 540 600 660 720 0 60 120 180 240 300 360 420 480 540 600 660 720
Elapsed Time (min.) Elapsed Time (min.)

Distance to nearest solution

VeriWeb Workers Cost Less

Eclipse Plugin VeriWeb
35 35
30 30
c
9
25 | 5 25
3
20 - — — ‘g 20
5
s 2 £
y! y
10 - § 10 -
5 ™ 5 4
% g
0 o 11l
0 50 100 150 0 50 100

Money Spent ($) Money Spent ($)

150

Counter-Examples Are Important

e All workers tried to introduce false properties
e Slowest Eclipse worker had most trouble

e Lifetime of false properties skewed:
— Median: 2 min.
— Mean lifetime: 34 min.

Can VeriWeb Use Crowdsourcing?

e Mechanical Turk: worker paid per small task

e Paid 15¢ - 30¢ per subproblem, determined
randomly for each worker upfront

No. Low response and high reserve wage

Lessons and Challenges

* Additional compensation for learning to complete
the tasks

e Chicken and egg problem: need many verification
tasks to make learning attractive

Talk Outline

3. Challenges and open questions

Other Approaches

Approach

UW: Players solve puzzles to
infer qualified types

Berkeley: Workers find
visual patterns in traces for
verification

HKUST: “Players” chain
together method calls for
test generation

J |

Must show benefit over
automation of human
strategy

Cannot not claim labor
supply from small trials

Open Design and Research Questions

e What latency is acceptable?

* |sabstraction required to protect intellectual
property?

e How do you control worker error?

Rethinking the Economics of Software Engineering
(FOSER 2010)

VeriWeb: a web IDE for writing verified
specifications of existing code

e More cost- and time-
effective than a
traditional interface

e Enables collaborative i
verificationvia o o
decomposition

Study Materials: http://homes.cs.washington.edu/~tws/veriweb/

	Toward Commoditized Verification
	Verification: does the program fulfill the specified contract?
	Verifying a Specification
	Verification isn’t Cost-Effective
	Worker Skill Spectrum
	Barriers to Commoditization
	VeriWeb: a web IDE for writing verified specifications of existing code
	VeriWeb Workflow
	VeriWeb Interface
	Slide Number 10
	VeriWeb Outputs a Partial Specification
	Talk Outline
	Principle #1: Active Guidance
	Principle #2: Explanations in Context
	Talk Outline
	Research Questions
	What is the Cost of Verification?
	Method Dependency Graph
	VeriWeb Workers Finish Faster
	VeriWeb Workers Cost Less
	Counter-Examples Are Important
	Can VeriWeb Use Crowdsourcing?
	Lessons and Challenges
	Talk Outline
	Other Approaches
	Open Design and Research Questions
	VeriWeb: a web IDE for writing verified specifications of existing code

