Unreproducible tests

Successes, failures, and lessons in
testing and verification

Michael D. Ernst
University of Washington

Presented at ICST
20 April 2012

Reproducibility:
The linchpin of verification

A test should behave deterministically
— For detecting failures
— For debugging
— For providing confidence

A proof must be independently verifiable

Tool support: test frameworks, mocking, capture-
replay, proof assistants, ...

Reproducibility:
The linchpin of research

Research:
— A search for scientific truth

— Should be testable (falsifiable) -Karl Popper
Example: evaluation of a tool or methodology

Bad news: Much research
in testing and verification
fails this scientific standard

Industrial practice is little better

“Variability and reproducibility in software
engineering: A study of four companies that
developed the same system”, Anda et al., 2008

A personal embarrassment

“Finding Latent Code Errors via Machine
Learning over Program Executions”, ICSE 2004
Indicates bug-prone code

Outperforms competitors; 50x better than random

Solves Open pr‘Oblem description of erroneous ,, description of corrected
program A program A

I n n Ova t ive m et h O d S Laboratorytor l('lolccular Science Computer Science & r\l.‘ti ial Intelligence Lab

University o\Southern California Massachusetts Instidute of Technology
I.os Angeles\NCA 20089 UUSA Cambridge, ¥MA 02139 1ISA
brun/@aly mit.edu mernstigicsail mit.edu

>100 citations Machine |

Abstract

hsible behavior (as is often the case for interactive or

Le a rn | n g ical user interface programs).

This paper proposes a technigue for ide| te new technique takes as input a set of program prop-

properties that indicate errors. The techni A for a given program, and outputs a subset of those
chine learning models of program propertics known to fe- properties that are more hkely than average to indicate er-
sult from errors, and applies these models to program prop- rors in the program, The program properties may be gener-

artics of user-written code to classify and rank propertje

"~

ated by an arbitrary program analysis; the experiments re-

that may lead the user to errors. Given a set of propertjes ported in this paper use a dynamic analysis, but the tech-

produced by the program analysis, the technique selects a nigue 15 cqually applicable (o static analyses.

subset of properties that are most likely to reveal an erra Figure | gives a simple example to motivate the tech-
An _imnlementation the Fanlf [nyvariant Classif®r N Tt shows c concle i ten thot o

description of [.. pme error-revealing
chind™ ClaSS|f|er ropertie| - -
program B} muio] descriptions

creas ny erron

(the concentration of fault-revealing properties) by a factar rors share similar characteristics, and that these characteris-

What went wrong

* Tried lots of machine learning techniques
— Went with the one that worked
— Output is actionable, but no explanatory power
— Explanatory models were baffling

* Unable to reproduce
— Despite availability of source code & experiments

* No malfeasance, but not enough care

How can we prevent such problems?

Outline

Examples of non-reproducibility
Causes of non-reproducibility

Is non-reproducibility a problem?
Achieving reproducibility

Random vs. systematic test generation

* Random is worse

[Ferguson 1996, Csallner 2005, ...]
* Random is better

[Dickinson 2001, Pacheco 2009]
* Mixed

[Hamlet 1990, D’Amorim 2006, Pacheco 2007, Qu
2008]

Test coverage

* Test-driven development improves outcomes
[Franz 94, George 2004]

* Unit testing ROl is 245%-1066% [IPL 2004]
 Abandoned in practice [Robinson 2011]

Type systems

 Static typing is better
— [Gannon 1977, Morris 1978, Pretchelt 1998]
— the Haskell crowd

* Dynamic typing is better
— [Hanenburg 2010]
— the PHP/Python/JavaScript/Ruby crowd

* Many attempts to combine them
— Soft typing, inference iﬁ -
— Gradual/hybrid typing —{\ R \f

@ ?h:,

Programming styles

* |Introductory programming classes:
— Objects first [Kolling 2001, Decker 2003, ...]
— Objects later [Reges 2006, ...]
— Makes no difference [Ehlert 2009, Schulte 2010, ...]

* Object-oriented programming
* Functional languages

— Yahoo! Store originally in Lisp
— Facebook chat widget originally in Erlang

0 viaweb

Online Commerce Made Simple

More examples

 Formal methods from the beginning [Barnes
1997]

* Extreme programming [Beck 1999]
* Testing methodologies

Causes of non-reproducibility

1. Some other factor dominates the
experimental effect

Threats to validity
e construct (correct measurements & statistics)

* internal (alternative explanations & confounds)
* external (generalize beyond subjects)

A * reliability (reproduce)

5 & . L
.#..I [
..‘ i =

People

* Abilities
 Knowledge

* Motivation

We can learn a lot even from studies of college
StUdentS IEEE SUBSCRIBE SECTIONS » BLOGS » REVIEWS VIDED

WIRED MAGAZINE: 17.09

MED-TECH : DRUGS &)

P

o B toanmdis Placebos Are Getting More Effective. Drugmakers
wonias ATE Desperate to Know Why.

Other experimental subjects
(besides people)

“Subsetting the SPEC CPU2006 benchmark
suite” [Phansalkar 2007]

“Experiments with subsetting benchmark
suites” [Vandierendonck 2005]

“The use and abuse of SPEC” [Hennessey
2003] O space

program

Siemens suite

Implementation

* Every evaluation is of an implementation
— Tool, instantiation of a process such as XP or TDD, etc.
— You hope it generalizes to a technique

* Your tool
— Tuned to specific problems or programs
 Competing tool
— Strawman implementation
* Example: random testing

— Tool is mismatched to the task
* Example: clone detection [ICSE 2012]

— Configuration/setup
* Example: invariant detection

Interpretation of results

* Improper/missing statistical analysis
 Statistical flukes

— heeds to have an explanation
— tried too many things

e Subjective bias

Biases

 Hawthorne effect (observer effect)
* Friendly users, underestimate effort
* Sloppiness

* Fraud . -

‘

— (Compare to sloppiness)

Reasons not to totemize reproducibility

Reproducibility is not always paramount

Reproducibility inhibits innovation

* Reproducibility adds cost

— Small increment for any project

* Don’t over-engineer

— If it’s not tested, it is not correct

— Are your results important enough to be correct?
* Expectation of reproducibility affects research

— Reproducibility is a good way to get your paper
accepted

Our field is young

* |t takes decades to transition from research to
practice
— True but irrelevant
* Lessons and generalizations will
appear in time
— How will they appear?
— Do we want them to appear faster?)Y R |
* The field is still developing & learning s 2= iy
— Statistics? Study design? T\ ¢

A novel idea
is worthy of dissemination...

. without evaluation
. without artifacts

Possibly true, but irrelevant

B _.’." I.HE

“Results, not ideas.”
-Craig Chambers

Positive deviance

e A difference in outcomes indicates:
— an important factor
— a too-general question

* Celebrate differences
and seek lessons in them .

7 &t
— Yes, but start 7%
understanding earlier

How to achieve reproducibility

Definitions

 Reproducible: an independent party can
— follow the same steps, and
— obtain similar results

 Generalizable: similar results, in a different
context

 Credible: the audience believes the results

Give all the details

Slashdot * O (V] o oo
Odl. d master s student Can reproauce
New PHP Interpreter Finds XSS, Injection Holes

storles

result

rece
Posted by kdawson on Frlda e 19 2009, @08:22AM
popular— OPeNn-seufrce. \U

— Use th dber a TR as appropriate

ask slashdot |shar

o
book r;@elggs ext Fon mrckresearchers from MIT, Stanford, and Syracuse has

developed a new program, named 'Ardilla," which can analyze PHP
games — Choice: %ga@rap@oysssn@;&r@n@btbéygactg@nﬁjéeaorse@cgcrkecv

vulnerabilities. (Here is the paper, in PDF, and a table of results from

dle scanning six PHP apphcatmns) Ardilla uses a modified Zend
) interpreter to a e the a e data, and determine whether
DOn tsu p ﬁ?e%t H Q ngt Q;ﬁr @gi asing false positives."
cloud

Unfortunately, license issues prevent the tool in its current form from being
released as open source.

hardware

Admit non-generalizability

You cannot to control for every factor
What do you expect to generalize?
Why?

Did you try it?

— Did you test your hypothesis?

“Threats to validity” section
considered dangerous

“Our experiments use a suite of 7 programs
and may not generalize to other programs.”

Often omits the real threats — cargo-cult science

It's better to discuss as you go along

Summarize in conclusions

Explain yourself

No “l did it” research

Explain each result/effect

— or admit you don’t know
What was hard or unexpected?
Why didn’t others do this before?

Make your conclusions actionable

Research papers are software too

“If it isn’t tested, it’s probably broken.”

Have you tested your code?
Have you tested generalizability?

Act like your results matter

Automate/script everything

There should be no manual steps (Excel, etc.)
Except during exploratory analysis

* Prevents mistakes
* Enables replication
* Good if data changes

This costs no extra time in the long run
(Do you believe that? Why?)

Packaging a virtual machine

Reproducibility, but not generalizability !
Hard to combine two such tools

Works on l
my

Partial credit

& \/irtual Machine

Microsoft r
Virtual PC

vmware

Measure and compare

e Actually measure
— Compare to other work
— Reuse data where possible

* Report statistical results, not just averages
* Explain differences

Look for measureable and repeatable effects
— 1% programmer productivity would matter!
— It won't be visible

Focus

Don't bury the reader in details
Don't report irrelevant measures
Not every question needs to be answered

Not every question needs to be answered
numerically

Usability

s your setup only usable by the authors?
Do you want others to extend the work?

Pros and cons of realistic engineering
— Engineering effort
— Learning from users

— Re-use (citations)

Reproducibility, not reproduction

* Not every research result must be reproduced
* All results should be reproducible

* Your research answers some specific (small)
guestion

* Seek reproducibility in that context

Blur the lines

* Researchers should be practitioners
— design, write, read, and test code!
— and more besides, of course

* Practitioners should be open to new ways of
working

— Settling for “best practices” is settling for
mediocrity

We are doing a great job

Research in testing and verification:

Thriving research community
Influence beyond this community
Great ideas

Practical tools

Much good evaluation
Transformed industry

Helped society

We can do better

We Can Do It!

[- f &

“If | have seen further it is by standing on the
shoulders of giants.”

-Isaac Newton

