
Unreproducible tests

Successes, failures, and lessons in

testing and verification

Michael D. Ernst

University of Washington

Presented at ICST

20 April 2012

Reproducibility:

The linchpin of verification

A test should behave deterministically

– For detecting failures

– For debugging

– For providing confidence

A proof must be independently verifiable

Tool support: test frameworks, mocking, capture-
replay, proof assistants, …

Reproducibility:

The linchpin of research

Research:

– A search for scientific truth

– Should be testable (falsifiable) -Karl Popper

Example: evaluation of a tool or methodology

Bad news: Much research

in testing and verification

fails this scientific standard

Industrial practice is little better

“Variability and reproducibility in software

engineering: A study of four companies that

developed the same system”, Anda et al., 2008

A personal embarrassment

“Finding Latent Code Errors via Machine

Learning over Program Executions”, ICSE 2004

Indicates bug-prone code

Outperforms competitors; 50x better than random

Solves open problem

Innovative methods

>100 citations

What went wrong

• Tried lots of machine learning techniques

– Went with the one that worked

– Output is actionable, but no explanatory power

– Explanatory models were baffling

• Unable to reproduce

– Despite availability of source code & experiments

• No malfeasance, but not enough care

How can we prevent such problems?

Outline

• Examples of non-reproducibility

• Causes of non-reproducibility

• Is non-reproducibility a problem?

• Achieving reproducibility

Random vs. systematic test generation

• Random is worse

[Ferguson 1996, Csallner 2005, …]

• Random is better

[Dickinson 2001, Pacheco 2009]

• Mixed

[Hamlet 1990, D’Amorim 2006, Pacheco 2007, Qu

2008]

Test coverage

• Test-driven development improves outcomes

[Franz 94, George 2004]

• Unit testing ROI is 245%-1066% [IPL 2004]

• Abandoned in practice [Robinson 2011]

Type systems

• Static typing is better

– [Gannon 1977, Morris 1978, Pretchelt 1998]

– the Haskell crowd

• Dynamic typing is better

– [Hanenburg 2010]

– the PHP/Python/JavaScript/Ruby crowd

• Many attempts to combine them

– Soft typing, inference

– Gradual/hybrid typing

ICSE 2011

Programming styles

• Introductory programming classes:

– Objects first [Kolling 2001, Decker 2003, …]

– Objects later [Reges 2006, …]

– Makes no difference [Ehlert 2009, Schulte 2010, …]

• Object-oriented programming

• Functional languages

– Yahoo! Store originally in Lisp

– Facebook chat widget originally in Erlang

More examples

• Formal methods from the beginning [Barnes

1997]

• Extreme programming [Beck 1999]

• Testing methodologies

Causes of non-reproducibility

1. Some other factor dominates the

experimental effect

Threats to validity

• construct (correct measurements & statistics)

• internal (alternative explanations & confounds)

• external (generalize beyond subjects)

• reliability (reproduce)

People

• Abilities

• Knowledge

• Motivation

We can learn a lot even from studies of college

students

Other experimental subjects
(besides people)

• “Subsetting the SPEC CPU2006 benchmark

suite” [Phansalkar 2007]

• “Experiments with subsetting benchmark

suites” [Vandierendonck 2005]

• “The use and abuse of SPEC” [Hennessey

2003]

Siemens suite

space

program

Implementation

• Every evaluation is of an implementation
– Tool, instantiation of a process such as XP or TDD, etc.

– You hope it generalizes to a technique

• Your tool
– Tuned to specific problems or programs

• Competing tool
– Strawman implementation

• Example: random testing

– Tool is mismatched to the task
• Example: clone detection [ICSE 2012]

– Configuration/setup
• Example: invariant detection

Interpretation of results

• Improper/missing statistical analysis

• Statistical flukes

– needs to have an explanation

– tried too many things

• Subjective bias

Biases

• Hawthorne effect (observer effect)

• Friendly users, underestimate effort

• Sloppiness

• Fraud

– (Compare to sloppiness)

Reasons not to totemize reproducibility

Reproducibility is not always paramount

Reproducibility inhibits innovation

• Reproducibility adds cost

– Small increment for any project

• Don’t over-engineer

– If it’s not tested, it is not correct

– Are your results important enough to be correct?

• Expectation of reproducibility affects research

– Reproducibility is a good way to get your paper

accepted

Our field is young

• It takes decades to transition from research to

practice

– True but irrelevant

• Lessons and generalizations will

appear in time

– How will they appear?

– Do we want them to appear faster?

• The field is still developing & learning

– Statistics? Study design?

A novel idea

is worthy of dissemination…

… without evaluation

… without artifacts

Possibly true, but irrelevant

“Results, not ideas.”

-Craig Chambers

Positive deviance

• A difference in outcomes indicates:

– an important factor

– a too-general question

• Celebrate differences

and seek lessons in them

– Yes, but start

understanding earlier

How to achieve reproducibility

Definitions

• Reproducible: an independent party can

– follow the same steps, and

– obtain similar results

• Generalizable: similar results, in a different

context

• Credible: the audience believes the results

Give all the details

• Goal: a master's student can reproduce the

results

– Open-source tools and data

– Use the Web or a TR as appropriate

• Takes extra work

– Choice: science vs. extra publications vs. secrecy

• Don’t suppress unfavorable data

Admit non-generalizability

• You cannot to control for every factor

• What do you expect to generalize?

• Why?

• Did you try it?

– Did you test your hypothesis?

“Threats to validity” section

considered dangerous

Often omits the real threats – cargo-cult science

It's better to discuss as you go along

Summarize in conclusions

“Our experiments use a suite of 7 programs

and may not generalize to other programs.”

Explain yourself

• No “I did it” research

• Explain each result/effect

– or admit you don’t know

• What was hard or unexpected?

• Why didn’t others do this before?

• Make your conclusions actionable

Research papers are software too

• “If it isn’t tested, it’s probably broken.”

• Have you tested your code?

• Have you tested generalizability?

• Act like your results matter

Automate/script everything

There should be no manual steps (Excel, etc.)

Except during exploratory analysis

• Prevents mistakes

• Enables replication

• Good if data changes

This costs no extra time in the long run

(Do you believe that? Why?)

Packaging a virtual machine

• Reproducibility, but not generalizability

• Hard to combine two such tools

• Partial credit

Measure and compare

• Actually measure

– Compare to other work

– Reuse data where possible

• Report statistical results, not just averages

• Explain differences

Look for measureable and repeatable effects

– 1% programmer productivity would matter!

– It won't be visible

Focus

• Don't bury the reader in details

• Don't report irrelevant measures

• Not every question needs to be answered

• Not every question needs to be answered

numerically

Usability

• Is your setup only usable by the authors?

• Do you want others to extend the work?

• Pros and cons of realistic engineering

– Engineering effort

– Learning from users

– Re-use (citations)

Reproducibility, not reproduction

• Not every research result must be reproduced

• All results should be reproducible

• Your research answers some specific (small)

question

• Seek reproducibility in that context

Blur the lines

• Researchers should be practitioners

– design, write, read, and test code!

– and more besides, of course

• Practitioners should be open to new ways of

working

– Settling for “best practices” is settling for

mediocrity

We are doing a great job

Research in testing and verification:

• Thriving research community

• Influence beyond this community

• Great ideas

• Practical tools

• Much good evaluation

• Transformed industry

• Helped society

We can do better

“If I have seen further it is by standing on the

shoulders of giants.”

-Isaac Newton

