
1

Improving Adaptability of
Multi-Mode Systems via

Program Steering

Lee Lin
Michael D. Ernst

MIT CSAIL

2

Multi-Mode Systems
• A multi-mode system’s behavior depends on its

environment and internal state
• Examples of multi-mode systems:

– Web server: polling / interrupt
– Cell phone: AMPS / TDMA / CDMA
– Router congestion control: normal / intentional drops
– Graphics program: high detail / low detail

3

Controllers
• Controller chooses which mode to use
• Examples of factors that determine modes:

– Web server: heavy traffic vs. light traffic
– Cell phone: rural area vs. urban area; interference
– Router congestion control: preconfigured policy files
– Graphics program: frame rate constraints

4

Controller Example
while (true) {

if (checkForCarpet())
indoorNavigation();

else if (checkForPavement())
outdoorNavigation();

else
cautiousNavigation();

}

• Do the predicates handle all situations well?
• Is any more information available?
• Does the controller ever fail?

5

Improving Built-in Controllers
• Built-in controllers do well in expected situations
• Goal: Create a controller that adapts well to

unanticipated situations
– Utilize redundant sensors during hardware failures
– Sense environmental changes
– Avoid default modes if other modes are more

appropriate
– Continue operation if controller fails

6

Why Make Systems Adaptive?
• Testing all situations is impossible
• Programmers make mistakes

– Bad intuition
– Bugs

• The real world is unpredictable
– Hardware failures
– External environmental changes

• Human maintenance is costly
– Reduce need for user intervention
– Issue fewer software patches

7

Overview

• Program Steering Technique
• Mode Selection Example
• Program Steering Implementation
• Experimental Results
• Conclusions

8

Program Steering Goals

• Create more adaptive systems without
creating new modes

• Allow systems to extrapolate knowledge
from successful training examples

• Choose appropriate modes in unexpected
situations

9

Program Steering Overview
1. Select representative training runs

2. Create models describing each mode using
dynamic program analysis

3. Create a mode selector using the models

4. Augment the original program to utilize the
new mode selector

10

Collect
Training Data

Original
Program

Original
Controller

11

Collect
Training Data

Original
Program

Original
Controller

Dynamic
Analysis

Models

12

Collect
Training Data

Original
Program

Create Mode
SelectorOriginal

Controller

Mode
Selector

Dynamic
Analysis

Models

13

Collect
Training Data

Original
Program

Models

Create Mode
SelectorOriginal

Controller

Original
Program

Mode
Selector

Dynamic
Analysis

Create New
Controller

New
Controller

New
Controller

14

Overview

• Program Steering Technique
• Mode Selection Example
• Program Steering Implementation
• Experimental Results
• Conclusions

15

Laptop Display Controller

• Three modes
– Normal Mode
– Power Saver Mode
– Sleep Mode

• Available Data:
– Inputs: battery life and DC power availability
– Outputs: brightness

16

Properties Observed from
Training Runs

Standard
Mode

Power
Saver
Mode

Sleep
Mode

Brightness >= 0

Brightness <= 10

Battery > 0.15

Battery <= 1.00

Brightness >= 0

Brightness <= 4

Battery > 0.00

Battery <= 0.15

DCPower == false

Brightness == 0

Battery > 0.00

Battery <= 1.00

17

Mode Selection Problem

What mode is most appropriate?

Brightness == 8

Battery == 0.10

DCPower == true

Current
Program
Snapshot

18

Mode selection policy: Choose the mode with the
highest percentage of matching properties.

Mode Selection

Brightness == 8

Battery == 0.10

DCPower == true

Current
Program
Snapshot

19

Mode selection policy: Choose the mode with the
highest percentage of matching properties.

Mode Selection

Brightness == 8

Battery == 0.10

DCPower == true

Current
Program
Snapshot

Standard
Mode

BRT >= 0

BRT <= 10

BAT > 0.15

BAT <= 1.00

Score: 75%

20

Mode selection policy: Choose the mode with the
highest percentage of matching properties.

Mode Selection

Brightness == 8

Battery == 0.10

DCPower == true

Current
Program
Snapshot

Standard
Mode

BRT >= 0

BRT <= 10

BAT > 0.15

BAT <= 1.00

Score: 75% Score: 60%

BRT >= 0

BRT <= 4

BAT > 0.00

BAT <= 0.15

DC == false

Power
Saver
Mode

21

Mode selection policy: Choose the mode with the
highest percentage of matching properties.

Mode Selection

Brightness == 8

Battery == 0.10

DCPower == true

Sleep
Mode

Score: 66%

Standard
Mode

BRT >= 0

BRT <= 10

BAT > 0.15

BAT <= 1.00

Score: 75% Score: 60%

BRT >= 0

BRT <= 4

BAT > 0.00

BAT <= 0.15

DC == false

BRT == 0

BAT > 0.00

BAT <= 1.00

Power
Saver
Mode

Current
Program
Snapshot

22

Mode selection policy: Choose the mode with the
highest percentage of matching properties.

Mode Selection

Brightness == 8

Battery == 0.10

DCPower == true

Current
Program
Snapshot

Sleep
Mode

Score: 66%

Standard
Mode

BRT >= 0

BRT <= 10

BAT > 0.15

BAT <= 1.00

Score: 75% Score: 60%

BRT >= 0

BRT <= 4

BAT > 0.00

BAT <= 0.15

DC == false

BRT == 0

BAT > 0.00

BAT <= 1.00

Power
Saver
Mode

23

Mode selection policy: Choose the mode with the
highest percentage of matching properties.

Second Example

Brightness == 8

Battery == 0.10

DCPower == false

Current
Program
Snapshot

24

Mode selection policy: Choose the mode with the
highest percentage of matching properties.

Second Example

BRT == 0

BAT > 0.00

BAT <= 1.0

Brightness == 8

Battery == 0.10

DCPower == false

Current
Program
Snapshot

Sleep
Mode

Score: 66%

Standard
Mode

BRT >= 0

BRT <= 10

BAT > 0.15

BAT <= 1.00

Score: 75% Score: 80%

BRT >= 0

BRT <= 4

BAT > 0.00

BAT <= 0.15

DC == false

Power
Saver
Mode

25

Overview

• Program Steering Technique
• Mode Selection Example
• Program Steering Implementation
• Experimental Results
• Conclusions

26

Collect
Training Data

Original
Program

Models

Create Mode
SelectorOriginal

Controller

Original
Program

Mode
Selector

Dynamic
Analysis

Create New
Controller

New
Controller

New
Controller

27

Training

• Train on successful runs
– Passing test cases
– High performing trials

• Amount of training data:
– Depends on modeling technique
– Cover all modes

28

Dynamic Analysis
• Create one set of properties per mode
• Daikon Tool

– Supply program and execute training runs
– Infers properties involving inputs and outputs
– Properties were true for every training run

• this.next.prev == this
• currDestination is an element of visitQueue[]
• n < mArray.length

http://pag.csail.mit.edu/daikon/

http://pag.csail.mit.edu/daikon/

29

Collect
Training Data

Original
Program

Models

Create Mode
SelectorOriginal

Controller

Original
Program

Mode
Selector

Dynamic
Analysis

Create New
Controller

New
Controller

New
Controller

30

Mode Selection Policy
Check which properties in the models are true in

the current program state.
For each mode, calculate a similarity score

(percent of matching properties).
Choose the mode with the highest score.

Can also accept constraints, for example
- Don’t select Travel Mode when destination null
- Must switch to new mode after Exception

31

Collect
Training Data

Original
Program

Models

Create Mode
SelectorOriginal

Controller

Original
Program

Mode
Selector

Dynamic
Analysis

Create New
Controller

New
Controller

New
Controller

32

Controller Augmentation
Call the new mode selector during:

– Uncaught Exceptions
– Timeouts
– Default / passive mode
– Randomly during mode transitions

Otherwise, the controller is unchanged

33

Why Consider Mode Outputs?
• Mode selection considers all properties
• Output properties measure whether mode is

behaving as expected
• Provides inertia, avoids rapid switching

• Suppose brightness is stuck at 3 (damaged).
– No output benefit for Standard Mode.
– More reason to prefer Power Saver to Standard.

34

Why Should Program Steering
Improve Mode Selection?

• Eliminates programmer assumptions about what
is important

• Extrapolates knowledge from successful runs
• Considers all accessible information
• Every program state is handled

• The technique requires no domain-specific
knowledge

35

What Systems Can Benefit
from Program Steering?

• Discrete transitions between modes
• Deployed in unpredictable environments
• Multiple modes often applicable

36

Overview

• Program Steering Technique
• Mode Selection Example
• Program Steering Implementation
• Experimental Results
• Conclusions

37

Droid Wars Experiments
• Month-long programming competition
• Teams of simulated robots are at war (27

teams total)
• Robots are autonomous
• Example modes found in contestant code:

Attack, defend, transport, scout enemy, relay
message, gather resources

38

Program Steering Upgrades

• Selected 5 teams with identifiable modes
• Ran in the original contest environment
• Trained on victorious matches
• Modeling captured sensor data, internal state,

radio messages, time elapsed

39

Upgraded Teams

The new mode selectors considered many more
properties than the original mode selectors

Team NCNB Lines
of Code

Number of
Modes

Properties
Per Mode

Team04 658 9 56
Team10 1275 5 225
Team17 846 11 11
Team20 1255 11 26
Team26 1850 8 14

40

Evaluation
• Ran the upgraded teams in the original

environments (performed same or better)
• Created 6 new environments

– Hardware failures:
– Deceptive GPS:
– Radio Spoofing:
– Radio Jamming:
– Increased Resources:
– New Maps:

random rebooting
navigation unreliable
simulate replay attacks
some radio messages dropped
faster building, larger army
randomized item placement

41

Examples of Environmental Effects

• Hardware Failures
– Robot did not expect to reboot mid-task, far from base
– Upgraded robots could deduce and complete task

• Radio Spoofing
– Replay attacks resulted in unproductive team
– Upgraded robots used other info for decision making

42

Hardware Failures

Deceptive GPS

Program Steering Effects on Tournament Rank

Team Original Upgrade
Team04 11 5 +6
Team10 20 16 +4
Team17 15 9 +6
Team20 21 6 +15
Team26 17 13 +4

Team Original Upgrade
Team04 12 9 +3

Team10 23 8 +15

Team17 15 9 +6

Team20 22 7 +15

Team26 16 13 +3

43

Original Team20
• Centralized Intelligence
• Queen Robot

– Pools information from sensors and radio messages
– Determines the best course of action
– Issues commands to worker robots

• Worker Robot
– Capable of completing several tasks
– Always returns to base to await the next order

44

Upgraded Team20
• Distributed Intelligence
• Queen Robot (unchanged)
• Worker Robot

– Capable of deciding next task without queen
– Might override queen’s orders if beneficial

45

Understanding the Improvement
Question:

What if the improvements are due to when the new
controller invokes the new mode selector, not what the
selector recommends?

Experiment:
- Ran same new controller with a random mode selector.
- Programs with random selector perform poorly.
- Program steering selectors make intelligent choices

46

Hardware Failures

Deceptive GPS

Comparison with Random Selector

Team Original Upgrade Random
Team04 11 5 +6 9 +2
Team10 20 16 +4 21 -1
Team17 15 9 +6 20 -5
Team20 21 6 +15 23 -2
Team26 17 13 +4 22 -5

Team Original Upgrade Random
Team04 12 9 +3 17 -5

Team10 23 8 +15 18 +5

Team17 15 9 +6 15 0

Team20 22 7 +15 21 +1

Team26 16 13 +3 20 -4

47

Overall Averages

Team Upgrade Random
Team04 +4.0 +0.7
Team10 +3.8 +1.2
Team17 +4.2 -1.5
Team20 +8.8 -1.3
Team26 +1.0 -3.7

48

Overview

• Program Steering Technique
• Mode Selection Example
• Program Steering Implementation
• Experimental Results
• Conclusions

49

Future Work

• Use other mode selection policies
– Refine property weights with machine learning
– Detect anomalies using models

• Try other modeling techniques
– Model each transition, not just each mode

• Automatically suggest new modes

50

Conclusion

• New mode selectors generalize original
mode selector via machine learning

• Technique is domain independent
• Program steering can improve adaptability

because upgraded teams perform:
– As well or better in old environment
– Better in new environments

51

	Improving Adaptability of Multi-Mode Systems via Program Steering
	Slide Number 2
	Slide Number 3
	Controller Example
	Improving Built-in Controllers
	Why Make Systems Adaptive?
	Overview
	Program Steering Goals
	Program Steering Overview
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Overview
	Laptop Display Controller
	Properties Observed from �Training Runs
	Mode Selection Problem
	Mode Selection
	Mode Selection
	Mode Selection
	Mode Selection
	Mode Selection
	Second Example
	Second Example
	Overview
	Slide Number 26
	Training
	Dynamic Analysis
	Slide Number 29
	Mode Selection Policy
	Slide Number 31
	Controller Augmentation
	Why Consider Mode Outputs?
	Why Should Program Steering Improve Mode Selection?
	What Systems Can Benefit�from Program Steering?
	Overview
	Droid Wars Experiments
	Program Steering Upgrades
	Upgraded Teams
	Evaluation
	Examples of Environmental Effects
	Slide Number 42
	Original Team20
	Upgraded Team20
	Understanding the Improvement
	Slide Number 46
	Overall Averages
	Overview
	Future Work
	Conclusion
	Slide Number 51

