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Verification: does the program fulfill
the specified contract?

class Queue{

/**

* @ requires x != null;

* @ ensures currentSize == \old(currentSize+l);
* @ exsures (QueueFullException) ...

*/

public void enqueue(Object x)
throws QueueFul IException

1
}



Verifying a Specification




Verification isn’t Cost-Effective

* Evidence: only used for safety critical systems

e Essential complexity

— Precision and completeness

Labor intensive
e Accidental complexity & Expert users

— Tool design tradeoffs
— Bad interface design
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Barriers to Commoditization

* Interface usability is limited

— Complicated internal representations

e Decomposition into subtasks is hard
— Module and methods interdependent

— Information loss



VeriWeb: a web IDE for writing verified
specifications of existing code

e More cost- and time-
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VeriWeb Workflow




VeriWeb Interface
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Condition (drag completed conditions here):
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Instructions:

Drag condition fragments from the palette to the condition box to form conditions that
MUST be true for the function to not throw an unexpected runtime exception. A
submit button will appear when the condition in the box is complete.

Some fragments have yellow holes that must be filled with other fragments. To fill a
hole, just drop a fragment onto it; you can later remove the fragment by clicking and
dragging the fragment. NOTE: You can only fill fragment holes in the scratch pad and
condition box.

You are done when there are no more errors detected; you can view ermors by hovering
your mouse over code that is underlined in red.

You can view a method or type's documentation by hovering your mouse over code
that is underlined in blue.

Additionally, you can toggle the inline specifications for a method by clicking methods

that are shown as huttunsi. &

ik
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* Construct the stack.
* Eparam capacity the capacity.
*
public Stackar( int capacity )
{
theArray = new Object| capacity 1:
topOfStack = =1
/*8 set theArray.owner = this; */




VeriWeb Outputs a Partial Specification

1. Client code does not throw unexpected
exceptions

2. Properties (optionally) specified by the
feature developer

3. Plus other necessary properties for #1 and #2



Talk Outline

1. VeriWeb design principles
— Active guidance

— Explanations in context

2. Toward crowdsourcing: lessons learned

3. Challenges and open questions



Principle #1: Active Guidance

Prevent mistakes Suggest actions

Condition (drag completed conditions here):

X {\result == false) == (this.currentSize == 1)
h 4 {%result == false) == (this.thefArray[this.back] != null)
Scratch Pad (holds unlimited fragments):
h 4 {%result == false) == (this.thefArray[this.front] != null)
Caveat: being too restrictive % | (\result = true) == (this.currentSize == 0)
u 'x (this.currentSize == @) === (this.front =
annoyS users this.theArray.length - 1)
orall 1nt 1; ;| topofstack | == | theArray. length | - | 1
.......... k
Logic  Comparison | Variables Math Other Caveat: too many suggestions
] this. thearray overwhelm users
this.theArray | [ iil this.theArray.length
this, top0fstack




Principle #2: Explanations in Context

Give concrete feedback about what the tool
knows, and doesn’t know

Concrete Counter-Examples Contract Inlining
Name Before Call After Call ?ublic Object top( )
4 i[] this theArray ref@6613606 ref@6613606 Lo pl Preconait ions

P rl-] ThiS.ThEJ"-".FFE",'[..] |'E'I'Ig1:|'l 2 Hength 2 TST: (\result == true) (this. topOfsStack

overwhelms users

Caveat: still must teach users
how to use feedback Caveat: irrelevant feedback



Talk Outline

2. Paying for verification: lessons learned

3. Challenges and open questions



Research Questions

1. What is the cost (time and money) of
program verification?

2. Can ad-hoc labor be used to crowdsource
program verification?

3. How does decomposition and
communication overhead affect the
performance of collaborative verification?



What is the Cost of Verification?

e Hired programmers on vWorker

— Workers bid hourly wage
— Accepted 18 of 22 bids (S6 - $22 per hour)
— No correlation between experience (skill) and wage

e Two treatments:
— ESC/Java2 Eclipse Plugin (Control)
— VeriWeb

e Learning effect control:
— Tutorial writing a verified specification for a toy program

— Comprehension quiz



Method Dependency Graph




Distance to nearest solution

VeriWeb Workers Finish Faster

Eclipse Plugin VeriWeb
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Distance to nearest solution

VeriWeb Workers Cost Less
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Counter-Examples Are Important

e All workers tried to introduce false properties
e Slowest Eclipse worker had most trouble

e Lifetime of false properties skewed:
— Median: 2 min.
— Mean lifetime: 34 min.



Can VeriWeb Use Crowdsourcing?

e Mechanical Turk: worker paid per small task

e Paid 15¢ - 30¢ per subproblem, determined
randomly for each worker upfront

No. Low response and high reserve wage



Lessons and Challenges

* Additional compensation for learning to complete
the tasks

e Chicken and egg problem: need many verification
tasks to make learning attractive



Talk Outline

3. Challenges and open questions



Other Approaches

Approach

UW: Players solve puzzles to
infer qualified types

Berkeley: Workers find
visual patterns in traces for
verification

HKUST: “Players” chain
together method calls for
test generation

J |

Must show benefit over
automation of human
strategy

Cannot not claim labor
supply from small trials




Open Design and Research Questions

e What latency is acceptable?

* |sabstraction required to protect intellectual
property?

e How do you control worker error?

Rethinking the Economics of Software Engineering
(FOSER 2010)



VeriWeb: a web IDE for writing verified
specifications of existing code

e More cost- and time-
effective than a
traditional interface

e Enables collaborative i
verificationvia o o
decomposition

Study Materials: http://homes.cs.washington.edu/~tws/veriweb/
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