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Automated verification can ensure that a web page satisfies accessibility, usability, and design properties re-
gardless of the end user’s device, preferences, and assistive technologies. However, state-of-the-art verification
tools for layout properties do not scale to large pages because they rely on whole-page analyses and must
reason about the entire page using the complex semantics of the browser layout algorithm.

This paper introduces and formalizes modular layout proofs. A modular layout proof splits a monolithic
verification problem into smaller verification problems, one for each component of a web page. Each component

specification can use rely/guarantee-style preconditions to make it verifiable independently of the rest of the
page and enabling reuse across multiple pages. Modular layout proofs scale verification to pages an order of
magnitude larger than those supported by previous approaches.

We prototyped these techniques in a new proof assistant, Troika. In Troika, a proof author partitions a
page into components and writes specifications for them. Troika then verifies the specifications, and uses
those specifications to verify whole-page properties. Troika also enables the proof author to verify different
component specifications with different verification tools, leveraging the strengths of each. In a case study, we
use Troika to verify a large web page and demonstrate a speed-up of 13ś1469× over existing tools, taking
verification time from hours to seconds. We develop a systematic approach to writing Troika proofs and
demonstrate it on 8 proofs of properties from prior work to show that modular layout proofs are short, easy
to write, and provide benefits over existing tools.
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1 INTRODUCTION

Layout bugs can make pages unusable for the millions of users with vision disabilities [National
Federation for the Blind 2016] and the billions of users on mobile devices [ITU 2015]. Finding these
bugs, or ensuring their absence, is difficult due to the variety of browsers, operating systems, and
devices, in addition to user preferences for fonts and colors [Hallé et al. 2015; Mankoff et al. 2005].
Exhaustively testing pages across the infinitely-many possible combinations of these parameters is
impossible.
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Prior work has begun addressing this challenge by formalizing web layout properties in a
logic [Hallé et al. 2015] and developing tools that automatically search for violations of these
formal layout properties, either by heuristically analyzing web page source code [Walsh et al.
2017] or using a Satisfiability Modulo Theory (SMT) solver [Panchekha et al. 2018]. Researchers
have demonstrated both approaches on small web pages for important layout properties, such
as ensuring that web page controls remain accessible even as users increase text size to improve
readability.

Current monolithic analyses have several disadvantages. They scale poorly to large pages with
many elements and cannot parallelize verification of a webpage. Even for the modestly-sized pages
they can handle, current analyses are unnecessarily slow because every run requires re-checking
the entire page from scratch, even for small changes like typo fixes. Furthermore, the diversity
of tools and approaches, with varying formalizations, soundness, and flexibility, suggests that no
single tool is best for verifying every web page.

In other domains, modular verification enables scaling [Appel 2016; Chaki et al. 2003; Dahlweid
et al. 2009; Jung et al. 2015] by using abstraction to break the verification problem into smaller
sub-problems. But previous modularity techniques do not apply directly to web page layout, because
web pages lack clear computational units like functions that define module boundaries. Web page
layout is a constraint problem: the layout of each component depends on, and potentially affects,
all other components on the pageÐboth those before and after it. The shared łstatež through
which web page elements interact is the geometry of the elements’ graphical layout. In short, the
scalability of existing techniques is limited because they do not summarize component behavior in a
composable and independently-checkable manner that supports modular reasoning, and techniques
for introducing modularity from other domains do not apply directly to web page layout.
To scale layout verification to larger pages and sites, we introduce modular layout proofs. A

modular layout proof partitions a web page into components: contiguous fragments of the page’s
HTML structure paired with symbolic summaries of its CSS style. Components are the units of
web page modularity. A component specification summarizes a component’s possible layouts. These
summaries can be used to prove whole-page properties without unscalable reasoning about the
browser layout algorithm. Components may affect each other’s layout; component specifications
can constrain such interactions using rely/guarantee-style preconditions [Stark 1985], allowing a
component specification to be verified independently of the rest of the page.
Verifying large pages in small pieces has three benefits. (1) Unscalable verification techniques

can be used on each small piece in parallel, enabling verification of pages that are too large to
verify monolithically. (2) Verified components can be cached and reused without re-verification. (3)
Different verification tools, such as model checkers and SMT-based verifiers, can verify different
component specifications. To capitalize on these benefits, this paper introduces scalable algorithms
to check the correctness of modular layout proofs for pages an order of magnitude larger than
previous approaches.
We implemented our approach to modular web page verification in a new proof assistant,

named Troika. In Troika, the proof author decomposes a web page into components and the
layout property into component specifications. Troika checks that the decomposition is valid
(using a pure-logic, layout-agnostic algorithm) and verifies the component specifications (using
any of multiple verification tools). This allows Troika to scale to larger pages than previous
approaches: the layout-conscious verification tools are restricted to small components while whole-
page reasoning is scalably layout-agnostic. Troika also allows proof authors to verify different
component specifications using different tools (including a whole-page SMT-based verifier, a new
specialized verifier for component specifications, a model checker, and a random testing tool),
applying each tool where it is most useful and smoothly transitioning from testing to verification.
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We performed a case study with Troika on the łJoel on Softwarež blog [Spolsky 2018], and
proved two key accessibility properties; Troika checks the proof 13ś1469× faster than existing
tools. The proof is short (36 lines) and reusable on websites with similar style; Troika’s support for
multiple verification tools was critical. Troika caches and reuses component verifications across
modifications to a single page and across multiple pages (e.g., different blog posts) on one site. We
also describe a systematic approach to proof construction enabled by Troika, demonstrate it on
8 proofs from prior work, and show that Troika is 1.9ś67× faster than existing tools.

In summary, this paper:

(1) Introduces components, the units of web page layout modularity, and defines modular layout

proofs, which prove web page properties from component specifications (Section 4).
(2) Describes an algorithm to verify component specifications independently of the rest of the

page (Section 5).
(3) Presents Troika, a proof assistant for web page layout verification, which integrates multiple

tools for verifying component specifications (Section 6).
(4) Demonstrates that Troika scales well to pages 11× larger than prior work. Troika verifies the

page in 30 seconds, while existing tools take as much as 19 hours, for a speed-up of 13ś1469×
(Section 7).

(5) Demonstrates a systematic approach to modular layout proof construction with 8 Troika
proofs for verification problems from prior work (Section 8).

2 BACKGROUND

This paper builds on prior efforts to formalize browser layout and to specify and verify properties
of web page layouts.

2.1 HTML, CSS, and Browser Layout

To show web pages to end users, web browsers interpret HTML and CSS source code. HTML
defines the content of a web page, while CSS defines its appearance. Browsers also consult browser
parameters such as browser window width and height, end-user font preferences, and browser-
and OS-specific values like the size and shape of buttons, input fields, and scroll bars. The browser
layout algorithm turns HTML, CSS, and browser parameters into a layout, which is a tree of boxes
annotated with position and size information. Generally, the HTML tree and layout tree have
similar structure, but a single element can produce zero boxes (for invisible elements) or multiple
boxes (for list bullets).

HTML. An HTML document represents a tree, whose nodes are elements or text. Each HTML
element has a tag name that defines its semantic role (such as łpž for paragraphs), along with other
attributes. Some HTML elements, like img, are rendered specially, but most elements’ appearance
is driven entirely by the CSS properties assigned to them. For example, browsers usually render the
h1 element, a top-level heading, using a large bold font. Perhaps surprisingly, this is not inherent
to the h1 element; it is merely a convention established by page- and browser-defined CSS files.

CSS. A CSS stylesheet contains a list of rules. Each rule is guarded by a selector, which restricts
the rule to apply only to specific elements, such as only to paragraphs that are children of the
article text. Some selectors also include media queries, which turn rules on or off based on browser
parameters like screen size. The body of a rule is a set of declarationsÐpairs of properties and
values, written ł⟨property⟩ : ⟨value⟩ž. For every possible property, a browser gathers and ranks
all the rules that set that property, and every element gets its value for that property from the
highest-ranked rule that applies to it.
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JavaScript. Interactive web pages also contain JavaScript code. JavaScript does not directly affect
layout; it only modifies the run-time representation of the page HTML (by modifying the Document
Object Model) and CSS (by modifying inline styles). The browser then uses the layout algorithm to
display the modified page. This paper focuses on proving properties of static HTML and CSS. Future
research could extend it to handle JavaScript by integrating existing work in symbolic execution of
JavaScript [Fragoso Santos et al. 2019] and modeling of DOM manipulations [Hague et al. 2014].

2.2 Formalizing Browser Rendering

The browser layout algorithm is partially-specified in English-language web standards documents.
Several efforts have partially formalized the browser layout algorithm [Meyerovich and Bodik 2010;
Panchekha et al. 2018; Panchekha and Torlak 2016]. The algorithm is underspecified, so a page
generally has multiple correct layouts. Different formalizations support different CSS properties, and
none formalizes CSS in full. The most extensive formalization, part of the VizAssert tool [Panchekha
et al. 2018], has been validated against the Firefox browser to ensure that it describes all possible
layouts of a page. As part of its evaluation, the authors demonstrated it supports enough of the
CSS specification to accurately reason about 62 of a suite of 100 professionally-designed web
pages. Anecdotally, VizAssert supports most core CSS features, such as block flow, line layout,
floating elements. Among rarer features, VizAssert supports some (shrink-to-fit, positioned layout),
but lacks others (:before/:after, table layout, flex-box, right-to-left text). Some missing features,
such as right-to-left text or the transform property in Section 7, could likely be straightforwardly
formalized. However, some features, such as table layout or flex box, would involve significant
effort to formalize, judging by the difficulty of originally implementing these features in existing
web browsers. Given that new features are continuously added to CSS, full formalization in the
near future is unlikely.

2.3 Specifying Layout Properties

Sound formalizations of the browser layout algorithm raise the tantalizing possibility of preventing
layout-based bugs [Hallé et al. 2015] by verifying layout properties that specify which layouts are
acceptable and which are not. Verifying a layout property guarantees that all layouts of the page,
across a range of layout parameters like browser size, satisfy the property. Several logics for layout
properties exist [Hallé et al. 2015].

This paper uses visual logic (Figure 1) [Panchekha et al. 2018]. Logical properties in visual logic
are universally quantified over the boxes in the render tree and can use linear arithmetic to express
geometric constraints on the size and position of these boxes and their children, siblings, and
ancestors. For example, this formula is the running example in this paper:

∀b,b ∈ $(a) =⇒ b .top ≥ 0 ∧ b .left ≥ 0

It quantifies over all boxes b which match the selector aÐin other words, all boxes that are linksÐ
and asserts that each link is located below and to the right of the page origin; in other words, it
asserts that all links are within the scrollable area of the page. (Note that this property does not
restrict boxes from being past the right or bottom edge of the screen, users can see such boxes by
scrolling.) Many other usability, accessibility, and interactivity properties have also been formalized
in visual logic [Panchekha et al. 2018]. Visual logic can be compiled to the decidable theory of
quantifier-free linear real arithmetic, making it appropriate for SMT-based verification.

3 OVERVIEW

Troika enables web developers to verify web page layout properties. The developer partitions a web
page into components, writing a specification for the behavior of each component. Each component
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⟨assertion⟩ ::= ∀b1,b2, . . . : ⟨cond⟩

⟨cond⟩ ::= ⟨cond⟩ ∧ ⟨cond⟩ | ¬ ⟨cond⟩ | ⟨cond⟩ ∨ ⟨cond⟩

| ⟨real⟩ = ⟨real⟩ | ⟨real⟩ < ⟨real⟩ | ⟨real⟩ > ⟨real⟩

| ⟨box⟩ = ⟨box⟩ | ⟨box⟩.type = ⟨type⟩ | ⟨box⟩.whitespace | ⟨box⟩ ∈ $(⟨selector⟩)

⟨real⟩ ::= R | ⟨real⟩ + ⟨real⟩ | ⟨real⟩ − ⟨real⟩ | R × ⟨real⟩ | ⟨box⟩.⟨dir⟩[⟨edge⟩]

⟨box⟩ ::= bi | root | null | ⟨box⟩.ancestor(⟨cond*⟩)
| ⟨box⟩.parent | ⟨box⟩.first-child | ⟨box⟩.last-child | ⟨box⟩.next | ⟨box⟩.prev

Fig. 1. The grammar of visual logic [Panchekha et al. 2018], an assertion language for formalizing visual
layout properties. For brevity, color predicates and keyword definitions are omitted.

specification can be verified independently, using a mix of different verification tools. Troika then
proves the layout properties from those specifications, without needing to reason about the web
page layout algorithm.
This section demonstrates this workflow by stepping through a hypothetical interactive verifi-

cation session in the Troika proof assistant. The verification session aims to prove that all links
are in a scrolling-accessible location on the screen1 for a yoga studio web page. Figure 2 shows a
screenshot of the page and the complete proof.

3.1 Writing a Modular Layout Proof

A modular layout proof of a property Q for a web page p consists of two parts: a partitioning
of the page p into components c ∈ C, which are contiguous regions of the HTML tree with CSS
style information; and per-component specifications Pc , which summarize relevant facts about the
possible layouts of that component (and thus abstract away the intricacies of the browser layout
algorithm). The modular layout proof establishesQ when each specification Pc is true of all possible
layouts of the component c on the page p and when the conjunction of the specifications Pc imply
the whole-page property Q , a condition called well-formedness:

specifications
︷  ︸︸  ︷

each Pc and

well-formedness
︷               ︸︸               ︷
(
∧

c

Pc

)

=⇒ Q

Thekey innovation ofmodular layout proofs is thatwell-formednessmust be true layout-

agnostically, as amatter of pure logic, independent of the details of web page layout. This
ensures that well-formedness, a whole-page property, can be efficiently checked. It also allows
each component specification to be established by different methods for reasoning about web page
layout, even if those methods model web page layout differently. Figure 3 illustrates the overall
workflow.

For the yoga studio page, the property Q quantifies over all elements on the page and asserts
that elements represented by <a> tags must be to the right and below the page origin. The proof
author formally states Q in visual logic (Section 2.3):

1 definition scrollable(b) = b .left ≥ 0 ∧ b .top ≥ 0
2 theorem links-scrollable = ∀b,b ∈ $(a) =⇒ scrollable(b)

1For a browser window 800ś1920 pixels wide, and any default font size between 16 and 32 pixels.
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1 define scrollable(b) = b .left ≥ 0 ∧ b .top ≥ 0
2 theorem links-scrollable = ∀b,b ∈ $(a) =⇒ scrollable(b)
3 page yoga = load yoga/index.htmlwith

4 browser.width ∈ [800, 1920]
5 browser.height ∈ [600, 1280]
6 font.size ∈ [16, 32]
7 proof of links-scrollable for yoga

# Subdivide the page into components

8 component head = $(#header)
9 component body = $(#body)
10 component foot = $(#footer)

# Component specifications for each component

11 for all c ∈ C assert ∀b, scrollable(c) ∧ b ∈ $(a) =⇒ scrollable(b) by component-smt
12 for root assert scrollable(head) ∧ scrollable(body) ∧ scrollable(foot) by component-smt

# Preconditions for the footer width
13 for foot require foot.width ≥ 200
14 for root assert foot.width ≥ 200 by component-smt

# Preconditions for floating boxes
15 for foot require no-floats-enter(foot)
16 for all c ∈ C assert no-floats-enter(c) =⇒ no-floats-exit(c) by component-smt
17 for root assert no-floats-enter(root) by component-smt
18 for root assert float-flow-in(root, header) by component-smt
19 for root assert float-flow-across(header, body, footer) by component-smt
20 for all c ∈ C assert non-negative-margins(c) by component-smt

21 qed

Fig. 2. A complete proof that all links on the yoga page are in a scrolling-accessible location. Section 6.1
describes the semantics of the tactic language. The inset screenshot shows the yoga page and its decomposition
into components (white-outlined rectangles).

page

P2(header)

```

P4(footer)

P3(body)

P1(root)

header

```

footer

body

root

Q(page)

(4) Partition 

Page
Check 

Specifications

(5) Check 

Proof

(6)

(2) Specify 

Decomposition

Write 

Specifications

(3) Specify 

Theorem

(1)User:

Troika:

Fig. 3. The Troika workflow. The proof author specifies a theorem Q to prove about a page, describes a
decomposition of that page into components (here, the root, header, body, and footer), andwrites specifications
Pc for each component. Troika uses the decomposition to partition the page into components c , verifies each
component’s specification using various verification tools, and checks that Q follows from the Pc .
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(The line numbers on the code examples in this section match the line numbers in Figure 2.)
With the layout property stated (Step 1 in Figure 3), the proof author can now develop a modular

layout proof for it.

Defining Components. The first part of a modular layout proof is a decomposition of the web
page into components (Step 2 in Figure 3). The proof author chooses components by considering
the structure and size of the page, balancing the competing concerns of human effort (writing
fewer component specifications) and solver effort (reasoning about smaller components). For the
yoga page, visual inspection suggests subdividing the page into a header, body, and footer (see the
decomposition in Figure 2). The yoga page author already gave each of these components a CSS
selector, which is standard practice.

8 component head = $(#header)
9 component body = $(#body)
10 component foot = $(#footer)

The root of the page, which the header, body, and footer fit into, also forms a component; in Troika
this component is implicit and is named root.

Defining Component Specifications. With the page decomposed into components, the second part
of a modular layout proof assigns specifications to each component such that the overall theorem
Q is implied by their conjunction (Step 3 in Figure 3). A Troika specification is expressed using the
assert tactic,2 written łfor all c ∈ S assert Pc byT ž, where S describes a set of components, Pc is a
component specification, andT names the tool Troika should use to verify the assertion. A starting
point for the component specifications in this page is to require the links in each component be
scrollable:

11 for all c ∈ C assert ∀b,b ∈ $(a) =⇒ scrollable(b) by admit

This assertion ranges over the set C of all components. The ładmitž tool assumes that the specifi-
cation holds without checking it. To complete the proof, we will later eliminate all uses of admit.
(The line number is struck out because this line of code is not present in the final proof.)

Since every link is in some component, the component specifications assumed above imply
the whole-page property. Furthermore, this conclusion does not depend on the details of browser
layout; it is instead a matter of pure logic. Troika verifies the whole-page property in 0.54 seconds
(Step 6 in Figure 3).

3.2 Verifying Component Specifications

In amodular layout proof, each component specificationmay be verified using a different verification
tool (Step 5 in Figure 3). These tools must ensure that every component specification Pc is true of
all possible layouts of c on the web page p. Troika provides four tools that can check component
specifications: łrandom-testž, łmodel-checkž, łwhole-pagež, and łcomponent-smtž.

Different components of a web page can affect each other’s layout. The random-test,model-check,
and whole-page tools handle these dependencies by reasoning about the full web page in order to
verify a specification for just a part of that page. This approach is sound but unscalable, so modular
proofs commonly employ an alternative approach: constraining the effect of one component on
another with rely/guarantee-style preconditions. We call a component specification independently-

true if it constrains interactions with other components using preconditions sufficiently for the

2Troika provides a language of commands for updating proof state (detailed in Section 6), similar to tactic languages in
other proof assistants.
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page

page

footerlink

header

link Fig. 4. Two possible problems that the links-scrollable
proof guards against using rely/guarantee-style precon-
ditions. (1) If the header is placed off-screen, its links
will also be off-screen. (2) If the footer is too narrow, its
links will extend beyond its left edge.

component to be verifiable independently of the rest of the page. component-smt is an efficient
tool for checking such specifications.
To develop the preconditions needed by independently-true component specifications, a proof

author writes assert tactics that use the component-smt tool. If the component specification is
not independently-true, component-smt outputs a counterexample: a web page that contains the
component and in which the component violates the specification. The proof author then weakens
the specification by adding a precondition that rules out the counterexample. Each precondition
must be established by an assertion in some other component. This process continues until the
proof is verified.

Generic Specifications. As an example, suppose that a proof author wishes to make the specifica-
tion ∀b,b ∈ $(a) =⇒ scrollable(b), which was admitted above, independently-true in the header.
The proof author would start by changing łby admitž to łby componentž:

11 for all c ∈ C assert ∀b,b ∈ $(a) =⇒ scrollable(b) by component

This specification is not independently-true, so Troika produces a counterexample, in which the
header itself is placed offscreen (see Figure 4, left). To prevent this counterexample, the proof author
would add the precondition scrollable(head):

11 for head assert ∀b, scrollable(head) ∧ b ∈ $(a) =⇒ scrollable(b) by component-smt

To ensure that the overall proof is still well-formed, this precondition must also be asserted in some
other component:

12 for root assert scrollable(head) by admit

Of course, this ładmitžed assertion must later be proven using a sound component verification
tool. Thanks to this precondition, the heading can be verified by the component-smt tool, without
reasoning about the rest of the page.
The scrollable precondition reflects a common web design convention: elements are generally

located inside their ancestors. The new component specification establishes the proof’s strategy:
prove that each component is scrollable (in the root component) and use that to prove that each
link is scrollable. Since it captures a general property of web design, we call such a specification
generic.

Page-Specific Preconditions. Other preconditions reflect the idiosyncrasies of a particular web
page. Consider the yoga page’s footer. If the footer is too narrow, links within it could be outside
the scrollable area of the page even if the footer itself is not: see Figure 4, right. The footer
thus requires a precondition establishing a minimum width; minimum and maximum widths are
common preconditions (Section 8). Such page-specific preconditions could be added to the footer’s
component specification like above, but to keep the proof organized, Troika also provides a łrequirež
tactic that puts each precondition on its own line. This makes it possible to keep each precondition
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close to the assertion that establishes it:3

13 for foot require foot.width ≥ 200
14 for root assert foot.width ≥ 200 by admit

A proof author can continue to add preconditions to make each component specification
independently-true. Figure 2 shows the proof after several more iterations of this process. The proof
has floating layout preconditions (described in Section 5.4) for the footer and root, and establishes
them using floating layout and non-negative margins assertions on every component. Thanks to
these preconditions, every component specification is independently-true and can be established
using the component-smt tool.

4 MODULAR LAYOUT PROOFS

A modular layout proof relies on a decomposition of a web page layout into components, whose
layout can be separately specified and independently verified. However, unlike prior domains where
modularity has been used to scale verification, web pages have no natural computational units such
as functions or modules. Troika uses a novel definition of a web page component as a subtrees of
the web page HTML and a symbolic computed style summarizing its CSS. This section defines web
page components and then introduces modular layout proofs, in which component specifications

constrain the layout of components, and provides an algorithm for checking that a modular layout
proof is well-formed. Section 5 describes how component specifications are checked.

4.1 Finding Modularity in Web Pages

Troika uses a partitioning of the HTML tree into subtrees with holes4 as its basis for dividing a page
into components. Components do not overlap, so every element is in exactly one component. Unlike
the HTML tree, a page’s CSS rules cannot be partitioned and split between its various components:
each CSS rule can apply to multiple elements, including elements in multiple components. Moreover,
determining which CSS rules apply to which element requires the full page HTML: it cannot be
determined from a component alone. So, a component also includes the symbolic computed style
that applies to each element, in order to summarize the CSS rules that apply to it.
The computed style [W3C 2011] for an element gives a value for each of its CSS properties.

Browser implementations derive computed styles from the page’s CSS, and then use that computed
style (rather than the original CSS) when laying out the element. Troika does the same, and each
component includes its elements’ computed styles. Since access to browser parameters is necessary
for deriving computed styles, Troika includes a symbolic computed style engine. That engine
produces, for each element, a list of possible computed values with symbolic guards for each, where
each guard is a set of linear inequalities over the browser parameters that define when to use that
computed value. These guards are used by the solver to define the element’s computed style in
terms of browser parameters.

Definition 4.1. A component of a web page is a subtree with holes of the page’s HTML and

symbolic computed style for each element in that subtree. A symbolic computed style is a function

from browser parameters to a computed style.

Definition 4.2. A decomposition of a web page into components is a set of components that form

a partitioning of that page.

3The minimum width of 200 pixels was determined by inspecting the page source. Any value from 200 to 800 would lead to
a correct proof, but the smaller value allows reuse in more contexts.
4That is, a subtree of the HTML tree, optionally with some subtrees replaced by holes.
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In Troika, a proof author specifies a decomposition by giving a CSS selector for the root element
of each component. Each element is placed in the component of its closest selected ancestor. This
scheme guarantees that components always form a partitioning of the HTML tree. Assigning a
component specification Pc to each component yields a modular layout proof:

Definition 4.3. Amodular layout proof of a property Q for a web page p consists of a decom-

position C of p and a component specification Pc for each component c ∈ C. A modular layout proof

of Q is well-formed when (
∧

c Pc ) =⇒ Q .

Both the web page property Q and the component specifications Pc are given in visual logic (see
Section 2). To preserve modularity, a component specification quantifies only over the elements
within that component. Section 5 describes component specifications further and defines when a
component specification is true.

4.2 Checking Validity for Modular Proofs

A modular layout proof is true when each component specification Pc is true and when the proof
is well-formed. This section describes an algorithm for establishing that a modular layout proof
is well-formed; Section 5 describes how component specifications are checked to ensure that the
overall proof is true.
Unlike verifying component specifications, checking the well-formedness of a modular lay-

out proof requires whole-page reasoning. It is thus essential that modular layout proofs avoid
expensive reasoning about the browser layout algorithm. In a modular layout proof, the compo-
nent specifications Pc already summarize the layout of each component. So, well-formedness can
be checked layout-agnostically; that is, no formalization of the browser layout algorithm is

used to check the well-formedness of modular layout proofs. (This contrasts with verifying
component specifications, with uses a model of the browser layout algorithm and is thus layout-
conscious.) Avoiding the need to reason about the entire page using the complex browser layout
algorithm enables modular proofs to scale to much larger web pages than monolithic reasoning. It
makes it possible to combine multiple verification tools, each of which formalizes browser layout
in its own way.

Checking the well-formedness of a modular layout proof means proving a visual logic implication.
Visual logic compiles to quantifier-free linear real arithmetic, so a solver such as Z3 [De Moura
and Bjùrner 2008] can be used to decide the truth of this implication. The challenge is finding an
efficiently-solvable query equivalent to the implication to be tested. This query must express: (1)
the structure of the page; (2) the component specifications Pc ; and (3) the web page property Q ,
negated. If the query is satisfiable, there is a layout where the Pc hold but Q does not; otherwise,
the Pc imply Q .

The main data type in the query is the box, which represents the size and position of an element
on the page.5 A box consists of an identifier and 28 real-number variables for its size and position.6

The query declares two kinds of box variables: a łknown boxž for each box on the page and an
łunknown boxž for each free variable inQ ; each unknown box is constrained to be one of the known
boxes. Visual logic expressions such as b .top[margin] are compiled to formulas over these box
variables: expressions in Pc over the known boxes, and expressions in Q over the unknown boxes.
Visual logic expressions can also refer to the parents, children, or siblings of a box. To support
this, the query declares łpointer functionsž from boxes to boxes and defines their values for the
known boxes; these pointer functions define the structure of the page in the query. A selector test

5Some elements have multiple boxes (e.g., numbered lists), and some elements have no boxes (e.g., invisible elements).
6In total, 16 real numbers correspond to the sizes and positions of each of the margin, border, padding, and content areas of
each box; plus, 12 real numbers represent its foreground and background colors, before and after gamma correction.
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łb ∈ $(s)ž in visual logic is compiled to a disjunction łb = box1 ∨ b = box2 ∨ · · · ž, where each boxi
is a known box that matches the selector.

The resulting queries are efficiently solvable (see results in Section 8). Because well-formedness
is layout-agnostic, the well-formedness of a modular layout proof is usually faster to check than its
component specifications.

5 COMPONENT SPECIFICATIONS

Since a modular layout proof does not assume a particular formalization of the browser layout
algorithm, different component specifications can be verified with different tools, including tools
that formalize browser layout differently. This enables using different tools for different parts of
the page as well as using different tools at different stages of the proof development process. This
section describes four component specification verification tools and defines independently-true
component specifications, which are true independently of the rest of the page and can thus be
verified more efficiently.

5.1 True and Independently-True Component Specifications

A component specification abstracts over the layout of the elements in that component. Its pre-
conditions and post-conditions state properties of the component’s elements’ layout relevant to
proving a web page property. For a modular layout proof to be true, the specifications for each of
its components must be true:

Definition 5.1. A component specification Pc of a component c on a page p is true if it is true of

the elements in c for all possible layouts of the overall page p.

However, an element’s layout depends on its context: the layout of the other components in the
page. For example, the width of an element often depends on the width of its parent, and can even
depend on subsequent HTML elements (for example, in the case of shrink-to-fit width). Likewise,
the height of an element often depends on the heights of its children. These relationships between
elements may span multiple components; as a result, to test whether a component specification is
true, one must reason about the whole web page. But such whole-page reasoning scales poorly to
larger web pages, with the time to prove a component specification growing with the size of the
web page the component is found in.

This motivates the identification of a stronger notion of truth which can be established by
considering a component in isolation. This stronger notion is inspired by the insight that a

component specification that can be verified without consulting the rest of the web page

must be true for all web pages that contain the component. Such component specifications
are called independently-true:

Definition 5.2. A component specification Pc is independently-true of a component c on a page

p if it is true on all web pages p ′ that contain c’s HTML subtree, and assign each element the same

symbolic computed style as in p. Note that this requirement is vacuously true on pages p ′ that do not

satisfy the preconditions in Pc .

One may think of a true component specification Pc as having an implicit precondition exactly
describing the possible layouts of the rest of the specific page. Writing an independently-true com-
ponent specification Pc replaces this complex and weighty implicit precondition with a simplified
precondition sufficient to prove the property at hand.
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5.2 Component Verification Tools

Troika currently supports four tools for verifying component specifications: random-test, model-
check, whole-page, and component-smt; component specifications can also be ładmitžted. Some
tools are sound, while others (random-test and admit) are not. Modular layout proofs are only
sound when the component verification tools they use are sound; unsound tools are, however,
useful during proof development. This subsection summarizes the random-test, model-check,
and whole-page tools, which check whether a component specification is true, while Section 5.3
describes component-smt, which checks whether a component specification is independently-true.
Each tool takes as input the web page HTML and CSS,7 the component c , the range of browser

parameters, and the property to verify. The tool must either declare that the property holds, or
produce output (such as a counterexample) to show the Troika user.

random-test[n] andmodel-check. random-test[n] andmodel-check are based onCornipickle [Hallé
et al. 2015]. random-test[n] compiles a specification to JavaScript and runs it in a remote-controlled
instance of Firefox using n random sets of browser parameters. Themodel-check tool is similar, but
exhaustively tests every possible set of browser parameters.8 Both rely on Firefox’s implementation
of the browser layout algorithm. Thus, they can support components whose CSS is outside the
subset formalized in SMT.

whole-page. The whole-page verifier is based on VizAssert [Panchekha et al. 2018], and uses an
SMT solver to soundly verify component specifications. Although the assertion only refers to a
single component of the page, whole-page must still reason about the entire page; as a result, the
whole-page tool can verify any true component specification, provided it fits into the subset of
browser layout formalized by VizAssert.

5.3 Verifying Independently-True Component Specifications

The component-smt verification tool is a sound, SMT-based tool for verifying independently-true
component specifications. Likewhole-page, component-smt’s implementation is based on VizAssert,
which verifies a whole-page layout property P by using an SMT solver to search for renderings
of the page that: 1) are valid according to the browser rendering algorithm, 2) fall within the
specified range of browser parameters, and 3) do not match the property P . Solutions to this query
are counterexamples to P . component-smt modifies VizAssert to verify the layout of individual
components by allowing the page’s HTML tree to be partially undefined. These undefined portions
correspond to the part of the web page outside the component; leaving them undefined allows the
solver to synthesize that part of the page as part of its counterexample.
The main challenge in using partially-undefined HTML trees is that describing the rendering

of the elements in that partially-undefined portion would require the use of quantifiers and thus
significantly slow down the solver. So, the component-smt tool instead uses the solver to search
for possible effects of elements outside the component on the layout of the component. By not
explicitly representing those elements, component-smt avoids the need for quantifiers. To search
for such effects, component-smt ensures that all constraints that relate the layouts of two different
elements pass through łpointer relationsž such as łparentž or łfirst childž. These relations are
defined for pairs of elements within the component, but left undefined when they involve elements
outside the component. As an example, if e1 is inside the component, but its first child e2 is outside
it, the constraint e1.height = 80 + e2.height is rewritten to e1.height = 80 + first-child(e1).height,

7The full web page’s HTML and CSS are necessary for those tools that use whole-page reasoning (random-test,model-check,
and whole-page) and thus need to compute layout and style information for elements outside the component.
8The model-check only tests integer values of the browser parameters; non-integer values are rare in practice.
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and first-child(e1) is left undefined. The underlying solver then treats first-child(e1).height as an
unknown real-valued variable and searches for possible heights that could cause e1 to violate
the component specification. Searching for the effects of the undefined portion of the HTML
tree, instead of searching for that portion of the tree directly, is efficient enough to verify small
components in seconds.

The component-smt tool inherits its soundness and completeness from the model of browser ren-
dering that it modifies: it only removes constraints and thus allows strictly more counterexamples,
so soundness is maintained; and it only removes constraints on elements outside the component,
preserving completeness (since independently-true component specifications cannot depend on
the layout of those elements). We have not encountered any soundness or completeness problems
in the current implementation of component-smt based on VizAssert.

5.4 Visual Logic Extensions for Independently-True Specifications

An independently-true component specification must not reason about elements outside of the
component, so its preconditions must express all effects of those elements’ layouts. Preconditions
on widths, heights, or positions can be expressed using ordinary visual-logic predicates; however,
some CSS features allow distant elements to affect each other’s layout. Troika extends visual logic
with additional predicates that capture these long-distance interactions for use in preconditions.
Note that such preconditions are only necessary to constrain the interaction of elements across
components; component-smt directly verifies the interactions of elements within a component.

Margins. In the browser layout algorithm, boxes have a margin where other elements are not
supposed to be laid out. In some cases, margins of multiple boxes łcollapsež, or merge, and predicates
like non-negative-margins allow proof authors to control this multi-component interaction. These
predicates are defined in terms of a new b .collapsed-margin field, which measures the size of
a collapsed margin. This field allows defining the non-negative-margins(b) predicate, which is
commonly used as a postcondition to prove that elements do not overlap.9 In random-test and
model-check, these fields are computed in JavaScript, while whole-page and component-smt use
internal state in the browser layout algorithm that tracks this margin collapsing behavior.

Floating Layout. The browser layout algorithm moves elements with the łfloatž property to the
left or right of the page; text and other floating boxes wrap around them. Thus, boxes in one compo-
nent may affect boxes in another. To constrain this interaction, Troika adds the starts-float-free(b,R)
and ends-float-free(b,R) predicates. Both predicates take a box b and a rectangle10 R. The starts-
float-free predicate asserts that floating boxes that precede b do not overlap with R,11 while
ends-float-free asserts no overlap for all floating boxes that either precede or descend from b.
starts-float-free is usually used as a precondition in component specifications, while ends-float-free
is used as a postcondition to prove starts-float-free predicates for later components.
The random-test and model-check tools check these predicates by examining all floating

boxes in a given layout, while whole-page and component-smt translate starts-float-free and
ends-float-free into constraints on exclusion zones [Panchekha et al. 2018] that describe the po-
sition of floating boxes in the page. We have also developed helper functions to handle com-
mon uses of starts-float-free and ends-float-free. For example, no-floats-enter(b), defined to be
starts-float-free(b, [−∞,b .top,+∞,+∞]), asserts that preceding floating boxes are vertically above

9Negative margins are legal in CSS and commonly used for tasks like centering. For these pages, proof authors can define
alternative predicates by using b .collapsed-margin directly.
10Defined by four numbers x1, y1, x2, y2, where each number is either real or ±∞.
11That is, that the margin areas of all floating boxes that precede b in an in-order traversal of the HTML tree do not overlap
with b ’s margin area.
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⟨command⟩ ::= page ⟨page⟩ = load ⟨url⟩ with ⟨param⟩*
| theorem ⟨thm⟩ = ⟨assertion⟩

| define ⟨fun⟩ ( ⟨var⟩* ) = ⟨assertion⟩

| proof of ⟨thm⟩ for ⟨page⟩* ⟨tactic⟩* qed

⟨tactic⟩ ::= components ⟨cmp-name⟩ = $(⟨selector⟩)
| for all c ∈ ⟨cmpset⟩ assert ⟨assertion⟩ by ⟨tool⟩

| for all c ∈ ⟨cmpset⟩ require ⟨assertion⟩

⟨param⟩ ::= ⟨param-name⟩ ∈ [⟨real⟩, ⟨real⟩]

⟨cmpset⟩ ::= ⟨cmp-name⟩ | C | ⟨cmpset⟩ ∪ ⟨cmpset⟩ | ⟨cmpset⟩ ∩ ⟨cmpset⟩ | ⟨cmpset⟩ \ ⟨cmpset⟩

⟨tool⟩ ::= admit | random-test[⟨num⟩] | model-check | whole-page | component-smt

Fig. 5. The core syntax of the Troika tactic language.

b, while float-flow-across(b1,b2) asserts that ends-float-free(b1,R) implies starts-float-free(b2,R).
These helper functions concisely describe how floating boxes in one component affect elements in
another component.

6 THE TROIKA PROOF ASSISTANT

To make modular layout proofs accessible to proof engineers, Troika provides a convenient proof
language for defining and checking modular layout proofs.

6.1 The Tactic Language

The Troika tactic language has two roles: defining web pages and theorems about them; and then
proving these theorems by defining components and their specifications and indicating which tools
to verify them with. Figure 5 gives a core grammar for this language.

Troika’s łpagež command loads web pages (from disk or via a URL), and its łwithž block specifies
ranges for each browser parameter, such as browser width and height, default font size, or any
others supported by the verification tools used. The łtheoremž command defines theorems about
those pages in visual logic. The łdefinež command defines visual logic shorthands. Pages, theorems,
and shorthands use separate namespaces. The łproofž command begins a proof and specifies the
set of web pages for which to prove the theorem. A single proof can prove the same theorem across
multiple similar web pages, as in Section 7.

Within a proof, each łcomponentsž tactic defines new components, identifying them using CSS
selectors. Each element matching that CSS selector becomes the root element of a component; a
CSS selector can match multiple elements, so one łcomponentsž tactic defines a set of components.
Defining multiple components with a single selector is important for partitioning large pages (as in
Section 7).

The łassertž and łrequirež tactics define component specifications: a component with assertions
(postconditions) Ai and preconditions R j has the component specification

(∧

j R j
)

=⇒ (
∧

i Ai ).
Both łassertž and łrequirež operate on multiple components at once (using set operations on the
sets of components defined by each łcomponentsž tactic and the set C of all components). In
each assertion and precondition, the variable c is bound to the particular component, and can be
omitted if not used. Troika also allows using łforž and łcomponentž, which are like łfor allž and
łcomponentsž but check that the component set contains exactly one component.
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6.2 Implementation

Troika is open-source and freely available online.12 The implementation includes an interpreter
for the tactic language, a dispatcher for invoking verification tools, compilers from visual logic
to SMT-LIB and JavaScript, and a core data structure for representing web pages and web page
components. For checking proof well-formedness, Troika uses the Z3 SMT solver [De Moura and
Bjùrner 2008]. The whole-page and component-smt verification tools are built by modifying a
recent checkout of VizAssert.

To implement the random-test and model-check verification tools, Troika compiles the compo-
nent specification to JavaScript and uses the Selenium library [David 2012] to run that JavaScript
in a headless Firefox instance. Visual logic expressions have straightforward JavaScript equivalents:
Troika uses the CSS Object Model API to query element locations, hoists b .ancestor(P) expressions
to recursive functions, and uses the Range API to determine the size of text. However, on large
pages, the straightforward JavaScript equivalent was often inefficient. For example, the visual logic
assertion ł∀b,b ∈ $(a) =⇒ onscreen(b)ž quantifies over every box in the page, even if few boxes
are generated by a elements. To fix this inefficiency, Troika searches the assertion for selector
constraints on the quantified boxes and only tests the assertion on boxes matching that selector.

6.3 Parallelism and Caching

To check a modular layout proof, Troika must verify each component specification and check the
well-formedness of the overall proof. The proof is valid only if each check succeeds. When a check
fails and the verification tool produces a counterexample, that counterexample is shown to the user.
Different components and verification tools run in parallel with each other and with proof checking,
using a single-producer multi-consumer queue with a user-configurable number of parallel threads.

In order to speed up proof checking, Troika caches every invocation of a verification tool. These
caches ensure that re-checking a proof is fast, which is convenient when adding additional theorems
and proofs to a proof script. For simplicity, the cache requires an exact match for the web page
HTML and CSS, component, browser parameters, and property being verified.

To make a match more likely, each verification tool can define an automatic pruning algorithm
to discard the parts of the page that it does not use. This allows component specifications to be
reused across multiple web pages.
Of the four tools provided by the Troika prototype, component-smt makes the most extensive

use of pruning. Since component-smt does not rely on any part of the page outside the component,
it prunes those parts of the page away, along with all CSS rules that do not apply to elements in
the component and all fonts, classes, and IDs not referenced in the pruned CSS rules. Unnecessary
rules, fonts, classes, and IDs can differ even on closely related pages; pruning them ensures that the
cache key contains only information used by component-smt. Each pruning pass is conservative in
order to preserve soundness.

7 CASE STUDY

To demonstrate that Troika scales to large web pages and allows reusing verified components across
web pages, we performed a case study with the popular computing blog łJoel on Softwarež [Spolsky
2018]. The verification goal is two properties: all links are scrolling-accessible, and no lines of text
are longer than 80 characters. Troika verifies these properties in seconds; existing tools scale poorly
to a page of this size, taking 13ś1469× times longer. Additionally Troika allows reuse across similar

pages (for other blog posts) and even across similar sites (for another blog with a similar theme).

12At https://cassius.uwplse.org and https://github.com/uwplse/Cassius.
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Table 1. Proofs that links are onscreen (links) and that lines are less than 80 characters wide (width) on the
łJoel on Softwarež blog. The joel1 and joel2 pages are posts on the blog and other is a different site using the
same theme. In the table, N is the number of components and Ld and Lp give the lines of definitions and
proof (excluding comments and whitespace). The last column shows the time VizAssert takes to check each
property, and Troika’s speedup (without caches) relative to VizAssert. All times are for Troika with 8 parallel
threads.

Page Prop. N Ld Lp Initial Typo fix VizAssert
joel1 links 39 6 30 30s 4s (8.0×) 9.9m (20÷)
joel2 links 49 6 30 44s 4s (11×) 9.8m (13÷)
other* links 30 6 30 66s 5s (14×) 33.5m (31÷)
joel1 width 39 8 23 27s 20s (1.4×) 5h 46m (780÷)
joel2 width 49 8 23 48s 28s (1.7×) 19h 26m (1469÷)
other* width 30 8 23 52s 11s (4.8×) 28.2m (33÷)
other links 25 6 27 304s 3s (104×) Same as other*

7.1 Verifying One Blog Post

We chose a post from Joel’s blog from April 2018 titled łA Dusting of Gamificationž (named
joel1 in Table 1). The page is 11× larger (by page size) than the web pages considered in prior
work [Panchekha et al. 2018].

Decomposing the page. We decomposed the blog post into components by visual inspection,
aiming to create many small components so that each component specification can be verified
quickly. We worked hierarchically, first decomposing the page into a sidebar and a content area;
then decomposing the sidebar into a title, photo, and description; and then decomposing the
content area into components like the article text, an łabout the authorž blurb, and links to the
next and previous post. Of these components, the largest by far was the article text, so we used the
ł.entry-content > ∗ž selector to subdivide the article text into individual paragraphs and photos.

Proving links-scrollable. We began by asserting, for each component c , that

∀b, scrollable(c) ∧ (b ∈ $(a) ∨ is-component(b)) =⇒ scrollable(b) (1)

This assertion was immediately verified for most of the components, but a few required additional
preconditions.
First, the sidebar title specifies a line height of 40 pixels despite containing 47-pixel-tall text.13

This meant that the text extended beyond the top of the title box by 3.5 pixels. To prove that the
text is within the scrollable area of the page, we added a precondition that the sidebar title is at least
5 pixels below the top of the screen,14 and asserted this precondition in the sidebar. Second, we
added a precondition requiring non-negative margins and non-zero height to several components
in the sidebar to prove that these components are not moved off-screen by negative margins.
An additional challenge in verifying these pages is the limited subset of CSS supported by

the component-smt tool: the sidebar uses the łtransformž property and the ł:beforež and ł:afterž
selectors, which are not supported by component-smt. To isolate this issue, we split the sidebar
into two components: the sidebar container, which uses the unsupported features, and the sidebar
content, which does not. To verify the sidebar container’s specificationÐthat the sidebar container’s
children are within the scrollable area of the pageÐwe manually examined the 9 lines of code

13This is may be an error by the web page developer, or it may be a purposeful attempt to achieve tight line spacing.
14We chose 5 pixels to allow for cross-platform variation in text rendering.
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in this component. As an additional check, we also ran 105 random tests of this component’s
specification.15 All other components were verified with the component-smt tool.16

Proving line-width. Proving that all lines of text are shorter than 80 characters was simpler than
proving the prior property. Unlike some of the pages considered in Section 8, in which each element
inherits its text size from its parent, the Joel on Software blog post sets an absolute text size on
most elements, eliminating the dependence of one component on another. The line width property
can thus be proven for the whole page by proving it independently for each component. However,
we were unable to do so for the post-footer-widgets component, which holds the łSubscribe!ž text.
Upon investigating, we determined that this component contained lines of 120 characters.
To determine whether this is the only component with a line width over 80 characters, we

admitted the line width property for the post-footer-widgets component. The full proof then
checked, indicating that all other components have shorter line widths.

Checking the Proofs. Troika checked the proofs quickly: less than four minutes for each proof
when run with a single thread, and about 30 seconds when run with multiple threads (joel1 in
Table 1). Note that for this page, existing monolithic verification tools ran 20× and 780× slower,
clearly demonstrating the benefits of modular verification. To test Troika’s caching abilities, we also
constructed variants of the blog post where a single word in the article text is changed, simulating
a typo correction. This check is much faster than a proof without caching: links-onscreen, for
example, takes 3.8 seconds, with most of the time spent checking that the proof is well-formed
on the new page. This demonstrates that caching enables mixing verification with incremental
development.

7.2 Reusing Proofs and Components

Troika enables two kinds of reuse. First, the same component may be present on multiple pages,
in which case Troika can cache the component verification, thus reusing the component across
multiple pages. Second, the same proof script may apply to multiple similar pages; Troika’s ability
to define components by CSS selector and to operate on multiple components at a time make this
possible even on pages with substantial differences. Two variants of the łJoel on Softwarež page
demonstrate both capabilities.

Reusing components. To demonstrate Troika’s ability to reuse verified components across web
pages, we verified a second post from Joel’s blog: łThe Stack Overflow Agež, also from April 2018.
Most of the page content is different, including the title text, publication date, tags, related blog
posts, and article text. However, a few components (such as the sidebar andWordPress endorsement)
were identical between the two pages, and Troika’s caching allowed the components to be verified
on one page and reused on the other. The tool-specific pruning algorithms were essential: though
the components seemed identical, the pages nonetheless had different CSS style sheets (due to a
CSS emoji library) and used different fonts (due to one post using italicized text while the other did
not); without pruning, these differences would have prevented caching.

Though the cached components do demonstrate that caching and reuse is possible, they also show
its limitations. The 8 reused components (out of 39 total components on the page) are small relative
to the article text, so caching them only reduces the overall verification time by 3.7 seconds (12%).
This suggests that cached components are most useful when many similar pages are verified, so
that small speedups on each page add up.

15These random tests explored approximately 1% of the total space of browser parameters for this page.
16In Table 1, the VizAssert times are for a version of the page modified to remove the (small) parts of the page using
unsupported CSS features, while the Troika results do not include the time to run random tests.
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Reusing proofs. Often, developers reuse components from web libraries, like Bootstrap [Otto and
Thornton 2015], that provide generic themes, layouts, or forms. Ideally, tools like Troika would
provide modular layout proofs for these generic library components which can then be reused
between multiple sites. Towards this goal, we demonstrate that the proofs for Joel’s blog can also
verify pages from a different site that uses the same third-party library theme.
We investigated the source code of the łJoel on Softwarež blog and determined that the blog

used a lightly modified version of the łEditorž Wordpress theme, a professional theme by the Array
Themes design studio [Themes 2018]. To check how generalizable our proof is, we attempted to
apply it to the theme’s demo blog; in other words, to a different site using similar styling. Naturally,
all components had different content between the two sites, since even components that do not
change across blog posts, like the blog name, still change across different sites. Nonetheless, the
specifications we wrote still verified.

The proof applied immediately to the new site, verifying its layout. However, one of the compo-
nents verified more slowly than we expected: the demo blog had comments enabled, making that
component much bigger and causing its verification to take a much longer time (304 seconds for
that component). We made one small modification to improve its efficiency: we moved the comment
box to its own component and turned each comment itself into a component (see other* in Table 1).
This allowed each comment to be checked in parallel, significantly speeding up verification of the
demo blog post. The modified proofs still apply to the two łJoel on Softwarež blog posts. Troika
checked the resulting proofs in approximately 60 seconds with parallelism enabled.

Reusing proofs reduces the cost of using Troika. Themes like łEditorž could potentially ship with
a Troika script, making it easy for any blog using the theme to prove its accessibility.

8 EVALUATION

This section defines a systematic approach to constructing Troika proofs and demonstrates it on
8 proofs from prior work, comparing similar pages for each phase of proof development. This section
then describes the qualitative experience of using Troika and compares it to VizAssert [Panchekha
et al. 2018], an existing layout verification tool (Section 8.6). Statistics on these proofs can be found
in Table 2. Every proof uses only the component-smt tool, though other tools were used during
proof development. Overall, we find that the proofs are short (15 lines average), that proofs of
similar properties or similar pages are similar (reducing the burden of proof development), and
that modular layout proofs provide significant advantages over VizAssert, even for pages of the
scale VizAssert is designed for (including a speedup of 1.9ś67×).

8.1 Writing Modular Layout Proofs

A systematic proof development strategy directs the proof author’s efforts so that each step makes
progress toward the overall proof goal. For Troika, an effective proof development strategy proceeds
in three phases:

(1) The proof author decomposes the page by visual inspection, identifying components such as
headers, footers, sidebars, and body text. If the theorem focuses on a particular page element,
that element is encapsulated in a component.

(2) The proof author writes a plausible generic specification and admits it of every component.
This generic specification is strengthened until the proof is well-formed. The resulting generic
specification captures the overall logic of the proof without focusing on the implementation
of a particular page.

(3) The proof author adds preconditions to each component’s specification until the generic
specification can be verified using component-smt. These preconditions express the details
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Table 2. Statistics on eight Troika proofs; N is the number of components and Ld and Lp give the lines of
definitions and proof (excluding comments and whitespace). The last column shows the time VizAssert takes
to check each property, and Troika’s speedup (without caches) relative to VizAssert. All times are for Troika
with 8 parallel threads.

# Page Property N Ld Lp Initial Typo fix VizAssert
1 carshop button-large 2 6 4 5s 5s (1.0×) 351s (67÷)
2 puppy no-text-on-picture 2 7 6 43s 4s (11×) 79s (1.9÷)
3 tailorshop three-column 4 9 19 63s 63s (1.0×) 141s (2.2÷)
4 surf links-scrollable 6 6 21 20s 20s (1.0×) 42s (2.1÷)
5 park links-scrollable 5 6 19 59s 59s (1.0×) 134s (2.3÷)
6 yoga links-scrollable 4 6 15 108s 9s (13×) 366s (3.4÷)
7 yoga line-width 4 8 8 78s 11s (7.4×) 524s (6.7÷)
8 yoga accessible-offscreen 4 8 27 68s 7s (9.4×) 247s (3.6÷)

of a page’s implementation. The proof author establishes each precondition in the containing
component.

In this strategy, the generic specification ensures that the modular layout proof is well-formed.
Then, every precondition is added together with an assertion on another component establishing
that precondition, ensuring that the proof as a whole remains well-formed. At every step, it is
clear which specification to adjust when a check fails. Troika’s ability to admit assertions and mix
multiple verification tools supports this workflow.
Comparing the 8 proofs sheds light on these three phases. We found the first phase, page

decomposition, easy and quick, taking a few minutes per proof. This phase was especially simple
when the theorem focused on a particular part of the page. The second phase, composing generic
specifications, usually took fifteen to twenty minutes per proof, and was the most creative portion of
the proof. The generic specifications were reusable between proofs of the same theorem for different
pages. The third phase, adding preconditions, took the most time: several hours per proof. This time
was necessary to learn an unfamiliar web page in order to understand the implicit assumptions that
affect its layout, and may be easier for the original page authors. The most common preconditions,
governing floating boxes and widths, could be made unnecessary by designing web pages with
verification in mind.

8.2 Decomposing Pages into Components

The first phase of proof development decomposes a web page into components. For three proofs
(1ś3 in Table 2), we give additional details on this step. Each of these proofs proves a property that
applies to a single element on the page. The proofs thus have the opportunity to focus on that
element.

In each case, we chose to make the constrained element its own component. For the carshop and
puppy proofs (proofs 1 and 2), the rest of the page was the only other component. For carshop, no
preconditions are needed, and the proof is four lines long. For puppy, the component of interest
requires a minimum width, which is established in the other component; the proof is six lines
long. The tailorshop proof (proof 3) is more complex, because the component of interest requires
preconditions on the location of floating boxes, which require additional assertions about non-
negative margins and floating boxes. These additional assertions are similar to lines 15ś20 of the
proof in Figure 2.
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8.3 Developing a Generic Specification

The second phase of proof development defines a generic specification for each component. A
generic specification contains the core proof strategy, independent of the implementation of a
particular web page. This generic specification should imply the theorem (if proven of every com-
ponent) and capture preconditions that are required of all components. Since a generic specification
does not depend on the implementation details of the page in question, we found that it could be
reused between proofs of the same property.

Three proofs (4ś6 in Table 2) provide an illustrative example. All three proofs proved the links-
scrollable property on different pages with different numbers of components. For all three proofs,
we used the generic specification from the case study (Equation 1 in Section 7.1) without change.

For all three proofs, the generic specification was not independently true of most components.
For example, in the park page (proof 5), if the header were too narrow, the header text would wrap,
moving a link off screen. Examining the source code of this page reveals that the header requires a
960 pixel minimum width. This precondition is added in the third phase of proof development.

8.4 Adding Component Preconditions

The third phase of proof development adds preconditions to each component until the generic
specification can be proven. Since it requires understanding each page’s source code, this phase
was the most time-consuming.

Determining preconditions for each component requires examining counterexamples and writing
preconditions to prevent them. Across the 8 proofs, common patterns emerge. Preconditions for
floating boxes are consistently important, appearing in 5 of the 8 proofs, and width preconditions
(both minimum and maximum widths) are equally common (also appearing in 5 proofs).

Preconditions for floating boxes required the most assertions to establish. For example, in the
proof of links-scrollable for yoga (proof 6, reproduced in Figure 2), the footer requires a precondition
that no-floats-enter(foot). Establishing this precondition requires four assertions, proving no-floats-
enter and no-floats-exit for each component on the page, and also requires proving that each page
component has non-negative margins. However, one floating box precondition, in the proof of
links-scrollable for park (proof 5), was unusually simple because this page uses the CSS property
overflow: hidden, which prevents components’ floating boxes from interacting. Web pages designed
for verification could use this technique to lower the proof burden.
Because preconditions tend to be page- as opposed to theorem-specific, proofs of different

properties on the same page can have similar preconditions. Proofs 6ś8 (in Table 2) demonstrate
both a case of precondition sharing and a case of no sharing. Proofs 6 and 8 (of links-scrollable
and accessible-offscreen) share preconditions for footer width (foot.width ≥ 200) and floating box
non-interference (no-floats-enter(foot)), which together guarantee that the left-aligned and right-
aligned parts of the footer do not overlap or split across multiple lines. On the other hand, proof 7
(of line-width) shared no preconditions with the other two. In this proof, the essential precondition
ensures that the text in each component is the correct size; the footer width and floating box
preconditions are not useful. This suggests that component preconditions can sometimes be reused
between pages, lowering the proof burden, but that proving new theorems sometimes requires the
development of new preconditions.

8.5 Checking the Proofs

Each proof was checked using Troika on a machine with an i7-4790K CPU, 32GB of memory, and
Z3 version 4.5.1. The results are shown in Table 2.
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The proofs take 7.7ś139 seconds, and if multiple cores are available, 5.2ś108 seconds (1.1ś2.4×
faster).17 Furthermore, Troika can cache component verifications and reuse them across multiple
pages. If the page header, footer, and menus are already cached, such as during incremental
development, the proof can be checked even faster, for an average18 further speedup of 3.1× over
parallel proof checking (column łTypo fixž in Table 2). Note especially the large speedup for the
yoga page, for which the header is expensive to verify but unlikely to change frequently or across
multiple pages.

8.6 Comparison to VizAssert

VizAssert is a previous tool for web page verification [Panchekha et al. 2018]. Unlike Troika,
VizAssert is not a proof assistant: VizAssert uses an SMT solver to produce a sound guarantee
that a web page satisfies a page theorem. Though VizAssert does not require writing component
specifications, it scales poorly to large pages (such as the łJoel on Softwarež pages in Section 7),
cannot effectively make use of multiple threads, cannot reuse verification effort from one page to
another, and supports only a single verification approach. We furthermore found that VizAssert
offered little recourse when a theorem took a long time to check, a particular challenge because
SMT solver variability means that similar formulations of a theorem can have vastly different
verification times. Meanwhile, in Troika, pages can be subdivided into more components to speed
up verification and make progress on a proof. For large pages, VizAssert’s speed is also highly
dependent on the particular page being verified (as in Table 1) because of SMT solver variability.
Troika makes many small SMT queries instead of one huge query, so is less variable.

Due to VizAssert and Troika’s different focus andmode of interaction, comparing the performance
of the two tools is difficult. A Troika proof requires choosing a decomposition of the page and
writing component specifications, both expensive steps (though proof reuse may lower those
costs). However, web pages are edited and changed frequently (to update the content or post user
comments, for example). Troika’s support for interactive verification and caching allow edits to be
made and verified quickly, saving a significant amount of time over the life of a web page. Troika
is also 2.6× faster than VizAssert when run serially. Furthermore, Troika’s architecture allows it
to take advantage of caching and multiple threads; Troika is 4.3× faster with 8 threads, and 13×
faster with caching. The largest advantage for Troika is for the button-large proof for the carshop
page (see Table 2). button-large concerns a single button on the page; unlike VizAssert, Troika
restricts its reasoning to a small component containing just the button. Of course, the main goal of
Troika is not fast proof checking but the ability to scale to large pages and support interactive web
page development styles, as demonstrated in Section 7.

9 RELATED WORK

9.1 Modular Verification & SMT

Modular verification techniques for model checking [Grumberg and Long 1994] pioneered assume-
guarantee-style reasoning [Stark 1985] to make it possible to summarize component behavior
and relationships between components in a larger system. Such techniques have been applied
in a number of tools, including MAGIC [Chaki et al. 2003] for semi-automatic verification of C
programs and Dafny [Leino 2010], a programming language with built-in constructs to ease static
verification. Similar reasoning has been scaled up to verify the 60,000 lines of code implementing
the Microsoft Hyper-V hypervisor [Dahlweid et al. 2009]. One of the major domains for modular

17These pages all have fewer than 8 components, and often one component is harder to verify than the others, limiting the
gain from parallelism.
18All averages of multipliers use geometric means.
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verification is for security [Appel 2016], including using finite-state models to modularly verify data
transfer protocols [Hailpern and Owicki 1983], and the correctness of compilers [Blazy et al. 2006;
Leroy 2006]. Additionally, numerous program logics have been developed to modularly decompose
properties of programs, especially in the domain of shared-memory concurrency [Dinsdale-Young
et al. 2010; Nanevski et al. 2014; Raad et al. 2015; Svendsen and Birkedal 2014; Turon et al. 2014,
2013], and techniques have also been developed for composing proofs in general [Jung et al. 2016,
2015].
Troika differs from all of these previous efforts due to targeting web pages, where traditional

programming techniques cannot easily be applied. Compared to domains studied in past research,
web pages introduce many new challenges: there are no clear computational units like functions
that define module boundaries; there is no łheapž or other key stateful structure that existing
techniques can be applied to abstract over; components within a web page tend to carry fine-grained
context dependencies and often impact the layout of subsequent components in the page; and there
is not a clear time order to web page layout, so it is not obvious how pre- and post-conditions can
be used to summarize the layout of components. Troika addresses these challenges and pioneers
new techniques for bringing modular verification to web pages.

In addition to building on SMT solvers like Z3 [De Moura and Bjùrner 2008], Troika also mirrors
some aspects of such solvers’ architectures. Troika composes multiple tools for reasoning about
web page components in a general logic. As in SMT, this design allows analysis tools to cooperate
when verifying complex inputs without requiring tight coupling between the analyzers. Having
laid this groundwork, in the future we hope to see more research analyses adopt Troika’s tool
interface so that a broader range of properties and pages can be effectively verified.

9.2 Debugging Web Page Layouts

Many authors have developed tools to help web developers find, debug, and fix layout problems
in web pages. Several tools use a mix of heuristics and static analysis to identify layouts likely to
contain errors [Walsh et al. 2017, 2015]. Other tools attempt to automatically fix errors [Bigham
2014; Mahajan et al. 2018a, 2017, 2018b], using heuristics to detect whether a fix preserves web
page correctness. SeeSS aids developers [Liang et al. 2013] by visualizing the impact of edits
to CSS stylesheets. Other tools detect parts of web pages that render differently in different
browsers [Choudhary et al. 2012; Mesbah and Prasad 2011; Roy Choudhary et al. 2010]. Finally, some
tools help developers transfer styles or content between web pages [Maras et al. 2012, 2014]. These
heuristic tools are useful, and could be integrated with Troika; however, they do not provide sound
guarantees. We are nonetheless excited about these tools as a foundation for building pragmatic
tools for quickly debugging proofs of web pages, or as a fall-back when a web page uses CSS
features that have not been formalized.
Among practitioners, a large ecosystem of tools exists for designers to test their pages against

specific instances of browsers, operating systems, and rendering parameters [Browserling 2018;
Browsershots 2018; Browserstack 2018]. Such tools load pages in browsers running in virtual
machine instances, returning screenshots to designers so they can manually check against expected
renderings. This testing approach is easy to use and widely adopted, but requires manual inspection
and, like heuristic tools, does not provide guarantees.

9.3 Formal Visual Reasoning

Reasoning about visual layout has a rich history of prior work, including constraint-based systems
for specifying and synthesizing layout [Badros et al. 1999; Borning et al. 1997; Hashimoto and
Myers 1992; Sutherland 1964; van Wyk 1982; Zanden and Myers 1991]. Similarly, others have
explored domain-specific languages [Wilkinson 2005] and visual manipulation [Chugh et al. 2016]
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for synthesizing graphics programs. Troika is complementary to much of this work; for exam-
ple, constraint-based approaches for generating components could automatically provide useful
preconditions, making their use within Troika easier.
Several authors have produced formalizations of browser layout. Early efforts used attribute

grammars to formalize browser layout in order to synthesize parallel layout algorithms [Meyerovich
and Bodik 2010]. Cassius [Panchekha and Torlak 2016] formalizes a subset of browser layout in linear
real arithmetic in order to synthesize CSS from examples using an SMT solver. Both formalizations
are too limited to represent real web pages. Building on Cassius, the VizAssert tool [Panchekha
et al. 2018] uses finitization reductions to support a large subset of the CSS standard, including
floating layout, which is widely used in modern web pages but is tricky even for experts to reason
about. Troika’s whole-page and component-smt verifiers build on VizAssert.
Early work on formalizing properties satisfied by web pages, such as Cornipickle [Hallé et al.

2015], focused on detecting layout bugs while testers interacted with a web page. In Cornipickle
the properties are given in first order logic with modal operators for representing JavaScript’s
modifications of the page. VizAssert later adapted Cornipickle’s logic to SMT reasoning. Troika
uses the same logic to describe layout properties and component specifications.

10 CONCLUSION AND FUTURE WORK

Past techniques for verifyingweb page layout scale poorly to large pages due to their need to perform
whole-page verification. We develop a technique for modular verification of web pages, where
proof authors decompose large pages into components, write specifications for each component,
verify the specifications using a variety of tools, and then prove whole-page properties from the
specifications. We describe Troika, a new proof assistant for constructing modular layout proofs,
and demonstrate that it scales to large pages, enables parallelism and caching, and allows mixing
multiple tools in verification. Compared to prior work, the modular approach is 13ś1469× faster
and scales to pages an order of magnitude larger than existing tools.

In the future, Troika could be extended to support dynamic content. Most web applications use
server-side templates to generate concrete web pages, and those web pages are then modified
by JavaScript as the user interacts with them. Troika can verify a particular generated page, or a
particular state of the page, but currently not the template or JavaScript code as a whole. However,
templates tend to have simple loop structures and JavaScript tends to make localized changes to
the page. We hope to explore the possibility of adding some form of inductive reasoning to Troika
(across loop iterations in templates and over time as JavaScript changes the page), to allow it to
verify dynamic pages in full. We hope that Troika’s caching and pruning will provide an additional
advantage, since different instantiations of a template or states of a page are often nearly-identical.
This inductive reasoning could then be used by a symbolic interpreter for JavaScript to ensure that
all possible changes maintain important visual invariants. We see in Troika’s future the first steps
toward a comprehensive tool for proving visual properties not just for individual pages, but for
entire websites and web applications.
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