
Toward Commoditized Verification

Todd Schiller
Michael Ernst

Verification: does the program fulfill
the specified contract?

class Queue{

 ...

 /**

 * @ requires x != null;

 * @ ensures currentSize == \old(currentSize+1);

 * @ exsures (QueueFullException) ...

 */

 public void enqueue(Object x)

 throws QueueFullException

 {

 ...

 }

}

Verifying a Specification

Source Code

Specification

Theorem Prover
(SMT solver)

∀ ∃

𝑎𝑎 ∧ 𝑏𝑏

Logical Formulas ∀ ∃

𝑎𝑎 ∧ 𝑏𝑏

Counter-Example

Verification isn’t Cost-Effective

• Evidence: only used for safety critical systems

• Essential complexity
– Precision and completeness

• Accidental complexity

– Tool design tradeoffs
– Bad interface design

Labor intensive
& Expert users

Worker Skill Spectrum

Task-level
Crowdsourcing

Verification
Experts

Engineers

Programmers

Commoditization

Barriers to Commoditization

• Interface usability is limited
– Complicated internal representations

• Decomposition into subtasks is hard

– Module and methods interdependent
– Information loss

VeriWeb: a web IDE for writing verified
specifications of existing code

• More cost- and time-
effective than a
traditional interface

• Enables collaborative
verification via
decomposition

VeriWeb Workflow

Skilled
Developer

Writes
Feature

Verifiable
Specification

ESC/Java2

VeriWeb Interface

Contract Entry

Warnings &
Specifications

Source Code

VeriWeb Outputs a Partial Specification

1. Client code does not throw unexpected
exceptions

2. Properties (optionally) specified by the
feature developer

3. Plus other necessary properties for #1 and #2

Talk Outline

1. VeriWeb design principles
– Active guidance
– Explanations in context

2. Toward crowdsourcing: lessons learned

3. Challenges and open questions

Principle #1: Active Guidance

Prevent mistakes Suggest actions

Caveat: being too restrictive
annoys users

Caveat: too many suggestions
overwhelm users

Principle #2: Explanations in Context

Give concrete feedback about what the tool
knows, and doesn’t know

Concrete Counter-Examples Contract Inlining

Caveat: irrelevant feedback
overwhelms users

Caveat: still must teach users
how to use feedback

Talk Outline

1. VeriWeb design principles
– Active guidance
– Explanations in context

2. Paying for verification: lessons learned

3. Challenges and open questions

Research Questions

1. What is the cost (time and money) of
program verification?

2. Can ad-hoc labor be used to crowdsource
program verification?

3. How does decomposition and
communication overhead affect the
performance of collaborative verification?

What is the Cost of Verification?
• Hired programmers on vWorker

– Workers bid hourly wage
– Accepted 18 of 22 bids ($6 - $22 per hour)
– No correlation between experience (skill) and wage

• Two treatments:

– ESC/Java2 Eclipse Plugin (Control)
– VeriWeb

• Learning effect control:

– Tutorial writing a verified specification for a toy program
– Comprehension quiz

Method Dependency Graph

Stack ADT

Client

VeriWeb Workers Finish Faster

0

5

10

15

20

25

30

35

0 60 120 180 240 300 360 420 480 540 600 660 720
Di

st
an

ce
 to

 n
ea

re
st

 so
lu

tio
n

Elapsed Time (min.)

VeriWeb

0

5

10

15

20

25

30

35

0 60 120 180 240 300 360 420 480 540 600 660 720

Di
st

an
ce

 to
 n

ea
re

st
 so

lu
tio

n

Elapsed Time (min.)

Eclipse Plugin

VeriWeb Workers Cost Less

0

5

10

15

20

25

30

35

0 50 100 150
Di

st
an

ce
 to

 n
ea

re
st

 so
lu

tio
n

Money Spent ($)

VeriWeb

0

5

10

15

20

25

30

35

0 50 100 150

Di
st

an
ce

 to
 n

ea
re

st
 so

lu
tio

n

Money Spent ($)

Eclipse Plugin

Counter-Examples Are Important

• All workers tried to introduce false properties

• Slowest Eclipse worker had most trouble

• Lifetime of false properties skewed:

– Median: 2 min.
– Mean lifetime: 34 min.

Can VeriWeb Use Crowdsourcing?

• Mechanical Turk: worker paid per small task

• Paid 15¢ - 30¢ per subproblem, determined
randomly for each worker upfront

No. Low response and high reserve wage

Lessons and Challenges

• Additional compensation for learning to complete
the tasks

• Chicken and egg problem: need many verification
tasks to make learning attractive

Talk Outline

1. VeriWeb design principles
– Active guidance
– Explanations in context

2. Paying for verification: lessons learned

3. Challenges and open questions

Other Approaches

Approach
• UW: Players solve puzzles to

infer qualified types

• Berkeley: Workers find
visual patterns in traces for
verification

• HKUST: “Players” chain
together method calls for
test generation

Must show benefit over
automation of human
strategy

Cannot not claim labor
supply from small trials

Open Design and Research Questions

• What latency is acceptable?

• Is abstraction required to protect intellectual
property?

• How do you control worker error?

Rethinking the Economics of Software Engineering
(FoSER 2010)

VeriWeb: a web IDE for writing verified
specifications of existing code

• More cost- and time-
effective than a
traditional interface

• Enables collaborative
verification via
decomposition

Study Materials: http://homes.cs.washington.edu/~tws/veriweb/

	Toward Commoditized Verification
	Verification: does the program fulfill the specified contract?
	Verifying a Specification
	Verification isn’t Cost-Effective
	Worker Skill Spectrum
	Barriers to Commoditization
	VeriWeb: a web IDE for writing verified specifications of existing code
	VeriWeb Workflow
	VeriWeb Interface
	Slide Number 10
	VeriWeb Outputs a Partial Specification
	Talk Outline
	Principle #1: Active Guidance
	Principle #2: Explanations in Context
	Talk Outline
	Research Questions
	What is the Cost of Verification?
	Method Dependency Graph
	VeriWeb Workers Finish Faster
	VeriWeb Workers Cost Less
	Counter-Examples Are Important
	Can VeriWeb Use Crowdsourcing?
	Lessons and Challenges
	Talk Outline
	Other Approaches
	Open Design and Research Questions
	VeriWeb: a web IDE for writing verified specifications of existing code

