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Multi-Mode Systems
• A multi-mode system’s behavior depends on its 

environment and internal state
• Examples of multi-mode systems:

– Web server: polling / interrupt
– Cell phone: AMPS  / TDMA / CDMA 
– Router congestion control: normal / intentional drops
– Graphics program: high detail /  low detail
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Controllers
• Controller chooses which mode to use
• Examples of factors that determine modes:

– Web server: heavy traffic vs. light traffic
– Cell phone: rural area vs. urban area; interference
– Router congestion control: preconfigured policy files 
– Graphics program: frame rate constraints
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Controller Example
while (true) {

if ( checkForCarpet() )
indoorNavigation();

else if ( checkForPavement() )
outdoorNavigation(); 

else 
cautiousNavigation();               

}

• Do the predicates handle all situations well?
• Is any more information available?
• Does the controller ever fail?
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Improving Built-in Controllers
• Built-in controllers do well in expected situations 
• Goal: Create a controller that adapts well to 

unanticipated situations
– Utilize redundant sensors during hardware failures 
– Sense environmental changes 
– Avoid default modes if other modes are more 

appropriate
– Continue operation if controller fails
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Why Make Systems Adaptive?
• Testing all situations is impossible
• Programmers make mistakes

– Bad intuition
– Bugs

• The real world is unpredictable
– Hardware failures
– External environmental changes

• Human maintenance is costly
– Reduce need for user intervention
– Issue fewer software patches
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Overview

• Program Steering Technique
• Mode Selection Example
• Program Steering Implementation
• Experimental Results
• Conclusions
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Program Steering Goals

• Create more adaptive systems without 
creating new modes

• Allow systems to extrapolate knowledge 
from successful training examples

• Choose appropriate modes in unexpected 
situations
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Program Steering Overview
1. Select representative training runs

2. Create models describing each mode using 
dynamic program analysis

3. Create a mode selector using the models

4. Augment the original program to utilize the 
new mode selector
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Overview

• Program Steering Technique
• Mode Selection Example
• Program Steering Implementation
• Experimental Results
• Conclusions
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Laptop Display Controller

• Three modes
– Normal Mode
– Power Saver Mode
– Sleep Mode

• Available Data:
– Inputs:  battery life and DC power availability
– Outputs: brightness
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Properties Observed from 
Training Runs

Standard
Mode

Power
Saver
Mode

Sleep
Mode

Brightness >= 0

Brightness <= 10

Battery > 0.15

Battery <= 1.00

Brightness >= 0

Brightness <= 4

Battery > 0.00

Battery <= 0.15

DCPower == false

Brightness == 0

Battery > 0.00

Battery <= 1.00
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Mode Selection Problem

What mode is most appropriate?

Brightness == 8

Battery == 0.10

DCPower == true 

Current
Program
Snapshot
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Mode selection policy: Choose the mode with the 
highest percentage of matching properties.

Mode Selection
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Mode selection policy: Choose the mode with the 
highest percentage of matching properties.

Mode Selection

Brightness == 8

Battery == 0.10

DCPower == true 

Current
Program
Snapshot

Standard
Mode

BRT >= 0

BRT <= 10

BAT > 0.15

BAT <= 1.00

Score: 75%
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Mode selection policy: Choose the mode with the 
highest percentage of matching properties.

Mode Selection

Brightness == 8

Battery == 0.10

DCPower == true 

Current
Program
Snapshot

Standard
Mode

BRT >= 0

BRT <= 10

BAT > 0.15

BAT <= 1.00

Score: 75% Score: 60%

BRT >= 0

BRT <= 4

BAT >  0.00

BAT <= 0.15

DC == false

Power
Saver
Mode
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Mode selection policy: Choose the mode with the 
highest percentage of matching properties.

Mode Selection

Brightness == 8

Battery == 0.10

DCPower == true 

Sleep
Mode

Score: 66%

Standard
Mode

BRT >= 0

BRT <= 10

BAT > 0.15

BAT <= 1.00

Score: 75% Score: 60%

BRT >= 0

BRT <= 4

BAT >  0.00

BAT <= 0.15

DC == false

BRT == 0

BAT >  0.00

BAT <= 1.00

Power
Saver
Mode

Current
Program
Snapshot
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Mode selection policy: Choose the mode with the 
highest percentage of matching properties.

Mode Selection

Brightness == 8

Battery == 0.10

DCPower == true 

Current
Program
Snapshot

Sleep
Mode

Score: 66%

Standard
Mode

BRT >= 0

BRT <= 10

BAT > 0.15

BAT <= 1.00

Score: 75% Score: 60%

BRT >= 0

BRT <= 4

BAT >  0.00

BAT <= 0.15

DC == false

BRT == 0

BAT >  0.00

BAT <= 1.00

Power
Saver
Mode
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Mode selection policy: Choose the mode with the 
highest percentage of matching properties.

Second Example

Brightness == 8

Battery == 0.10

DCPower == false 

Current
Program
Snapshot
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Mode selection policy: Choose the mode with the 
highest percentage of matching properties.

Second Example

BRT == 0

BAT >  0.00

BAT <= 1.0

Brightness == 8

Battery == 0.10

DCPower == false 

Current
Program
Snapshot

Sleep
Mode

Score: 66%

Standard
Mode

BRT >= 0

BRT <= 10

BAT > 0.15

BAT <= 1.00

Score: 75% Score: 80%

BRT >= 0

BRT <= 4

BAT >  0.00

BAT <= 0.15

DC == false

Power
Saver
Mode
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Overview

• Program Steering Technique
• Mode Selection Example
• Program Steering Implementation
• Experimental Results
• Conclusions
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Training

• Train on successful runs
– Passing test cases
– High performing trials

• Amount of training data:
– Depends on modeling technique
– Cover all modes
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Dynamic Analysis
• Create one set of properties per mode
• Daikon Tool

– Supply program and execute training runs
– Infers properties involving inputs and outputs
– Properties were true for every training run

• this.next.prev == this
• currDestination is an element of visitQueue[]
• n < mArray.length

http://pag.csail.mit.edu/daikon/

http://pag.csail.mit.edu/daikon/
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Mode Selection Policy
Check which properties in the models are true in 

the current program state.
For each mode, calculate a similarity score 

(percent of matching properties).
Choose the mode with the highest score.

Can also accept constraints, for example
- Don’t select Travel Mode when destination null
- Must switch to new mode after Exception
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Controller Augmentation
Call the new mode selector during:

– Uncaught Exceptions
– Timeouts
– Default / passive mode
– Randomly during mode transitions

Otherwise, the controller is unchanged
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Why Consider Mode Outputs?
• Mode selection considers all properties 
• Output properties measure whether mode is 

behaving as expected
• Provides inertia, avoids rapid switching

• Suppose brightness is stuck at 3 (damaged).
– No output benefit for Standard Mode.
– More reason to prefer Power Saver to Standard.
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Why Should Program Steering 
Improve Mode Selection?

• Eliminates programmer assumptions about what 
is important

• Extrapolates knowledge from successful runs
• Considers all accessible information
• Every program state is handled

• The technique requires no domain-specific   
knowledge
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What Systems Can Benefit
from Program Steering?

• Discrete transitions between modes
• Deployed in unpredictable environments
• Multiple modes often applicable
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Overview

• Program Steering Technique
• Mode Selection Example
• Program Steering Implementation
• Experimental Results
• Conclusions
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Droid Wars Experiments
• Month-long programming competition
• Teams of simulated robots are at war (27 

teams total)
• Robots are autonomous
• Example modes found in contestant code: 

Attack, defend, transport, scout enemy, relay 
message, gather resources
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Program Steering Upgrades

• Selected 5 teams with identifiable modes 
• Ran in the original contest environment
• Trained on victorious matches
• Modeling captured sensor data, internal state, 

radio messages, time elapsed
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Upgraded Teams

The new mode selectors considered many more 
properties than the original mode selectors

Team NCNB Lines 
of Code

Number of 
Modes

Properties
Per Mode

Team04 658 9 56
Team10 1275 5 225
Team17 846 11 11
Team20 1255 11 26
Team26 1850 8 14



40

Evaluation
• Ran the upgraded teams in the original 

environments (performed same or better)
• Created 6 new environments

– Hardware failures:   
– Deceptive GPS:
– Radio Spoofing:
– Radio Jamming:
– Increased Resources:
– New Maps:

random rebooting
navigation unreliable
simulate replay attacks
some radio messages dropped
faster building, larger army
randomized item placement
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Examples of Environmental Effects

• Hardware Failures
– Robot did not expect to reboot mid-task, far from base
– Upgraded robots could deduce and complete task 

• Radio Spoofing
– Replay attacks resulted in unproductive team
– Upgraded robots used other info for decision making
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Hardware Failures

Deceptive GPS

Program Steering Effects on Tournament Rank

Team Original Upgrade
Team04 11 5 +6
Team10 20 16 +4
Team17 15 9    +6
Team20 21 6 +15
Team26 17 13 +4

Team Original Upgrade
Team04 12 9 +3

Team10 23 8 +15

Team17 15 9 +6

Team20 22 7 +15

Team26 16 13 +3
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Original Team20
• Centralized Intelligence
• Queen Robot 

– Pools information from sensors and radio messages
– Determines the best course of action 
– Issues commands to worker robots

• Worker Robot 
– Capable of completing several tasks
– Always returns to base to await the next order
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Upgraded Team20
• Distributed Intelligence
• Queen Robot (unchanged)
• Worker Robot 

– Capable of deciding next task without queen
– Might override queen’s orders if beneficial
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Understanding the Improvement
Question: 

What if the improvements are due to when the new 
controller invokes the new mode selector, not what the 
selector recommends?

Experiment:
- Ran same new controller with a random mode selector.  
- Programs with random selector perform poorly.
- Program steering selectors make intelligent choices
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Hardware Failures

Deceptive GPS

Comparison with Random Selector

Team Original Upgrade Random
Team04 11 5 +6 9 +2
Team10 20 16 +4 21 -1
Team17 15 9    +6 20 -5
Team20 21 6 +15 23 -2
Team26 17 13 +4 22 -5

Team Original Upgrade Random
Team04 12 9 +3 17 -5

Team10 23 8 +15 18 +5

Team17 15 9 +6 15 0

Team20 22 7 +15 21 +1

Team26 16 13 +3 20 -4
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Overall Averages

Team Upgrade Random
Team04 +4.0 +0.7
Team10 +3.8 +1.2
Team17 +4.2 -1.5
Team20 +8.8 -1.3
Team26 +1.0 -3.7
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Overview

• Program Steering Technique
• Mode Selection Example
• Program Steering Implementation
• Experimental Results
• Conclusions
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Future Work

• Use other mode selection policies
– Refine property weights with machine learning
– Detect anomalies using models

• Try other modeling techniques
– Model each transition, not just each mode

• Automatically suggest new modes
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Conclusion

• New mode selectors generalize original 
mode selector via machine learning

• Technique is domain independent
• Program steering can improve adaptability 

because upgraded teams perform:
– As well or better in old environment
– Better in new environments
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