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ABSTRACT
To realistically evaluate a software testing or debugging technique,
it must be run on defects and tests that are characteristic of those a
developer would encounter in practice. For example, to determine
the utility of a fault localization or automated program repair tech-
nique, it could be run on real defects from a bug tracking system,
using real tests that are committed to the version control repository
along with the fixes. Although such a methodology uses real tests,
it may not use tests that are characteristic of the information a
developer or tool would have in practice. The tests that a developer
commits after fixing a defect may encode more information than
was available to the developer when initially diagnosing the defect.

This paper compares, both quantitatively and qualitatively, the
developer-provided tests committed along with fixes (as found
in the version control repository) versus the user-provided tests
extracted from bug reports (as found in the issue tracker). It pro-
vides evidence that developer-provided tests are more targeted
toward the defect and encode more information than user-provided
tests. For fault localization, developer-provided tests overestimate
a technique’s ability to rank a defective statement in the list of
the top-n most suspicious statements. For automated program re-
pair, developer-provided tests overestimate a technique’s ability to
(efficiently) generate correct patches—user-provided tests lead to
fewer correct patches and increased repair time. This paper also
provides suggestions for improving the design and evaluation of
fault localization and automated program repair techniques.
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1 INTRODUCTION
Researchers have created dozens of fault localization (FL) tech-
niques [36] and automated program repair (APR) techniques [25].
These techniques represent promising progress toward the long-
term goal of automatically locating and fixing defects in software
programs. Although these techniques take diverse approaches, their
inputs are generally the same: a defective program and a set of tests—
at least one of which is a triggering test (i.e., a test that fails on the
defective program but passes when the defect is fixed).

A FL or APR technique is valuable if it workswell when using real
defects and triggering tests. Many older empirical evaluations of FL
techniques used artificial defects and/or artificial triggering tests.
The most-used dataset is the Siemens suite [12], which contains
artificial defects for 7 small programs (136–456 lines of code). The
corresponding test suites for these programs contain 1052–5542
tests each and were created by researchers to satisfy unrealistically
strong adequacy criteria. More recently, researchers have begun
to perform more realistic FL and APR experiments, using datasets
of real defects and tests derived from version control history (e.g.,
Defects4J [16] or ManyBugs [9]). Defects4J, the dataset used in this
paper, contains a developer-provided triggering test for each defect,
derived from a version control system commit that is linked to a
bug report in an issue tracker.

The starting point for fixing a reported bug is the bug report,
which may or may not include a user-provided triggering test. A de-
veloper acquires a deeper understanding of a bugwhile reproducing,
localizing, and fixing it. Finally, the developer commits a bug fix and
triggering tests that encode the developer’s knowledge. Relative to
the original bug report, these developer-provided triggering tests
may be more extensive, more focused, or more likely to test the root
cause. In practice, a FL or APR tool will be run on user-provided
triggering tests that appear in bug reports. Developer-provided
triggering tests may reduce the search space for the bug, and hence
evaluating a FL or APR tool on developer-provided triggering tests
may yield inaccurate results.

Previous evaluations (cf., [25, 36]) using datasets constructed
from version control history implicitly assumed that developer-
provided triggering tests are characteristic of user-provided trigger-
ing tests from bug reports, which are available before the defect is
localized and fixed. However, it is possible that an evaluation of FL
and APR techniques on user-provided triggering tests would yield
different outcomes than previous evaluations. If so, previous rank-
ings and absolute performance results of FL and APR techniques
would need to be revised, and practitioners and researchers should
choose different techniques to use and improve. It is also possible
that an evaluation of FL and APR techniques on user-provided trig-
gering tests would yield the same outcomes, thus resolving any
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uncertainty. Either result is of significant scientific interest. As Rizzi
et al. note in their paper on Klee [32], unexamined assumptions can
result in questionable research claims and wasted research effort.

This paper seeks to quantitatively and qualitatively compare trig-
gering tests in bug reports against those that developers commit to-
gether with bug fixes. Specifically, it considers two types of trigger-
ing tests for the Defects4J dataset: (1) user-provided triggering tests
reflecting knowledge contained in the initial bug reports, and (2)
developer-provided triggering tests possibly written after the fix and
obtained from the version control system. This paper further inves-
tigates the effect of the type of triggering test on the effectiveness of
FL andAPR techniques. The experiments are based on six previously
studied FL techniques and two previously studied APR techniques.
This paper answers the following four high-level questions:

(1) Do user-provided and developer-provided triggering tests
differ in terms of size, code coverage, and assertion strength?

(2) Does the type of the triggering test affect the performance
of automated fault localization techniques?

(3) Does the type of the triggering test affect the performance
of automated program repair techniques?

(4) Does test separation (i.e., creating a new, separate triggering
test vs. augmenting an existing test) affect the performance of
automated fault localization and program repair techniques?

This paper’s main conclusions are as follows:
(1) Developers adopted only 20% of user-provided triggering

tests as submitted in bug reports; usually, developers commit
a more specific triggering test along with the bug fix. As a
result, developer-provided triggering tests differ significantly
from user-provided triggering tests in terms of size, code
coverage, and assertion strength.

(2) Developer-provided triggering tests overestimate absolute
FL performance, in particular the ability to rank a faulty
statement in the list of the top-n most suspicious statements.
Differences in FL performance between techniques are in-
significant for developer-provided and user-provided trig-
gering tests.

(3) Developer-provided triggering tests overestimate the effec-
tiveness of APR techniques: user-provided triggering tests
lead to fewer correct patches and increased repair time.

(4) Developers merged the defect-triggering functionality into
an existing test for 22% of the defects. Test separation im-
proves FL performance for these defects.

This paper’s contributions and organization are as follows:
• A publicly available set of 100 user-provided triggering tests
for the Defects4J dataset (section 3).

• A quantitative and qualitative comparison of the character-
istics of user-provided and developer-provided triggering
tests (section 4).

• An empirical study on the effect of the type of triggering
test on automated fault localization (section 5.1).

• An empirical study on the effect of the type of triggering
test on automated program repair (section 5.2).

• An empirical study on the effect of test separation on auto-
mated fault localization and program repair (section 5.3).

• A discussion of implications and an outline of possible re-
search directions (section 6).

@Test
public void userTest() throws Exception {

assertEquals("\uD83D\uDE30", StringEscapeUtils.escapeCsv("\uD83D\uDE30"));
}

(a) User-provided triggering test, extracted from the bug report.

249 @Test
250 public void testLang857() throws Exception {
251 assertEquals("\uD83D\uDE30", StringEscapeUtils.escapeCsv("\uD83D\uDE30"));
252 // Examples from https://en.wikipedia.org/wiki/UTF-16
253 assertEquals("\uD800\uDC00", StringEscapeUtils.escapeCsv("\uD800\uDC00"));
254 assertEquals("\uD834\uDD1E", StringEscapeUtils.escapeCsv("\uD834\uDD1E"));
255 assertEquals("\uDBFF\uDFFD", StringEscapeUtils.escapeCsv("\uDBFF\uDFFD"));
256 }

(b) Developer-provided triggering test.

466 public abstract class CharSequenceTranslator {

.

.

. for (int pt = 0; pt < consumed; pt++) {
476 - pos += Character.charCount(Character.codePointAt(input, pt));

477 + pos += Character.charCount(Character.codePointAt(input, pos));
478 }
479 }
480 }

(c) The committed bug fix.

Figure 1: Triggering tests and bug fix for the Lang-6 defect
in Defects4J. The developer adopted the single failing input
provided by the user on line 251, but added three additional
calls to escapeCsv.

2 MOTIVATING EXAMPLE
To illustrate the differences between user-provided and developer-
provided triggering tests, consider the Lang-61 defect from the
Defects4J dataset. A user reported the following issue:
I found that there is bad surrogate pair handling in the CharSequenceTranslator.
This is a simple test case for this problem. \uD83D\uDE30 is a surrogate pair.
The user also provided a triggering test (fig. 1a), explained that this
test produces a StringIndexOutOfBoundsException, and attached a
patch that fixes the bug. A developer addressed this issue and com-
mitted a bug fix (fig. 1c) alongwith a different triggering test (fig. 1b),
which contains four calls to escapeCsv. This test includes the one
test input provided by the user, plus three additional inputs.

In this case, the user-provided test differs from the final test that
the developer committed after fixing the bug: the user-provided test
is a single example, whereas the developer-provided test is more
comprehensive. These differences may have a significant effect on
the absolute and relative performance of FL or APR techniques.

3 SUBJECTS
Our study employs the Defects4J dataset, version 1.1.0. Defects4J
contains 395 defects, each with a developer commit that fixes it
and at least one triggering test that fails before the fix but passes
after the fix. We omitted one of Defects4J’s projects, Chart, because
it contains too few bugs with issue tracker entries to be used in
section 3.2; this left 5 projects and 369 bugs, summarized in table 1.

3.1 Linking Defects to Bug Reports
Each bug-fixing commit in Defects4J references an issue-tracker
ID, which corresponds to a closed issue that is labeled as a bug. For
each defect in Defects4J, we automatically extracted the referenced
issue-tracker ID from the commit log and built a mapping from
Defects4J’s bug ID to the corresponding issue-tracker ID and URL.
1Issue tracker entry: https://issues.apache.org/jira/browse/LANG-857

https://issues.apache.org/jira/browse/LANG-857
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Table 1: Subjects from the Defects4J dataset.
The lines of code (LOC), number of JUnit tests, and number of assertions in
JUnit tests, reported for the most recent project version in Defects4J. All
LOC counts in the paper are non-comment, non-blank lines, measured with
sloccount (http://www.dwheeler.com/sloccount).

Project Code LOC Test LOC @Test assert

Closure 91K 85K 7,929 8,936
Lang 22K 38K 2,242 13,117
Math 84K 86K 3,581 9,512
Mockito 11K 20K 1,457 1,882
Time 28K 53K 4,132 17,658

Total 236K 282K 19,341 51,105

3.2 Extracting User-Provided Triggering Tests
For 100 defects in the Defects4J dataset, wemanually extracted user-
provided triggering tests from the issue trackers. In some cases the
bug report already contained an executable test case. In other cases,
we added scaffolding to code found within the bug report, such
as a method body, import statements, variable declarations, and
@Test annotations, or we transformed printf/println statements
and stated assertions about the output into assert statements. In
yet other cases, we elaborated an English description into a test
case. The result is a single, triggering JUnit test case, which fails on
the buggy version and passes on the fixed version of the defect.

For each project in Defects4J, we arbitrarily selected defects and
examined the corresponding bug reports until we had extracted 20
tests. We examined 118 bug reports and discarded 18, or 15%. In 12
cases, the user provided no test or the user-provided test did not
fail, but nonetheless the developers accepted the bug report and
committed a fix. In 6 cases, the user provided a test that failed and
the developers committed a fix, but the user-provided test continued
to fail—in other words, the developer did not fix the user’s test. An
example of the latter case is Mockito-292. The fix-commit log de-
scribes a fix (Fix for issue 229 in the describeTo phase of the Same
matcher), but the commit does not pass the user-provided test.

When a developer fixes a bug or runs a FL or APR tool, a first
step is to incorporate the user-provided test into the project’s test
suite. This enables the developer to reproduce and investigate the
bug, and to ensure that no regression bugs are introduced. We
performed this step manually, integrating the user-provided test
into the pre-fix version of the developer’s test suite at the same
location the developer modified the test suite in the bug-fixing
commit. This means that if the developer added a new triggering
test in the commit, we added the user-provided test as a separate
test; if the developer merged the defect-triggering functionality into
an existing test, we merged the user-provided test into the same
test at the same location. This enables a fair comparison between
(1) the information the developer had available before fixing the
bug, which is the previous test suite plus the user’s test, and (2)
the final developer-provided test suite, which might incorporate
knowledge the developer obtained during the bug-fixing process.

An automated step verified that each extracted user-provided
test triggers the defect on the buggy version and passes on the fixed
version—in isolation and integrated into the pre-fix test suite.

2Issue tracker entry: https://code.google.com/archive/p/mockito/issues/229

Table 2: Summary statistics about triggering tests.
The number of assertions is underapproximated for developer-provided
tests—each test harness method, which may contain multiple assert state-
ments, counts as a single assertion.

Project Developer-provided User-provided

min max mean median min max mean median

Number of tests
Closure 1 8 2.6 1 1 1 1.0 1
Lang 1 2 1.4 1 1 1 1.0 1
Math 1 28 3.0 1 1 1 1.0 1
Mockito 1 7 2.2 1.5 1 1 1.0 1
Time 1 8 2.5 1 1 1 1.0 1

Number of assertions
Closure 1 7 2.2 2 1 2 1.5 1
Lang 0 26 4.1 2 1 8 1.6 1
Math 0 4 1.5 1 0 4 1.3 1
Mockito 0 3 1.3 1 0 5 1.3 1
Time 0 17 6.2 5 0 5 1.4 1

Test LOC
Closure 3 61 16.9 11 7 25 14.9 14
Lang 3 40 14.7 10 3 27 11.1 10
Math 3 27 12.4 12 3 45 10.7 7
Mockito 3 40 11.1 8 4 30 13.7 12
Time 6 48 24.0 24.5 3 75 17.7 11.5

4 QUANTITATIVE & QUALITATIVE ANALYSIS
Our overall goal is to compare defect-triggering tests provided by a
user (submitted along with a reported issue) and defect-triggering
tests provided by a developer (committed to the version control
system along with a fix). This section reports on our quantitative
and qualitative analysis of these two types of defect-triggering tests.

4.1 Quantitative Analysis
Methodology For 100 defects, we computed the following test
characteristics for the user-provided and developer-provided tests:

Test size:Wemeasured lines of code, number of assertions (assert,
assertEquals, etc.), and number of test cases.

Code coverage: We measured statement coverage on the class(es)
changed by the bug fix (modified classes). We measured coverage on
the buggy program version, as FL and APR techniques do. Coverage
measurements on the modified classes indicate how targeted a trig-
gering test is—how comprehensively it covers the defective class.

Mutation score: We measured the mutation score on the patched
classes of the fixed program version, using Major [15] v1.3.2 with its
default settings. Computing the mutation score for all classes would
be computationally expensive, and the average mutation score
across many classes would wash out differences on the patched
classes. Specifically, we divided the number of mutants detected by a
triggering test by the number of mutants covered by that test, which
indicates the strength of the triggering test’s assertions [10, 18].

We performed a paired t-test (paired over the set of defects) and
computed the Cohen’s d effect size for each measure and project.
We chose parametric statistical measures for statistical power, given
a relatively small sample size of 20 defects per project, and because
we did not observe serious violations of normality.

http://www.dwheeler.com/sloccount
https://code.google.com/archive/p/mockito/issues/229
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(a) Statement coverage ratios and mutation scores for the developer-
provided and user-provided tests.

Ratio Closure Lang Math Mockito Time

Coverage —— —— 0.43* 0.39* ——
Mutation 0.41* 0.51** 0.65*** —— 0.44*

(b) Summary of Figure 2a showing which differences are statistically and
practically significant. The numbers are Cohen’s d effect size (small: <
.5, medium: < .8, or large: >= .8), and the asterisks indicate statistical
significance (*: p < .1; **: p < .05; ***: p < .01). Entries with a dash
indicate a statistically insignificant difference.

Figure 2: Differences in code coverage ratios and mutation
scores between developer-provided and user-provided tests.

Results On average, developer-provided tests contain more lines
of code and assertions for all projects, except Mockito. Table 2
summarizes test quantity, size, and strength (assertions). All defects
have only one user-provided triggering test, and the majority of
defects have one developer-provided triggering test.

Figure 2 shows both code coverage and mutation scores. Most
user-provided tests are less targeted to the defect: they cover more
code in the defective class, even though they are generally smaller
(table 2). Most user-provided tests have weaker assertions: they
have a lower mutation score. The differences are consistent, but
not statistically significant for each individual project.

4.2 Qualitative Analysis
We performed a qualitative analysis to characterize the developer-
provided and user-provided tests, and their relationship.
Methodology We manually analyzed all triggering tests and
corresponding issue-tracker entries. We determined the following
characteristics, which are summarized in Table 3:

• Project: What project does the issue report pertain to?
• Reproducibility: Can we reproduce the submitted issue and
create a triggering test from the bug report using the method-
ology of section 3.2? We may not be able to reproduce an is-
sue because the submitter provided no test, the user-provided
test passes on the buggy version, or the user-provided test
fails on the fixed version.

• Clarity: Is the issue clearly and unambiguously described?
Possible values are “Low” (a vague verbal description of the
problem, without inputs or outputs), “Medium” (a description
of output, such as a stack trace, but no inputs), or “High” (a

Table 3: Characteristics of the user-provided tests.

Characteristic Possible values

Project Closure, Lang, Math, Mockito, Time
Reproducibility Yes, No Test, Passes Buggy, Fails Fixed
Clarity Low, Medium, High
Executability No, Partial, Full
Adoption No, As Is, Minimized, Augmented
New Test New, Existing, Both
Submitter User, Developer
Patch No, Yes

complete test case with inputs and outputs). This indicates
the conceptual difficulty of creating a triggering test.

• Executability: Does the triggering test execute or does it
need further work to turn into a working test case? This
indicates the mechanical, non-conceptual effort of creating
a triggering test. Possible values are “No” (no source code
provided), “Partial” (source code fragment that might be
missing imports, method declarations, etc.), or “Full” (copy-
pasteable source code).

• Adoption (of instructions): This compares the instructions
(non-assert statements) in the user-provided test to the in-
structions in the developer-provided test. The developer-
provided test might be completely unrelated to the user-
provided one, it might have the same instructions, or it might
be a variant of the user-provided test. For the latter, it might
contain additional instructions, omit some, or both.

• Adoption (of assertions) This compares the assertions in the
user-provided test to the assertions in the developer-provided
test. The possible values are the same as for Adoption (of in-
structions).

• New Test: Did the developer create a new test or merge the
defect-triggering functionality into an existing test?

• Submitter: Is the issue submitter a user or a developer of the
project? We considered anyone with at least five commits to
the code base to be a developer.

• Patch: Did the report include a proposed fix for the issue?

Results Table 4 summarizes the characteristics. The majority of
the reported issues had high clarity, and 87% of the issues included
a partially or fully executable test case. For 78% of the issues, a
developer added a new triggering test, but only 20% of the user-
provided tests were adopted as is. Figures 1 and 3 give concrete
examples for each category of adoption:

• No (fig. 3a): The developer implemented a more targeted test,
which uses different inputs, and added assertions.

• As is (fig. 3b): The user-provided test throws an unexpected
exception. The developer adopted this concise test as is.

• Minimization (fig. 3c): The OpenMapRealMatrix instantiation
should cause an integer overflow exception. The developer
minimized this test by removing five out of six lines and
declaring the expected exception. There is no need for the
additional code, which should be unreachable.

• Augmentation (fig. 1): The motivating example in section 2
shows an augmented user-provided test.
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Table 4: Summary of qualitative characteristics per project and submitter type (user vs. developer).

Project Tests Clarity Executability Adoption New test Patch? Submitter

Instructions Assertions

Lo Med Hi No Part Full No As is Min Aug No As is Min Aug New Exist Both No Yes User Dev

Closure 20 0 0 20 0 11 9 4 2 5 9 3 4 0 13 13 3 4 20 0 20 0
Lang 20 0 5 15 2 14 4 2 3 1 14 2 4 1 13 14 4 2 14 6 13 7
Math 20 0 2 18 3 11 6 1 8 5 6 3 5 2 10 15 4 1 12 8 19 1
Mockito 20 5 6 9 4 14 2 5 7 3 5 7 8 2 3 18 1 1 16 4 17 3
Time 20 4 0 16 4 11 5 7 0 3 10 6 2 1 11 18 2 0 18 2 19 1

Total 100 9 13 78 13 61 26 19 20 17 44 21 23 6 50 78 14 8 80 20 88 12

Submitter Tests Clarity Executability Adoption New test Patch?

Instructions Assertions

Lo Med Hi No Part Full No As is Min Aug No As is Min Aug New Exist Both No Yes

User 88 6% 10% 84% 9% 63% 28% 19% 19% 18% 43% 22% 24% 6% 49% 78% 13% 9% 80% 20%
Dev 12 33% 33% 33% 42% 50% 8% 17% 25% 8% 50% 17% 17% 8% 58% 75% 25% 0% 83% 17%

1 - CharSequence cs1 = "1 < 2";

2 - CharSequence cs2 = CharBuffer.wrap("1 < 2".toCharArray ());

3 - System.out.println(StringEscapeUtils.ESCAPE_HTML4.translate(cs1));

4 - System.out.println(StringEscapeUtils.ESCAPE_HTML4.translate(cs2));

5 + final LookupTranslator lt = new LookupTranslator(

6 + new CharSequence [][] { { new StringBuffer("one"),

7 + new StringBuffer("two")}});

8 + final StringWriter out = new StringWriter ();

9 + final int result = lt.translate(

10 + new StringBuffer("one"), 0, out);

11 + assertEquals("Incorrect codepoint consumption", 3, result );

12 + assertEquals("Incorrect value", "two", out.toString ());

(a) No adoption (Lang-4)
1 StrBuilder sb = new StrBuilder(

2 "\n%BLAH%\nDo more stuff\neven more stuff\n%BLAH%\n");

3 sb.deleteAll("\n%BLAH%");

4 assertEquals("\nDo more stuff\neven more stuff\n", sb.toString ());

(b) Adopted as is (Lang-61)
1 - OpenMapRealMatrix m =

2 new OpenMapRealMatrix (3, Integer.MAX_VALUE );

3 - m.setEntry(0, 0, 2);

4 - m.setEntry(2, 2, 3);

5 - // Should print "2.0", but instead it prints "3.0"

6 - System.out.println(m.getEntry(0, 0));

(c) Adopted after minimization (Math-45)

Figure 3: Examples for test adoption.
Differences between user-provided and developer-provided tests are shown
in unified diff format. Method signatures are omitted, and the given defect
IDs (e.g., Lang-4) refer to Defects4J defects.

5 EFFECT ON AUTOMATED DEBUGGING
We conducted an experiment using six fault localization and two
automated program repair techniques to investigate whether the ob-
served differences between user-provided and developer-provided
triggering tests affect their accuracy. Recall from section 3.2 that we
obtained the non-triggering tests and the developer-provided trig-
gering tests from the version control repository, and we obtained
the user-provided triggering tests from the issue tracker.

5.1 Effect on Fault Localization
Methodology Our analysis follows the evaluation methodol-
ogy proposed by Pearson et al. [30] and reuses its experimental
infrastructure. Specifically, our analysis considers the following FL
techniques, debugging scenario, and effectiveness measure:

FL techniques: We selected six widely studied FL techniques:
Barinel, DStar, Jaccard, Ochiai, Op2, and Tarantula.

Debugging scenario: We consider the “best-case” debugging sce-
nario: localizing any one defective statement is sufficient [30].

FL effectiveness: A FL technique outputs a list of statements
ranked by suspiciousness; its absolute score is the rank of the first
defective statement in that list. We measured the absolute score
for each FL technique and defect. Based on the absolute score, we
measured top-n, the best current measure of FL effectiveness, which
determines how often a technique reports the first defective state-
ment in the top-n suggested statements. According to two recent
studies, top-5 and top-10 are relevant for practitioners [20], and
top-200 is relevant for APR [23].

We ran each FL technique twice—once with the developer-
provided triggering tests and once with the user-provided trig-
gering tests, each run together with all non-triggering tests. We ran
it on the defective version, which is the version before the commit
with the bug fix. Each triggering test fails.
Results FL techniques consistently perform worse for user-
provided tests. Figures 4 and 5 show differences between developer-
provided and user-provided triggering tests for each FL technique.

Figure 4 shows a density plot of the absolute scores. For each
FL technique, the scores are statistically significantly worse when
using user-provided tests, and the effect size is small (paired t-test;
p < 0.01; Cohen’s d between 0.2 and 0.5). We did not observe
project-specific differences (those plots are omitted for space).

Figure 5 shows what fraction of all defects each FL technique
can usefully localize. More specifically, it shows what fraction have
a score of ≤ 5, ≤ 10, and ≤ 200. The top-n performance of all
FL techniques is 5–14% less for user-provided tests. We observed
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Figure 4: Comparing fault localization performance when using developer-provided vs. user-provided triggering tests.
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Figure 5: Comparing fault localization performance when
using developer-provided vs. user-provided tests. Top-n is
the percentage of defects whose defective statements appear
within the top n of the technique’s suspiciousness ranking.

some differences in relative performance when comparing FL tech-
niques. For example, when considering top-5, Jaccard and Ochiai
perform best on developer-provided tests, but Barinel and Taran-
tula perform best on user-provided tests. However, none of these
differences is statistically significant. Overall, our results corrobo-
rate previous findings that most spectrum-based FL techniques are
equally effective—the choice of the scoring formula matters little.

5.2 Effect on Automated Program Repair
Methodology Our analysis considers the following APR tech-
niques and effectiveness measures for 18 defects.

APR techniques: We selected two APR techniques that were previ-
ously evaluated on Defects4J, using developer-provided triggering
tests: jGenProg/astor [24], a search-based repair technique, and
ACS [38], a synthesis-based technique. We used the implementa-
tions provided by the techniques’ authors3.

APR effectiveness: To evaluate the differences between developer-
provided and user-provided tests, we selected three measures: (1)
the ability to generate a t-adequate (test-suite-adequate) patch that
passes all tests, (2) patch correctness, and (3) repair time. To deter-
mine correctness, we applied the same criteria used by previous
evaluations—manual inspection and comparisonwith the developer-
committed fix. For repair time, we averaged the measures over 10
runs, again for consistency [24]. We also inspected the tests and
generated patches to understand how the differences in the tests
affected the patch generation.
3https://github.com/SpoonLabs/astor/, https://github.com/Adobee/ACS

Defects: Of the 100 defects for which we successfully extracted
user-provided triggering tests, ACS or jGenProg generated a patch
for 74. To increase the number of repairable defects for this analysis,
we extracted an additional 11 user-provided triggering tests for the
remaining Defects4J defects that were previously repaired [24, 38].
Overall, we evaluated the APR techniques on 18 defects.

We ran each APR technique twice—once with the developer-
provided triggering tests and oncewith the user-provided triggering
tests, each run together with all non-triggering tests. We adopted
the timeouts reported in the previous evaluations for comparability.
Specifically, we used a 3-hour timeout for jGenProg and for ACS.
Consistent with previous evaluations, we limited the search for a
repair to the defective package. To provide a consistent environment
for the APR experiments, we created Docker images containing
Defects4J and the APR tools, and executed them on a cluster with
controlled resources per job (4GB RAM, 2 CPUs).
Results User-provided tests result in fewer generated patches,
fewer correct patches, and a substantial increase in repair time.
Table 5 gives the results for patch production, patch correctness,
and repair time for jGenProg and ACS.

With developer-provided tests, jGenProg generated a patch for
7 defects—one of which is correct. With user-provided tests, jGen-
Prog generated a patch for 6 defects—none of which is correct. For
Math-2, jGenProg generated the same incorrect patch regardless of
the type of triggering test. For Math-60, jGenProg generated a dif-
ferent incorrect patch. Finally, jGenProg’s repair time substantially
increased with user-provided tests. For example, it increased from
203 to 979 seconds for Math-2, while generating the same incorrect
patch. In two cases, Math-8 and Math-95, the type of triggering test
had no noticeable effect on the repair time. For Math-8, the instruc-
tions in both triggering tests were identical, but the user-provided
test had one less assertion. For Math-95, the developer-provided
test contained more instructions and assertions.

With developer-provided tests, ACS generated a patch for 12
defects—11 of which are correct. With user-provided tests, ACS
generated a patch for 6 defects—5 of which are correct. For Lang-24,
Math-35, Math-82, Math-85, and Math-93, ACS generated a correct
patch regardless of the type of triggering test—in all cases, the
user-provided test was adopted as is. For Math-3, ACS generated
a correct patch with the developer-provided test but an incorrect

4For the 100 defects, prior work [24, 38] reported 9 successful repairs, but we were
unable to replicate a repair for Time-4 and Math-7, using jGenProg.

https://github.com/SpoonLabs/astor/
https://github.com/Adobee/ACS
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Table 5: Evaluation of patch production (Patch?), patch cor-
rectness (Correct), and repair time in seconds (Time) for
developer-provided and user-provided tests.
Correctness is based on the methodology of previous evaluations: manual
inspection and comparison with developer fix. A patch may be correct or
test suite adequate (t-adeq). Red color indicates most important differences.

Defect Patch? Correct Time Tests
Identical?Dev User Dev User Dev User

Repaired with jGenProg/astor
Math-2 yes yes t-adeq t-adeq 203 979 no
Math-5 yes timeout correct NA 189 NA no
Math-8 yes yes t-adeq t-adeq 242 258 no
Math-49 yes yes t-adeq t-adeq 321 2288 no
Math-60 yes yes t-adeq t-adeq 25 82 no
Math-80 yes yes t-adeq t-adeq 25 same yes
Math-95 yes yes t-adeq t-adeq 18 20 no

Repaired with ACS
Lang-7 yes error correct NA 178 NA no
Lang-24 yes yes correct correct 148 same yes
Math-3 yes yes correct t-adeq 503 482 no
Math-5 yes timeout correct NA 910 NA no
Math-25 yes timeout correct NA 1751 NA no
Math-35 yes yes correct correct 1844 same yes
Math-82 yes yes correct correct 1356 same yes
Math-85 yes yes correct correct 83 same yes
Math-93 yes yes correct correct 289 same yes
Math-97 yes error t-adeq NA 313 NA no
Math-99 yes error correct NA 846 NA no
Time-15 yes timeout correct NA 224 NA no

one with the user-provided test. Overall, the precision of ACS with
user-provided tests drops from 92% to 42%.

After inspecting the tests and generated patches, we observed
that even small differences in failing inputs can have large differ-
ences in patch correctness. For example, in Math-3, the developer-
provided test contains the following assertion:
assertEquals(a[0] * b[0], MathArrays.linearCombination(a, b), 0d))

As a result, the following correct patch is generated:
if (len == 1) {return a[0] * b[0];}

In contrast, the user-provided test contains the following assertion:
assertEquals(1, MathArrays.linearCombination(a, b), 1e-10))

As a result, the following incorrect patch is generated:
if (len == 1) {return 1;}

5.3 Effect of Test Separation
In 14% of cases, developers added instructions and/or assertions to
an existing test (section 4.2). Would FL and APR tools have worked
better if developers had created new tests instead?
Methodology For each of the 14 defects (Table 4) for which
the developer extended an existing test, we extracted the defect-
triggering functionality of our merged user-provided test into a new,
separate triggering test—keeping the non-triggering functionality
in the existing test. In other words, we added the user-provided
triggering test as a separate test to the pre-fix version of the existing
developer test suite. This simulates what the developer could have

done instead. (This might have undermined the organization of the
test suite, but we do not consider such costs here, and a developer
could put the new test in amore logical spot after fixing the bug.)We
only considered the user-provided triggering tests for this analysis
because they are the information available before the bug fix.

We repeated the experiments described in sections 5.1 and 5.2 for
the 14 defects to compare the merged and separate user-provided
triggering tests. The overall goal is to study the benefits of creating
a new, small, more focused test vs. augmenting an existing test—
that is, the effect of test separation on the performance of the FL
and APR techniques.
Results All FL techniques consistently score better on separate
triggering tests. There is a particularly large increase for top-5
(from 6% to 38%), but not top-10, which suggests that many rank-
6–10 defects are now in the top-5. Figures 6 and 7 show relative
differences between merged and separate user-provided triggering
tests for each FL technique.

Only two defects (Lang-7 and Lang-24) considered in section 5.2
had a merged user-provided test. For Lang-7, ACS failed to gen-
erate a patch, using merged or separate user-provided tests. For
Lang-24, ACS generated the same correct patch, using merged or
separate user-provided tests. The boosted FL performance of sepa-
rate triggering tests may benefit jGenProg, and search-based APR
in general; we leave a deeper investigation for future work.

6 DISCUSSION
This section discusses implications of our results and observations
from our study on fault localization and automated program re-
pair research. It further outlines research directions and discusses
limitations and threats to validity.

6.1 Implications for Automated Debugging
Fault Localization A significant amount of effort has been
devoted to finding better FL techniques, and some of these novel
techniques were reportedly effective in evaluations on artificial
faults. However, when evaluated on real faults, the best performing
FL technique changes and differences between FL techniques are
mostly negligible [19, 30]. Our results confirm prior findings and
suggest that evaluating FL techniques on real faults and user-
provided triggering tests further diminishes these already small
differences. For developer-provided tests, there is a 7% performance
difference between the best and worst FL technique, considering the
top-5 measure. For user-provided tests, this difference drops to 1%.

A concrete recommendation for improving FL techniques is to
separate triggering tests into as many distinct tests as possible.
We conjecture that merged tests yield poor FL performance for
two reasons. First, a FL technique might not be able to effectively
distinguish between defective and non-defective code when run
with a large triggering test that achieves high code coverage. Second,
once a triggering test fails, the remaining statements and assertions
of that test are not executed, and hence cannot provide information
about whether these would succeed or fail. FL techniques should
be improved by processing and separating triggering tests before
fault localization is performed. Indeed, this recommendation is
consistent with Xuan and Monperrus’s suggestion of using test case
purification to improve FL techniques [40].
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Figure 6: Comparing fault localization performance when using separate vs. merged triggering tests.

Barinel DStar Jaccard Ochiai Op2 Tarantula

5 10 200 5 10 200 5 10 200 5 10 200 5 10 200 5 10 200

0

25

50

75

100

Top−n ranked faulty statements

R
at

io

Triggering test: Merged test Separate test

Figure 7: Comparing fault localization performance when
using merged vs. separate triggering tests. Top-n is the per-
centage of defectswhose defective statements appearwithin
the top n of the technique’s suspiciousness ranking. Data is
for fixes in which developers augmented an existing test.

Automated Program Repair APR techniques produce fewer
(correct) patches with user-provided triggering tests, which differ
from developer-provided triggering tests in two ways. First, user-
provided tests tend to be less targeted—that is, they achieve higher
code coverage on the defective class. Second, user-provided tests
tend to have weaker assertions. Prior work on APR quality and
applicability (e.g., [27, 34]) primarily focused on code coverage as
an effectiveness measure for the entire test suite used to guide the
repair. Our results suggest that future studies should 1) separately
measure code coverage for triggering and non-triggering tests and
2) measure assertion strength in addition to code coverage. The
latter is particularly important because tests with poor assertions,
even with very high code coverage, are likely to miss many defects,
and hence result in incorrect patches [17, 23].

We observed timeouts and generally an increased repair time
with user-provided triggering tests. Since fault localization is an
integral part of APR techniques, FL performance may constrain
effective repair. For example, researchers often use the top-200
measure for evaluating FL performance in the context of program
repair. Our results for the top-200 measure show a 15% drop in
FL performance when using user-provided tests. This indicates
that when applying APR techniques in practice, their absolute
performance may be much lower than existing benchmarks would
suggest. Indeed, we observed a 4× increase in repair time with
user-provided triggering tests.
Passing pre-fix tests can be wrong Our analysis revealed that
the pre-fix test suite for 7% of the defects (Closure-{1, 85, 86, 89},

Math-{5, 102}, Mockito-6) contained tests that passed on the pre-fix
but failed on the post-fix version of the code. These tests encoded the
wrong specification and needed to be fixed with the code, which the
developer did. The user-provided triggering test for these defects
are all correctly failing on the pre-fix and passing on the post-
fix version. This means that realistic automated program repair is
infeasible for these defects due to contradictory tests. While some
of these defects arguably represent feature requests, others are
examples for tests written to test the current implementation rather
than the specification. APR techniques should account for the fact
that non-triggering tests could be invalid and possibly identify such
tests, which contradict the triggering test(s).

6.2 Implications for Defect Benchmarks
Our findings for Defects4J are likely to affect other defect bench-
marks constructed from version control history. In some cases, the
effects may be even stronger. For example, for APR benchmarks
such as ManyBugs [9], a common assumption is as follows: “We
use all available viable tests, even those added after the version
under consideration, under the assumption that the most recent set
of tests correspond to the most correct known specification of the
program.” Our analysis, which replaces a single developer-provided
triggering test from a single version with the original user-provided
triggering test, suggests that adding many more viable and trigger-
ing tests from the latest version points to the possibility of even
greater inaccuracy in estimating APR performance.

6.3 Differences in Communities by Project
By inspecting the bug reports associated with the defects in De-
fects4J, we had the opportunity to observe different practices and
behaviors associated with different communities.
Closure The users always submitted (partially) executable trig-
gering tests with high clarity due to the requirements set for bug
reporting. Closure is a compiler that optimizes JavaScript code, and
its tests usually map input source code to expected output source
code or compiler errors/warnings. As a consequence, themajority of
bug reports did not have a long conversation, but rather “Closure’s
output is unexpected for the following input source code”, followed
by “Fixed in revision X‘”. All bug reports contained executable code,
but in some cases a user could not provide an expected output, as
there are many ways to generate correct code. The majority of user-
provided tests were adopted after augmentation—very few as-is.
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Lang The users often submitted a minimal triggering test to-
gether with an analysis of the defect or a suggested patch. Com-
pared to other projects, most users seemed to be very knowledge-
able about the internals of the Lang library and put more research
into why each defect was a defect—many bug reports exhibited
long conversations after the initial bug report. As a result, many
user-provided triggering tests were adopted after augmentation.
For example, the bug report for Lang-13 included a patch and fully
executable triggering test, which was still augmented to cover a
void.class case. Developers were very active in submitting bug
reports themselves (35%). However, somewhat surprisingly, devel-
opers were less likely to provide triggering tests in the bug report
and were more likely to file bug reports with poor clarity.
Math The users often submitted a very targeted triggering test
together with a suggested patch, yielding the largest number of
provided patches across all studied projects. In other words, the
users exhibited a strong domain expertise and presumably already
had knowledge about the root cause of the defect. As a result, de-
velopers adopted many user-provided triggering tests as-is or with
minor modifications, yielding the largest number of as-is adoptions
across all studied projects.
Mockito The users often submitted convoluted triggering tests,
because Mockito is a mocking framework and many of its tests
require extensive scaffolding. For example, a test needs to define
a mocked class or interface, attributes and methods of interest,
and mocked behavior in terms of attribute values and method-call
sequences. Given this complexity, the user-provided tests were
often adopted as-is. In other cases, the developer separated the user-
provided triggering test into multiple triggering tests or changed it
to reuse existing scaffolding originally created for other tests.
Time The users often submitted a complete triggering test that
was neither minimized nor targeted toward the defective code. In
other words, the users mostly reported a defect without knowledge
about its root cause. As a result, developers often committed (en-
tirely) different triggering tests, yielding the smallest number of
as-is adoptions across all studied projects. In these cases, it seems
plausible that the developer first localized (and maybe even fixed)
the defect before providing a more specific triggering test. In cases
where the developer partially adopted the user-provided test, (s)he
augmented it with many more assertions.

6.4 Research Directions
Test variants in empirical studies When evaluating FL or APR
techniques against a benchmark, we may be lured by fragile victo-
ries in experimental settings [31] that fail to generalize to realistic
settings. Our results show that even small changes to a trigger-
ing test’s construction (failing input, assertion strength, and test
separation) can largely affect automated debugging effectiveness.

Moving forward, researchers can increase the robustness and
reliability of their evaluations by using variants of triggering tests
with different levels of assertion strength and different instances of
failing inputs. These test variants can be created automatically or
drawn from bug reports. To support this effort, we have augmented
the Defects4J dataset with the ability to run FL and APR technique
evaluations with 100 user-provided triggering tests. Using these
test variants in evaluations will strengthen future implementations
and provide a more realistic view on FL and APR performance.

Automated extraction of triggering tests Despite the valu-
able and structured information contained in a bug report [6], the
process of extracting a test from the report and reproducing the bug
remains a manual one. Moreover, only 26% of the user-provided
triggering tests, found in the inspected bug reports, where fully exe-
cutable. However, an additional 61%were partially executable, mean-
ing that with slight addition of scaffolding (e.g., method body, test
annotations, or import statements), they became fully executable.

A tangible and achievable research goal would be to focus on au-
tomating the process of extracting fully executable tests from partially
executable ones, found in bug reports. Why? Bug reports are often
the first step in the process of fixing a defect, and many benefits can
emerge from automating the extraction of executable triggering
tests. For example, a newly extracted triggering test could initiate
the process of fault localization and program repair—automatically
generating a pull request if a candidate patch was found. The bug
submitter also has the opportunity to gain feedback and improve
the quality of the bug report, e.g., if the bug can not be reproduced.
Furthermore, our analysis showed that for six defects, a user pro-
vided a triggering test and a developer committed a fix, but the
user-provided test continued to fail. In other words, the developer
did not fix the issue reported by the user (e.g., Mockito-29). Au-
tomating the process of test extraction can prevent overlooking a
user-provided triggering test.

What about the remaining 13% of defects for which the bug
report contained only natural text or examples? One promising
direction is to combine neural machine translation with program
synthesis to create a technique that, given a bug report, can synthe-
size an executable triggering test. Neural machine translation has
been successfully used to translate code changes (diffs) to natural
text commit summaries [13]. Similarly, neural machine translation
also has been applied to synthesize simple programs given a natural
language query [22].

6.5 Limitations and Threats to Validity
Construct validity The most important threat to construct va-
lidity relates to the test extraction process. It is possible that we
interpreted something that was not the user’s intention, which
could have been due to poor clarity in the report, or a lack of deep
expertise by the paper authors who interpreted the report. To miti-
gate this threat, we recorded the clarity and executability of every
user-provided test in order to track our perceived understanding of
the bug report (table 4). Most tests (78%) had high clarity. Further-
more, at least two authors of this paper reviewed each qualitative
measurement; whenever they disagreed, the authors examined the
bug report more closely.

For the 13/100 bug reports with “no executability” (table 4),
we read the user bug report and created a triggering test. We
might have misinterpreted the bug report. To mitigate this threat,
three evaluators (not authors of this paper) examined all 100
bug reports and extracted user-provided triggering tests. In 99
cases, their majority vote was that the extracted user-provided
test corresponds to the bug report. The only exception was
for Lang-15, whose bug report was closed with a developer-
provided fix and later re-opened to handle a different bug.

5Issue tracker entry: https://issues.apache.org/jira/browse/LANG-747

https://issues.apache.org/jira/browse/LANG-747
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The triggering test and commit in Defects4J relate to the lat-
ter. This cannot be determined by reading the bug report text
alone; we determined it by examining the commits as well.

In our empirical evaluations, we selected several measures for FL
and APR effectiveness. These measures may not be good proxies for
actual effectiveness and applicability. However, we have selected
the most accepted measures to date. For example, we report on
top-n rather than EXAM scores for FL performance.
Internal validity Threats to internal validity relate to the ques-
tion whether our experiments properly isolate the studied effect
of the type of triggering test. To control for possible confounding
factors, we integrated each user-provided triggering test into the
pre-fix version of the project’s test suite at the exact same location
that the developer modified in the bug-fixing commit. This means,
that all non-triggering tests and the test suite structure remained
identical. Additionally, we investigated the effect of test separation.
External validity A general threat to external validity is the
representativeness of the selected subjects. Our study used open-
source projects from Defects4J, which may not be representative of
other software projects, development processes, or issue reporting
behavior. Most of the studied projects are libraries or developer
tools. The nature of these projects may have encouraged users
to disproportionately submit triggering tests along with the bug
report. We selected 6 widely studied spectrum-based FL techniques,
but other kinds of FL techniques, such as IR-based FL techniques
may perform differently. We selected 2 APR techniques: one search-
based technique and one synthesis-based technique that focuses
on precise repair of program conditions. As a result, our findings
may not apply to other types of APR techniques.

Further, our evaluation makes a conservative assumption: at the
time a developer runs a FL or APR tool, the developer only relies on
the user-provided triggering test. It is possible that this assumption
is wrong: a developer may first write additional triggering tests
before attempting to automatically localize and fix the bug. Our
results may not carry over to such a use case.

7 RELATEDWORK
Rizzi et al. note in their paper on Klee [32] that unexamined as-
sumptions can result in questionable research claims and wasted
research effort. When examined, assumptions about use cases and
developers have been successful in establishing new research di-
rections for the automated debugging community [2, 29]. Similarly,
several researchers have highlighted the importance of consider-
ing contextual factors in empirical studies in software engineering,
such as organization factors [3], sensitivity factors [35], and hu-
man aspects of testing and debugging [7, 29]. This paper examines
implicit assumptions about fault localization and automated pro-
gram repair, focusing on the difference between user-provided and
developer-provided tests.

Fault localization research has a long history of techniques and
evaluations. The most common techniques are spectrum-based [1,
4, 11, 14], but slice-based [39], model-based [37], and mutation-
based [26, 28] techniques have also been proposed and evaluated.
To our knowledge, this study is the first to compare differences in
triggering tests and explain the impact on fault localization and
automated program repair.

Several benchmarks containing seeded or real faults with trigger-
ing tests exists [8, 9, 12, 16]. Some benchmarks are constructed by
hand-seeding or from mutation. Other benchmarks use real bugs
from open source repositories. Defects4J [16] provides 395 real
bugs for 6 real-world programs ranging between 22K and 91K LOC.
Moreover, all 6 programs feature developer-provided tests and each
bug is reproducible with an exposing test case. Other benchmarks,
such as ManyBugs [9], have a more aggressive stance for obtaining
test cases. ManyBugs provides 185 real bugs for 9 real-world pro-
grams ranging between 97K and 1,099K LOC. The programs also
have a comprehensive test suite, with a total of 10,468 test cases.
In the benchmark, all “viable tests”, even those added many years
later, are used when evaluating a defect. Finally, DBGBench [7],
provides a dataset containing 27 real errors and a full debugging
history of professional developers solving defects. Unfortunately,
none of these fault databases provides user-provided tests.

Many studies have investigated how developers file bug reports
and what information they contain. Bug reports contain more than
natural text; they also contain stack traces, tests, source code, and
patches that can be automatically extracted [6]. Including these
elements increases the chances that a bug will be resolved [5].
Rather than using triggering tests, researchers have explored using
information retrieval (IR) techniques to search code by using terms
from bug reports in order to perform fault localization [33] or even
combining IR techniques with spectrum-based techniques [21].

8 CONCLUSION
For decades, researchers have envisioned how automated debug-
ging tools could help developers localize and repair defects in code.
This paper used triggering tests extracted from bug reports to eval-
uate the effectiveness and practicality of these approaches and
observed noticeable differences with previous evaluations. In par-
ticular, the triggering tests developers provide after fixing a bug
are often not representative of the ones users provide before the
bug is found and fixed. As a result, fault localization and automated
program repair tools perform worse on user-provided tests. Incor-
porating user-provided triggering tests into empirical evaluations
is one step toward realistic evaluations, which are important to
enable automated debugging reach its full potential.

This paper draws on several observations, in particular from
manual analysis of more than 100 bug reports and triggering tests,
and discusses several implications that may help define future re-
search directions. For example, researchers building automated
debugging tools should consider additional factors, such as resolv-
ing conflicting tests prior to an attempted repair, accounting for
triggering tests that expose a defect but only weakly assert on the
correct behavior, and automatically separating triggering tests.

Programmers have been waiting a long time for usable auto-
mated debugging tools. We believe that, to further advance the
state-of-the-art in this area, we must steer research toward more
promising directions that take into account triggering tests that are
likely to be encountered in real settings.
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