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ABSTRACT
Mutation analysis evaluates a testing technique by measur-
ing how well it detects seeded faults (mutants). Mutation
analysis is hampered by inherent scalability problems — a
test suite is executed for each of a large number of mutants.
Despite numerous optimizations presented in the literature,
this scalability issue remains, and this is one of the reasons
why mutation analysis is hardly used in practice.

Whereas most previous optimizations attempted to stati-
cally reduce the number of executions or their computational
overhead, this paper exploits information available only at
run time to further reduce the number of executions.

First, state infection conditions can reveal — with a single
test execution of the unmutated program — which mutants
would lead to a different state, thus avoiding unnecessary
test executions. Second, determining whether an infected
execution state propagates can further reduce the number
of executions. Mutants that are embedded in compound
expressions may infect the state locally without affecting the
outcome of the compound expression. Third, those mutants
that do infect the state can be partitioned based on the
resulting infected state — if two mutants lead to the same
infected state, only one needs to be executed as the result of
the other can be inferred.

We have implemented these optimizations in the Major mu-
tation framework and empirically evaluated them on 14 open
source programs. The optimizations reduced the mutation
analysis time by 40% on average.
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1. INTRODUCTION
Mutation analysis is a powerful approach to assess the

quality of a test suite and to benchmark testing or debugging
techniques. A test suite or testing technique is assumed to
be good if it can distinguish a program from many small
syntactic variations of this program (mutants). The quality
of the tests is quantified in the mutation score, i.e., the
percentage of detected mutants.

Although mutation analysis is well-established in software
engineering research, it is not yet widely accepted in prac-
tice — one reason is poor scalability. Computing the mu-
tation score for a test suite requires determining, for every
mutant, whether the test suite succeeds or fails when run on
the mutant. In the worst case each test must be run on each
mutant. There are multiple mutants per expression in the
program, so even modest programs can lead to significant
numbers of mutants.

For a test to fail on a mutant the test needs to reach
the mutated code location (reachability), achieve a different
execution state than the original program (infection), and this
state difference needs to propagate to an observable output
(propagation). If any of these conditions does not hold, the
test cannot detect the mutant, and hence executing the test
on that mutant is unnecessary and wastes CPU cycles. Even
if all of these conditions hold, the test’s outcome for a certain
mutant may be predictable. Different mutants may exhibit
identical behavior for the same test, for example if their
effects propagate in the same way to an observable output.
To make mutation analysis practically relevant, it is desirable
to reduce the overall computational costs by avoiding any
unnecessary executions.

Researchers have devised several approaches to reducing
the number of test executions in mutation analysis. Two
approaches to reduce the overall number of mutants, which
incur a loss of information, are sampling subsets of mutants or
restricting the set of operators that creates the mutants [30].
A lossless approach is to refine mutation operators to avoid
those that result in redundant (i.e., semantically identical)
mutants [20]. A dynamic approach is to gather information
at run time. A lossless example is to perform a prepass to
measure mutation coverage — that is, determining which mu-
tations1 would be reached and executed by which test. Given
the mutation coverage information, a test is not executed on
a mutant if it does not cover it [11,21,28].

This paper takes the dynamic prepass approach a step
further and observes the execution state during the initial

1A mutation is the syntactic change within a mutant, which
was produced by a mutation operator.
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execution of a test suite using an instrumented version of
the unmutated program. This enables 3 new optimizations.
(1) The program state after the execution of the mutation
is said to be infected if it differs from the program state
of the original program. If executing a test on a mutant
does not lead to an infected execution state then executing
this test cannot possibly lead to detection of the mutant —
the mutant is said to be test-equivalent for this test. (2)
Even if a test causes a local state infection, the mutant
may still be test-equivalent: the local state change may not
be observable as a test failure if the mutation is part of
a compound expression whose state is not infected. It is
therefore beneficial to determine whether the infected state
propagates to the enclosing expression. (3) If a test leads to
an identical infected state on two different mutants, then it
is not necessary to execute the test against both mutants
as they will lead to the same result. In fact, it is sufficient
to execute each test against only one representative of a
set of mutants resulting in the same infected state. In our
experiments on 14 open source projects, these 3 infection and
propagation optimizations reduced the mutation analysis run
time by 40% on average compared to the standard mutation
coverage (reachability) optimization.

The contributions of this paper are:

• A method to detect test-equivalent mutants by mon-
itoring infected execution states during execution on
the unmutated program.
• A method to detect test-equivalent mutants by moni-

toring propagation of infected execution states in com-
pound expressions during execution on the unmutated
program.
• A method to reduce the number of test executions by

partitioning mutants with identically infected state.
• An empirical evaluation with 14 open source programs.

The paper is structured as follows. Section 2 describes
mutation analysis, and Section 3 introduces the optimization
techniques monitoring, propagating, and partitioning state
infection. Section 4 describes the implementation of these
techniques in the Major mutation framework. Section 5
presents the empirical study. Section 6 discusses related work,
and Section 7 concludes the paper and proposes future work.

2. MUTATION ANALYSIS
Mutation analysis systematically injects artificial faults

(mutants) into a program under test in order to evaluate
a test suite’s ability to detect the mutants. The faults to
inject are described by mutation operators, which represent
a program transformation. These mutation operators are
systematically applied to the entire program — in contrast
to classical error seeding, where the error injection is led by
the intuition of an experienced developer. Each mutation
operator thus results in a set of mutants, each differing from
the original program by one syntactic change. The restriction
to mutants consisting of only one change compared to the
original version is justified by the coupling effect [22], which
expresses the observation that test suites that are good at
detecting small changes in a program are usually also good
at detecting larger changes.

The typical application of mutation analysis is to quantify
the quality of a test suite in terms of the mutation score,
which is the percentage of mutants detected by the test suite.
A higher mutation score is treated as indicating a better

test suite. To determine the mutation score, in principle one
needs to execute the entire test suite on every single mutant,
as a mutant is only detected (killed) if some test fails on it.

2.1 Equivalent Mutants
Mutation analysis suffers from a well-known and much-

dreaded problem: although all mutants are syntactically
different, they are not necessarily semantically different. An
equivalent mutant is syntactically different from the orig-
inal program but semantically identical, i.e., there exists
no test that can detect it. Any execution of a test on an
equivalent mutant is a waste of CPU time, when trying to
calculate a mutation score. An equivalent mutant (and more
generally any unkilled mutant) requires a disproportionate
amount of time during mutation analysis since every test
must be run on it. By contrast, once a mutant is killed,
there is no need to execute any further tests on it.

2.2 Test-Equivalent Mutants
A mutant is test-equivalent for test t, or is t-equivalent, if

test t cannot detect the mutant. An equivalent mutant cannot
be detected by any test, so it is a test-equivalent mutant for
every possible test. A simple example of a test-equivalent
mutant is a mutant that is not executed by the corresponding
test — a test usually covers only certain parts of a program,
and hence only covers (i.e., reaches and executes) mutations
applied in these parts. Detecting equivalent mutants is an
undecidable problem but the set of test-equivalent mutants
can be soundly approximated [2,3,12,15,22,23,27], and that
is our general approach as well.

3. PROPAGATING AND PARTITIONING
INFECTED EXECUTION STATES

It is our goal to avoid executing a test t for as many t-
equivalent mutants as possible. A test that detects a mutant
has to fulfill the following three conditions (cf. [32]):

1. The mutation has to be executed — that is, the mutated
code has to be covered.

2. The execution of the mutation has to infect the state
— that is, the mutated expression computes a different
value than the unmutated expression.

3. The infected state has to propagate — that is, other
expressions that depend on the mutated one must also
compute a different value, eventually including an ex-
pression that affects the test oracle.

Existing mutation coverage approaches [21, 28] exploit the
first condition (execution). If a test does not execute a certain
mutation, then it cannot kill the mutant and it need not be
executed on that mutant. This reduces the run-time cost of
mutation analysis. We take this approach a step further and
suggest three new optimizations that also exploit the latter
two conditions to avoid unnecessary test executions and to
reduce the run-time cost of mutation analysis.

Our first optimization (Section 3.2) exploits the second
condition (infection). In a prepass, it runs the test suite once
on an instrumented version of the unmutated program and
performs a dynamic analysis. It determines, for each test
and each mutation, whether the mutated expression would
compute a different value when executed by the same test.
We refer to the different value as infected execution state.
Infection is a stronger criterion than coverage for a mutant
to be detectable. Hence, the set of mutants with infected
execution state I is a subset of covered mutants C: I ⊆ C.
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Our second optimization (Section 3.3) exploits the third
condition (propagation) and utilizes the same prepass as our
first optimization. It computes, for each test, each mutation,
and each expression that lexically encloses the mutation,
whether the enclosing expression would compute a different
value when executed by the same test. That is, it computes
whether the execution state of the enclosing expression is
infected due to the infected execution state of the mutation.
Propagation is a stronger criterion than infection and there-
fore the set of mutants with a propagating infected execution
state (P ) is a subset of all mutants with an infected execution
state: P ⊆ I ⊆ C. All mutants not in the set P are test-
equivalent and do not have to be executed for the test during
the mutation analysis. The larger the set difference C \ P ,
the greater the improvements of our first two optimizations,
compared to mutation coverage.

Our third optimization (Section 3.4) exploits redundancies
between mutations and uses the same prepass as the other
optimizations. It determines, for each test, whether two
mutated expressions would lead to an identically infected
execution state — that is, whether they would evaluate to
the same value. If a test leads to an identically infected
state for two or more mutants, the test only needs to be
executed on one of them during the mutation analysis because
the outcome for the other mutants (i.e., detected or test-
equivalent) is known to be the same.

3.1 Notation
This section provides notation and definitions used through-

out the remainder of the paper.

General notation:

• Test suite T
• Test t ∈ T

• Expression expr := VAR | LIT | 〈op, expr〉
• Expression operator op
• n-tuple (n ≥ 0) of expressions expr

• Expression value value
• Expression evaluation JK : expr 7→ value
• i-th evaluation of expr , executing t : JexprKti = valuei

An expression is a variable, literal, or n-ary operator with n
expressions as arguments. Consider the example a + b > c,
which contains 5 expressions:

a︸︷︷︸
expr1

+ b︸︷︷︸
expr2︸ ︷︷ ︸

expr3

> c︸︷︷︸
expr4

︸ ︷︷ ︸
expr5

expr5 = 〈op5, expr3, expr4〉

= 〈op5, 〈op3, expr1, expr2〉, expr4〉

= 〈>, 〈+, a, b〉, c〉

All expressions in the source code are enumerated, and dis-
tinct occurrences of an expression are treated independently.

3.2 Monitoring Infected Execution States
A test infects the execution state of a mutated expression

if the value of that mutated expression differs from the value
of the original expression for at least one evaluation. Note
that a test might evaluate an expression several times during
a single execution (e.g., an expression in a loop body).

Definition 1. Infected execution state.
Let t be a test that evaluates an expression expr j N times.

Additionally, expr ′
j denotes a mutated version of expr j.

Test t infects the execution state of expr ′
j at run time iff:

∃i ∈ [1..N ] : Jexpr jK
t

i
6= Jexpr ′

j K
t

i

If test t does not infect the execution state of a mutated
expression, the corresponding mutant is t-equivalent. Con-
sider the original expression a + b and the corresponding
mutated expression a - b. A test infects the execution state
of this mutation if there is at least one evaluation with b 6= 0.
We refer to the process of determining which test infects the
execution state of which mutation as monitoring infection.

Side Effects
Definition 1 holds in the presence of side effects if the same
side effects occur in the original and mutated expression.
If the mutation may change the side effects, our analysis
conservatively assumes that every test may infect its exe-
cution state due to a changed side effect. We apply all the
optimizations of this paper only if it is statically provable
that the mutation does not change side effects for any test.

As an example, consider the following pairs of original and
mutated expressions:

Original Mutated Changes side effects?

1 if (x > y) if (x >= y) no
2 if (x > y++) if (x >= y++) no
3 if (x > y++) if (true) yes
4 if (x > y) if (x > y++) yes
5 if (flag || foo()) if (flag) maybe

Statement-level mutation operators such as the statement
deletion operator (e.g., removing a method call or an assign-
ment) may also change side effects.

As an optimization, every call of a known pure method
(i.e., a method that does not change the program state) is
considered to be side-effect-free. Major currently does not
perform a purity analysis [14] but rather applies a heuristic

— hashCode, toString, and known getter methods are consid-
ered pure, and all other methods are considered impure.

3.3 Propagating Infected Execution States
Definition 1 (infected execution state) refers to a local

change at the expression level. Such a local difference of the
execution state might or might not affect the execution state
of a lexically enclosing expression. We say that the infected
execution state of an expression propagates to a lexically
enclosing expression if it leads to an infected execution state
of this enclosing expression.

As a motivating example, recall the expression expr5 =
a + b > c, and suppose its subexpression expr3 = a + b is
mutated to expr ′

3 = a - b. Suppose that two tests t1 and
t2 lead to the following results, when evaluating the original
and mutated expressions:

Test Original Mutated Infected?

t1 :=

a = 1,
b = 2,
c = 3

a + b︸ ︷︷ ︸
3

a - b︸ ︷︷ ︸
−1

infected

a + b︸ ︷︷ ︸
3

> c

︸ ︷︷ ︸
false

a - b︸ ︷︷ ︸
−1

> c

︸ ︷︷ ︸
false

t1-equivalent

t2 :=

a = 3,
b = 2,
c = 1

a + b︸ ︷︷ ︸
5

a - b︸ ︷︷ ︸
1

infected

a + b︸ ︷︷ ︸
5

> c

︸ ︷︷ ︸
true

a - b︸ ︷︷ ︸
1

> c

︸ ︷︷ ︸
false

infected

317



Both tests, t1 and t2, infect the execution state of expr ′
3 ,

but only the infected state caused by t2 propagates to expr5.
This means that the mutant of expr ′

3 is t1-equivalent even
though expr ′

3 fulfills Definition 1. We strengthen our analysis
to require, additionally, that an infected execution state has
to propagate to lexically enclosing expressions.

Definition 2. Propagation of infected execution states.
Let t be a test that infects the execution state of a mutated
expression expr ′

j . The infected execution state of expr ′
j

propagates to a lexically enclosing expression expre iff:

∃i ∈ [1..N ] :

J〈ope, ...〈..., expr j ...〉...〉K
t

i
6= J〈ope, ...〈..., expr ′

j ...〉...〉K
t

i

Note that expr ′
j is the mutated version of the j-th subex-

pression and the only mutated expression in the entire com-
pound expression. This implies that the propagation of the
infected execution state of expr ′

j does not need to be fur-
ther monitored once any enclosing expression expre violates
this condition — any expression that encloses expre can not
possibly lead to an infected execution state.

3.4 Partitioning Infected Execution States
Suppose two mutants m1 and m2 are mutants of the same

expression. A test execution on these two mutants leads to
the same overall test result (i.e., both m1 and m2 are detected,
or both m1 and m2 are test-equivalent) if the corresponding
mutated expressions evaluate to the same value. To perform
optimization based on this observation, we partition the
set of mutated expressions Mexprj based on their expression
values. For each test t, two mutated expressions are elements
of the same partition cell p if they always evaluate to the
same expression value during the execution of t.

Definition 3. Partitioning of infected execution states.
Let Mexprj be a set of mutated expressions whose execution
states are infected by a test t. Partition P of Mexprj

satisfies the following properties:⋃
p∈P

p = Mexprj ∧ ∀p1, p2 ∈ P : p1 6= p2 ⇒ p1 ∩ p2 = ∅

∀expr ′
j , expr ′′

j ∈Mexprj :

expr ′
j , expr ′′

j ∈ p⇔ ∀i : Jexpr ′
jK

t

i
= Jexpr ′′

j Kt
i

Here is an example in which a test t3 yields two partition
cells for four mutated expressions of expr3:

t3 expr3 expr′3 expr′′3 expr′′′3 expr′′′′3

a = 1,
b = 1

a + b︸ ︷︷ ︸
2

a * b︸ ︷︷ ︸
1

a / b︸ ︷︷ ︸
1

a - b︸ ︷︷ ︸
0

a % b︸ ︷︷ ︸
0︸ ︷︷ ︸ ︸ ︷︷ ︸

p1 p2

Our optimization selects an arbitrary representative mu-
tation from each partition cell p ∈ P . If a test detects the
representative mutation of a cell p, all other mutations within
p are marked as being detected without execution. If a test
does not detect the representative mutation, then the test
does not detect any of the other mutations within the cell.

4. IMPLEMENTATION DETAILS
We implemented monitoring, propagating, and partitioning

of infected execution states in the Major mutation framework.

Given a program and a test suite, Major performs a prepass
by executing the test suite on an instrumented version of the
unmutated program. During this prepass Major determines
mutation coverage and identifies test-equivalent mutants.
Major ordinarily operates in 4 consecutive phases — 2 for
an optimization prepass, and 2 for mutation analysis itself:

1. Major instruments the program under test to measure
coverage. (Major extends the OpenJDK Java com-
piler and operates on the abstract syntax tree (AST).)
Major also links in a runtime library to support the
instrumentation.

2. Major runs the program’s test suite on the instrumented
program to determine which mutants are uncovered by
which test and thus are test-equivalent.

3. Starting with the original (uninstrumented) version of
the program, Major inserts all possible mutants into a
single version of the program, each mutant disabled by
default. Major also links in a different runtime library
to support enabling the mutants.

4. Major performs mutation analysis by running the test
suite on the mutated program, activating one mutation
at a time. A test is not executed on any test-equivalent
mutant, thus speeding up the analysis.

The contribution of this paper is to augment Major’s
prepass phases in order to identify more test-equivalent mu-
tants. During the prepass, the augmented version of Major
determines mutation coverage, monitors infection and propa-
gation, and computes the partitions. The remainder of this
section describes our changes to the prepass instrumentation
(phase 1) and the prepass analysis (phase 2).

4.1 Prepass Instrumentation
In phase 1, Major instruments the original program by

replacing every expression expr j , that is subject to mutation,
with a functionally equivalent method call to an instrumen-
tation method in Major’s runtime library, named eval. For
example, the original expression a + b > c is replaced by:

expr1︷︸︸︷
a +

expr2︷︸︸︷
b︸ ︷︷ ︸

expr3

>

expr4︷︸︸︷
c

︸ ︷︷ ︸
expr5

7→ eval(5,eval(3,a,b),c)

The parameters of the eval method are the unique expression
id and the subexpressions of expr j . This approach ensures
compact instrumentation, which is important because of the
JVM’s limitations on the size of any single method in the
original program. While instrumenting the original program,
Major also builds the following two mappings:

1. Expressions: expr id 7→ original opcode, expr id

(This represents the AST of the original program.)

2. Mutations: mutant id 7→ expr id, mutant opcode

(This represents the set of all mutants of the program.)

Here is an example, for the expression (expr5) above — a
subscript e indicates an expression id and m a mutant id:

Expressions

3e 7→ +, 1e, 2e

5e 7→ >, 3e, 4e

Mutations

1m 7→ 3e, -
2m 7→ 3e, *
3m 7→ 5e, >=
4m 7→ 5e, ==
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At run time in phase 2, the eval method utilizes these
mappings to evaluate the expression as usual, but also to per-
form monitoring, propagation, and partitioning of infected
execution states as a side effect. The instrumentation pre-
serves the order and number of expression evaluations, which
is necessary to soundly handle expressions with side effects.

Conditional Operators
The semantics of short-circuiting conditional operators has
to be preserved when instrumenting conditional expressions.
It is not valid to translate a || b into eval(1,a,b) because
b is not necessarily evaluated within the original expression

— b is not evaluated if a evaluates to true. Furthermore,
expression a must be evaluated at most once. Therefore, a
conditional expression a op b, where op denotes the original
conditional operator, is translated by means of two method
calls lhs and rhs:

a op b 7→ lhs(22,a) op rhs(22,b)

Each pair of lhs and rhs routines communicate via a
shared variable. The lhs routine evaluates a (which might
itself contain calls to eval) and saves and returns its value.
The rhs routine executes eval(22,sharedvar22,b).

4.2 Monitoring of Infected Execution States
In phase 2, Major executes the test suite T on the instru-

mented version of the original program and determines for
each test t ∈ T a set of t-equivalent mutants, which need not
be executed for t during the mutation analysis in phase 4.

The eval method of the runtime library determines for
each test t and each mutation expr ′

j of expr j whether Jexpr ′
j K

t

i

= Jexpr jK
t

i
. If the values differ for some evaluation i, then the

execution of t has infected the execution state of expr ′
j . The

runtime library no longer needs to monitor state infection
for this pair 〈t, expr ′

j 〉, so for efficiency it stops doing so. If a

pair 〈t, expr ′
j 〉 has not been eliminated by the end of the test

execution, then the mutation is t-equivalent.

4.3 Propagation of Infected Execution States
During the prepass analysis of a test t in phase 2, the

runtime library keeps track of the propagation of infected
execution states within composed expressions. While the run-
time library evaluates a composed expression, it maintains a
mapping (ExprValues) from mutation id to the value of the
currently-executing expression expre. The mapping contains
the ids of mutations of expre whose execution state is infected
by t and the ids of mutated subexpressions of expre whose
infected execution state propagated to expre. As an opti-
mization, a mutation is removed from the mapping as soon
as its infected execution state does not (further) propagate.
Figure 1 depicts the propagation step and the maintained
mapping for a test t4 and the expression a + b > c.

A test t must be executed on a mutant if the execution
state of the mutated expression propagates to a toplevel
expression (one whose lexical parent is a statement). Major
currently does not track propagation across statements. As
soon as a mutated expression expr ′

j propagates to its toplevel
expression for a test t, it need not be tracked any longer, i.e.,
the runtime library stops monitoring the pair 〈t, expr ′

j 〉.

4.4 Partitioning of Infected Execution States
In phase 2, for each test t, the runtime library partitions

the mutants with infected execution state as follows:

Figure 1: Example for the propagation of infected
execution states within the compound expression
a + b > c (X indicates an infected execution state).

true︷ ︸︸ ︷
4︷ ︸︸ ︷

a + b > c

ExprValues ExprValues

1m 7→ 0 X 3m 7→ false X
2m 7→ 4 4m 7→ true

1m 7→ false Xpropagate 1m

Test Mutations

t4 := 1m 7→ 3e, -
a = 2 2m 7→ 3e, *
b = 2 3m 7→ 5e, <
c = 2 4m 7→ 5e, >=

• For each mutated (toplevel) expression, the runtime
library maintains a set of mutations with an identically
infected execution state — that is, a partition cell
containing all mutations that have evaluated to the
same value so far.

• Each time t executes a mutated expression (recall that
t might evaluate an expression multiple times), these
partition cells are updated to retain only those mutants
that also had the same result for the new execution.
Finally, each cell contains all mutations that evaluated
identically with respect to the entire execution of t.

• Each mutation that was not monitored (e.g., those that
may change side effects, see Section 3.2) is added indi-
vidually — that is, such a mutation forms a partition
cell of size 1.

• The runtime library selects an arbitrary representative
mutant for each partition cell.

The runtime library partitions per test, not per test suite.
It would be simpler to construct a single partition for the
whole test suite, but it would be less efficient because the
partition cells would tend to be smaller. When partitioning
per test it is possible that, during mutation analysis in phase
4, a test has partition cells containing only mutants that
have already been killed by previously executed tests; such
partition cells are skipped by Major. Consider the following
example:

Test Partition Representative Executed? Detected?

t1
1 2 3 4 1 yes detected

5 6 5 yes not detected

t2

1 1 no
2 3 2 no
4 5 4 yes
6 6 yes

Major first runs test t1. Suppose that t1 detects mutant 1
but does not detect mutant 5. From the partitioning we
know that t1 also detects mutants 2, 3, and 4. When Major
proceeds to test t2, Major skips the first two partition cells,
as all the mutations contained in them have already been
detected by t1. To determine whether t2 kills mutation 5,
Major needs to run t2 against either mutation 4 or 5 (either
is fine; the result of running t2 against mutation 4 might be
different than running t1 against mutation 4). Major also
runs t2 against mutation 6.
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Table 1: Overview of the open source projects chosen for evaluation.

Project Full Name Classes SLOC*
Test

classes
Test

SLOC*
Mutants Version Source

collect Commons Collections 273 26,323 194 29,055 11,832 3.2.1 http://commons.apache.org
io Commons IO 104 8,839 95 15,566 6,756 2.4 http://commons.apache.org
lang Commons Lang 147 19,499 119 33,341 18,887 3.1 http://commons.apache.org
math Commons Math 536 39,991 266 41,906 55,550 2.1 http://commons.apache.org
itext IText PDF 592 76,321 26 1,612 108,174 5.0.6 http://itextpdf.com
jaxen Jaxen 318 21,079 99 8,476 7,179 1.1.3 http://jaxen.codehaus.org
jdom JDom 161 15,163 88 22,405 10,778 2.0 http://www.jdom.org
chart JFreeChart 610 91,174 383 48,026 67,097 1.0.13 http://www.jfree.org
time Joda Time 227 27,139 156 51,901 18,415 2.0 http://joda-time.sourceforge.net
num4j Numerics4J 86 3,771 64 5,273 5,650 1.3 http://doodleproject.sourceforge.net
poi-main POI (core) 893 85,427 458 57,599 64,567 3.9 http://poi.apache.org
poi-xml POI (ooxml) 464 50,589 147 15,388 22,273 3.9 http://poi.apache.org
scratchpad POI (scratchpad) 699 87,035 176 15,061 71,125 3.9 http://poi.apache.org
trove GNU Trove 1,594 116,750 28 13,279 71,683 3.0.2 http://trove4j.sourceforge.net

Sum 6,704 669,100 2,299 358,888 539,966

*SLOC is the number of non-comment, non-empty lines of code, as reported by sloccount (http://www.dwheeler.com/sloccount)

5. EMPIRICAL EVALUATION
We have implemented this paper’s optimizations in the

Major mutation analysis framework and evaluated them on
a set of open source programs to empirically answer the
following four research questions:

RQ1: How frequently are mutants covered without leading
to state infection?

RQ2: How frequently do infected states not propagate within
their lexically enclosing expressions?

RQ3: How frequently do different mutants exhibit an iden-
tical infected execution state at run time?

RQ4: How does monitoring, propagating, and partitioning
of infected execution states improve the overall effi-
ciency of mutation analysis?

5.1 Subject Programs
We selected software projects that have a decently sized

developer-written test suite to make our analysis possible.
Furthermore, we selected projects from different application
domains (e.g., mathematical, XML processing, data struc-
tures, etc.) Table 1 presents statistics on the 14 Java projects
that we selected for evaluation.

5.2 Test Suites
To improve generalizability, our evaluation uses four test

suites per project (Table 2). Each project already comes
with a developer-written test suite. We created addi-
tional test suites automatically for each project using the
EvoSuite [7] test generation tool. EvoSuite supports different
criteria when generating test suites, and we used all its non-
experimental criteria, i.e., these are the criteria applicable
on the chosen projects without leading to errors. We used
EvoSuite to generate a test suite of 20 random tests for
each individual class in each of the projects. We further
used EvoSuite to generate one test suite targeting branch
coverage and one targeting weak-mutation testing for
each class. Weak-mutation testing means that EvoSuite only
tries to achieve state infection, but does not actively opti-
mize propagation. EvoSuite uses its own set of mutation
operators working on Java bytecode: arithmetic operator
replacement, relational operator replacement, constant re-
placement, variable replacement, method call deletion, unary
operator insertion). EvoSuite was run using its default set-
tings, i.e., each class was tested for up to 10 minutes or
1,000,000 executed statements (whichever limit was hit first).

EvoSuite produces JUnit tests that include assertions, which
are minimized in EvoSuite using mutation analysis. Evo-
Suite by default runs Java in “headless mode”, which means
that classes using GUI components cannot be tested. Fur-
thermore, EvoSuite sometimes produces failing tests (unless
using dedicated bytecode instrumentation to prevent this
from happening), for example if there are dependencies be-
tween tests caused by static state, or assertions based on
non-deterministic code (e.g., assertions on values influenced
by the system time). We automatically removed all failing
test cases from the analysis; on average, 6.6% of the tests
produced by EvoSuite were removed.

5.3 Mutation Analysis
We performed mutation analysis with the Major mutation

framework [16] using its default set of mutation operators.
This set includes expression- and statement-level mutation
operators (constant replacement, unary operator replace-
ment, binary operator replacement, condition manipulation,
statement deletion). We performed mutation analysis for
each of the test suites using five different optimization con-
figurations:
Coverage (baseline) A test is executed on a mutant only
if the test reaches and executes the mutation. The baseline
also includes all default optimizations implemented in Major
(e.g., conditional mutation [18], test prioritization [19], and
non-redundant mutation operators [20]). Moreover, a test is
only executed on undetected mutants, meaning that a mutant
is removed from the analysis once it has been detected [19].

Infection A test is executed on a mutant only if the test
infects the execution state of the mutant.

Infection+Propagation A test is executed on a mutant
only if it infects the execution state of the mutant and the
infected state propagates to the toplevel expression.

Infection+Partitioning A partition of infected execution
states is built for each mutated expression, and a test is
executed on one representative mutant for each partition cell.

Infection+Propagation+Partitioning A partition of in-
fected execution states is built for each toplevel expression,
and a test is executed on one representative mutant for each
partition cell.

Table 2 reports the number of test executions as well as the
overall time for mutation analysis, which includes the time
for the prepass. All experiments were run on an off-the-shelf
64-bit Linux machine with Intel i7 CPU and 8GB of memory.
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Table 2: Test suites investigated in the empirical study.
Tests denotes the number of individual tests in the test suite, which has sloc lines of code and takes time seconds to run on the uninstrumented
program. Coverage gives the ratio of covered to generated mutants, kill score gives the mutation kill score (i.e., the ratio of detected to generated
mutants — the ratio in parentheses gives the kill score related to the number of covered mutants). Executions shows the number of test executions
necessary for the mutation analysis when using only the mutation coverage optimization (baseline). The Overall row is calculated by considering
all tests over all mutants across all 14 projects. Source lines of code (sloc) as reported by sloccount (http://www.dwheeler.com/sloccount).

Project Manual Random

Test suite Mutation analysis Test suite Mutation analysis

tests sloc time coverage kill score executions tests sloc time coverage kill score executions

collect 1,161 29,055 34 0.84 0.61 (0.72) 12,947 4,277 83,261 8 0.47 0.23 (0.49) 13,881
io 344 15,566 60 0.45 0.34 (0.76) 4,260 1,556 27,810 4 0.36 0.14 (0.39) 3,878
lang 2,047 33,341 32 0.91 0.69 (0.76) 22,077 1,673 37,965 6 0.48 0.19 (0.40) 12,745
math 2,169 41,906 246 0.89 0.72 (0.81) 87,088 5,473 130,123 29 0.42 0.19 (0.46) 58,721
itext 92 1,612 16 0.15 0.12 (0.75) 44,960 6,211 97,790 66 0.33 0.08 (0.25) 84,873
jaxen 634 8,476 13 0.65 0.41 (0.64) 90,600 2,993 61,199 34 0.54 0.18 (0.33) 111,313
jdom 1,638 22,405 55 0.90 0.75 (0.83) 15,687 1,711 29,184 14 0.24 0.11 (0.47) 10,067
chart 2,130 48,026 187 0.52 0.28 (0.53) 71,695 9,106 195,766 57 0.27 0.16 (0.58) 85,646
time 3,855 51,901 146 0.84 0.73 (0.87) 58,331 2,455 44,555 28 0.58 0.30 (0.52) 165,615
num4j 218 5,273 3 0.95 0.65 (0.69) 6,933 1,148 17,020 4 0.74 0.42 (0.57) 7,982
poi-main 1,874 57,599 3 0.18 0.09 (0.49) 20,683 9,497 187,394 43 0.31 0.15 (0.47) 109,457
poi-xml 643 15,388 179 0.76 0.45 (0.60) 45,984 4,947 71,385 88 0.11 0.05 (0.44) 14,638
scratchpad 703 15,061 85 0.42 0.34 (0.81) 90,082 7,197 159,072 41 0.25 0.10 (0.39) 61,770
trove 544 13,279 20 0.08 0.05 (0.64) 18,042 7,045 152,715 61 0.42 0.21 (0.49) 75,348

Overall 18,052 358,888 1080 0.61 0.45 (0.71) 589,369 65,289 1,295,239 481 0.39 0.18 (0.45) 815,934

Project Branch Weak

Test suite Mutation analysis Test suite Mutation analysis

tests sloc time coverage kill score executions tests sloc time coverage kill score executions

collect 2,269 25,639 4 0.76 0.45 (0.59) 11,711 2,144 24,834 6 0.76 0.46 (0.61) 11,419
io 697 7,256 3 0.54 0.27 (0.50) 4,500 817 8,655 8 0.66 0.33 (0.50) 5,518
lang 2,500 18,753 5 0.79 0.39 (0.49) 18,100 2,178 17,412 5 0.68 0.36 (0.53) 15,879
math 2,736 29,978 62 0.65 0.32 (0.50) 64,281 2,999 34,078 68 0.65 0.36 (0.55) 65,021
itext 4,526 47,565 76 0.56 0.20 (0.36) 160,909 3,184 34,190 61 0.40 0.23 (0.57) 99,974
jaxen 1,192 14,126 9 0.78 0.28 (0.36) 60,937 937 11,936 39 0.76 0.31 (0.41) 38,447
jdom 1,359 14,406 18 0.45 0.28 (0.61) 11,410 986 10,255 20 0.36 0.21 (0.58) 6,791
chart 6,965 77,348 42 0.50 0.29 (0.57) 80,676 7,114 78,799 65 0.48 0.28 (0.58) 80,042
time 2,708 21,999 19 0.75 0.43 (0.58) 85,543 2,753 21,474 28 0.71 0.45 (0.63) 92,784
num4j 392 4,068 3 0.66 0.41 (0.62) 6,348 507 4,905 12 0.68 0.46 (0.67) 6,961
poi-main 6,445 70,717 64 0.63 0.36 (0.57) 197,059 5,998 67,784 64 0.59 0.35 (0.59) 191,807
poi-xml 637 10,295 9 0.18 0.08 (0.43) 8,096 674 11,039 14 0.20 0.08 (0.42) 8,600
scratchpad 3,428 36,049 31 0.35 0.17 (0.49) 87,241 2,888 32,371 20 0.32 0.16 (0.50) 79,264
trove 11,492 106,084 26 0.63 0.39 (0.61) 87,604 6,207 55,315 33 0.48 0.28 (0.58) 60,636

Overall 47,346 484,283 370 0.59 0.31 (0.52) 884,415 39,386 413,047 443 0.55 0.31 (0.55) 763,143

5.4 Results
We report results in terms of three metrics: filtered test-

equivalent mutants (Section 5.4.1), test executions (in great-
est detail in Sections 5.4.2–5.4.4), and run time (Section 5.4.5).
These measures are correlated but are not the same. Mu-
tants are not linearly related to test executions because a
given mutant might be killed by the first test in a suite or
survive to the end. Test executions can also differ from run
time. Suppose that a suite has many fast unit tests and a
few system tests. A technique could eliminate 90% of test
executions (those for the fast unit tests) without visibly im-
proving end performance. In our experiments, however, the
measures all led to the same conclusions.

5.4.1 Test-Equivalent Mutants
Table 3 summarizes how many of the mutants that were

covered by the test suites remain after the prepass optimiza-
tions filter out test-equivalent and redundant mutants. Two
clear trends are observable. First, each optimization reduces
the number of mutants that have to be considered during
the mutation analysis. Second, weaker test suites (e.g., ran-
dom testing) have a higher degree of test-equivalence and
redundancy than stronger test suites (e.g., manually written
test suites).

Table 3: Mutants that remain after the prepass.
Each value is the ratio of non-filtered mutants, left by one of our

optimizations, compared to the number of covered mutants.

Manual Random Branch Weak

Infect 0.90 0.84 0.89 0.90
Infect+Prop 0.88 0.80 0.86 0.87
Infect+Part 0.87 0.79 0.84 0.86
Infect+Prop+Part 0.74 0.66 0.70 0.71

5.4.2 RQ1: Coverage without State Infection
How common is it for a test to cover a mutant without

infecting its execution state? The state infection optimization
identifies 3–42% of covered mutants as test-equivalent for
every test in the test suite (Table 4). These need not be
executed during mutation analysis.

The weak-mutation test suites have the lowest number
of test-equivalent mutants in most projects, and that is
not surprising considering that EvoSuite’s weak mutation
criterion aims to achieve state infection. The two exceptions
are chart and time, where the weak-mutation test suites lead
to the highest number of test-equivalent mutants of all test
suites. As chart is the second largest project, this also affects
the overall measurement for weak-mutation compared to
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Table 4: Benefit of infection.
Each value is the ratio of test executions on mutants achieving state

infection to test executions on all covered mutants.

Project Manual Random Branch Weak

collect 0.84 0.62 0.81 0.83
io 0.82 0.63 0.80 0.81
lang 0.82 0.75 0.79 0.79
math 0.80 0.84 0.82 0.85
itext 0.81 0.68 0.91 0.97
jaxen 0.69 0.62 0.58 0.59
jdom 0.79 0.58 0.68 0.81
chart 0.83 0.81 0.89 0.78
time 0.76 0.73 0.77 0.68
num4j 0.88 0.84 0.82 0.84
poi-main 0.84 0.82 0.85 0.86
poi-xml 0.74 0.69 0.79 0.79
scratchpad 0.85 0.72 0.87 0.90
trove 0.83 0.68 0.70 0.75

Overall 0.79 0.73 0.82 0.82

branch-coverage test suites, which have more test-equivalent
mutants in all but these two projects.

On the other hand, random tests tend to achieve state
infection slightly less often than all other test suites. This
pattern of random test suites having more redundancy than
more rigorous test suites holds throughout our experiments
(see the subsequent sections of the paper). A possible conjec-
ture is that more rigid test criteria result in fewer tests that
lead to test-equivalent mutants. This could be explained by
the observation that stronger test suites generally cover more
mutants than weaker test suites (see Table 2): For example,
covering a mutant that is deeply nested in the control flow
of the program might require several executions of mutants
along the path, and each additional execution of a mutant
increases the chances of achieving state infection.

The manually written test suites have fewer test-equivalent
mutants than random tests, but overall slightly more than
the branch coverage and weak-mutation test suites. This
may be explained with the substantially higher number of
covered and killed mutants by the manually written tests
(see Table 2): For example, if EvoSuite fails to cover large
parts of the code in the first place (e.g., due to environmental
dependencies or because it is GUI-related code [8]), then any
mutants contained in that code would not be covered at all.
In contrast, manual testing may easily lead to coverage of
such regions of code, yet possibly in an insufficient way such
that infection is not achieved.

5.4.3 RQ2: Infection without Propagation
How common is it that a mutant infects the state locally,

but the infection does not propagate to its lexically enclosing
expressions? More specifically, what is the benefit of the prop-
agation optimization? Table 5 compares test executions for
the Infect and Infect+Prop configurations, and Table 6 com-
pares the Infect+Part and Infect+Prop+Part configurations.

In the absence of partitioning (Table 5), 12% of mutations
are t-equivalent even though the test t infected its execution
state. The jaxen project stands out with an extremely high
reduction: Only 35% of test executions with coverage actually
lead to a propagation of infected execution states!

Table 6 shows that the propagation optimization is syn-
ergistic with partitioning: in the presence of partitioning,
propagation has an even greater relative benefit. Neither
optimization dominates the other.

Table 5: Benefit of propagation (1).
Each value is the ratio of test executions on mutants propagating a

state infection to test executions achieving state infection.

Project Manual Random Branch Weak

collect 0.97 0.92 0.96 0.96
io 0.91 0.93 0.90 0.91
lang 0.96 0.88 0.94 0.94
math 0.92 0.93 0.92 0.93
itext 0.96 0.99 0.91 0.98
jaxen 0.36 0.35 0.37 0.32
jdom 0.90 0.94 0.97 0.87
chart 0.97 0.97 0.93 0.89
time 0.89 0.83 0.81 0.84
num4j 0.97 0.93 0.88 0.93
poi-main 0.94 0.94 0.96 0.95
poi-xml 0.94 0.88 0.91 0.90
scratchpad 0.94 0.97 0.98 0.93
trove 0.99 0.93 0.93 0.94

Overall 0.86 0.85 0.90 0.91

Table 6: Benefit of propagation (2).
Each value is the ratio of test executions on mutants propagating

a state infection with partitioning to test executions achieving state

infection with partitioning.

Project Manual Random Branch Weak

collect 0.84 0.78 0.82 0.83
io 0.79 0.80 0.74 0.75
lang 0.74 0.78 0.75 0.76
math 0.73 0.82 0.78 0.79
itext 0.88 0.88 0.88 0.83
jaxen 0.31 0.32 0.34 0.28
jdom 0.76 0.74 0.88 0.87
chart 0.94 0.90 0.92 0.87
time 0.72 0.78 0.86 0.72
num4j 0.80 0.75 0.72 0.74
poi-main 0.86 0.83 0.88 0.89
poi-xml 0.87 0.75 0.81 0.81
scratchpad 0.88 0.91 0.91 0.92
trove 0.84 0.76 0.77 0.79

Overall 0.76 0.76 0.83 0.82

5.4.4 RQ3: Partitioning of Infected States
How much redundancy is caused by tests that lead to the

same infected state on the same mutants? The partitioning
can be applied using infected states immediately after the
mutation, or after the infected state has been propagated,
and we evaluated both configurations.

Partitioning reduces test executions by 5% on average
(Table 7), compared to state infection. In other words, 5% of
the test executions on infected states are redundant as they
are identical to the infected states on other executions.

Table 8 summarizes the effect of partitioning after checking
propagation of infected states. Compared to when partition-
ing is applied without propagation, the effect is significantly
greater (15% average reduction vs. 5%). This reveals that
even if state infections are locally different, once they prop-
agate they are more likely to result in a similar infected
state. For example, different mutations of an arithmetic
expression may lead to different numerical results, but an
enclosing relational expression will only either evaluate to
true or false, and thus all mutations for which the infected
state propagates result in the same state.

As partitioning has a higher overhead than the other opti-
mizations (partitions need to be updated during test execu-
tions) it is important to maximize its effectiveness. Conse-
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Table 7: Benefit of partitioning (1).
Each value is the ratio of test executions on partitioned mutants

achieving state infection to test executions achieving state infection.

Project Manual Random Branch Weak

collect 0.95 0.95 0.95 0.95
io 0.93 0.96 0.94 0.94
lang 0.94 0.94 0.94 0.94
math 0.97 0.92 0.91 0.91
itext 0.95 0.93 0.91 0.97
jaxen 1.00 0.99 0.99 0.99
jdom 0.95 0.97 0.90 0.86
chart 1.00 0.94 0.91 0.85
time 0.97 0.84 0.71 0.96
num4j 0.96 0.96 0.94 0.97
poi-main 0.96 0.95 0.98 0.98
poi-xml 0.99 0.97 0.96 0.97
scratchpad 0.97 0.94 0.99 0.98
trove 1.00 0.96 0.95 0.96

Overall 0.97 0.93 0.93 0.95

Table 8: Benefit of partitioning (2).
Each value is the ratio of test executions on partitioned mutants

achieving propagated state infection to test executions leading to

propagated state infection.

Project Manual Random Branch Weak

collect 0.82 0.80 0.82 0.82
io 0.81 0.83 0.78 0.77
lang 0.73 0.84 0.75 0.77
math 0.78 0.81 0.77 0.78
itext 0.87 0.83 0.88 0.82
jaxen 0.87 0.92 0.90 0.87
jdom 0.81 0.77 0.82 0.87
chart 0.97 0.87 0.91 0.83
time 0.78 0.80 0.76 0.82
num4j 0.78 0.77 0.77 0.77
poi-main 0.88 0.84 0.90 0.91
poi-xml 0.92 0.82 0.86 0.87
scratchpad 0.91 0.88 0.92 0.96
trove 0.84 0.79 0.79 0.81

Overall 0.86 0.83 0.86 0.86
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(a) Manually written test suites Torig
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(b) Generated test suites Trandom
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(c) Generated test suites Tbranch
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(d) Generated test suites Tweak

Figure 2: Ratio of total run time and test executions compared to using only coverage in %.
The Wilcoxon signed rank test showed that the differences in the medians of total run time and test executions are statistically significant at the

1% level. The differences are statistically significant for all test suites and all configurations compared to using only coverage.

quently, these results suggest that partitioning should only
be applied in conjunction with propagation.

5.4.5 RQ4: Efficiency Improvement
The results so far have shown that there is a significant

number of test-equivalent mutants and redundant test exe-
cutions, which can be avoided using the presented optimiza-
tions. How do these optimizations affect the efficiency of the
mutation analysis?

To quantify the efficiency improvement, we measure the
total time taken by Major for the complete analysis, which is
the data most relevant to a user. The total time includes the
run time of the prepass, which is several orders of magnitude
smaller than the run time of the mutation analysis.

Figure 2 illustrates the improvement in terms of run time

and number of test executions. The median reduction in run
time is very similar to the median reduction of test execu-
tions. The reduction in run time is slightly higher than the
reduction of test executions for most configurations, except
for the branch coverage test suites. The inter-quartile range
is generally largest for the random test suites, which is likely
because random tests are not minimized like the other gen-
erated tests, and thus vary more in length and execution
time. For the weak mutation test suites the inter-quartile
range is larger for the time reduction than for the test exe-
cutions, suggesting that there is less variation in the amount
of redundancy in the tests than in their execution time.

Between the individual configurations the time reduction
mirrors the results obtained for the test executions: Restrict-
ing test executions to cases with state infection reduces the
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time of mutation analysis by around 20%. Propagation is
slightly more effective than partitioning, and each is only a
slight improvement over infection. The redundancy exploited
by these two optimizations is orthogonal: the combination
is greater than the sum of its parts. Overall the three op-
timizations reduce mutation analysis time by 40% over the
coverage optimization alone.

5.5 Threats to Validity
Threats to internal validity might come from how the em-

pirical study was carried out. To reduce the probability of
having faults in our mutation analysis tool or experimental
setup, it has been carefully tested; however, it is well known
that testing alone cannot prove the absence of defects. Ran-
domized algorithms are affected by chance, which means that
the test suites produced by EvoSuite may differ at each run.
However, there are more than 6,000 classes in the projects
we used for evaluation, which reduces the chances of this
affecting the results.

To cope with possible threats to external validity, we se-
lected a variety of large and well-known open source projects,
which differ in size, operation purpose, and test suite quality.
Furthermore, we used test suites provided with the evaluation
projects as well as automatically generated test suites using
the EvoSuite tool in order to avoid that results are biased
by the test suites provided with the evaluation projects.

Threats to construct validity treat the definition of the
performance of a mutation analysis optimization. As the
actual performance of a mutation analysis tool is dependent
on the implementation as well as the tests at hand, we
explicitly measured the overhead of the techniques as well as
the reduction in terms of number of avoided test executions.

6. RELATED WORK
A commonly-used categorization identifies three main

strategies to improve the scalability of mutation analysis: 1)
“do fewer”, e.g., mutant sampling [1,4], selective mutation [25],
2) “do smarter”, e.g., parallelization [6], weak mutation [13],
non-redundant definitions of mutation operators [19], and 3)
“do faster”, e.g., mutant schema [31], mutation of bytecode
instead of source code [24]. All these techniques are indepen-
dent of the program under test, and all techniques can be
used together with the optimizations presented in this paper.

In contrast, run-time optimizations require knowledge of
the program under test, which is acquired by executing the
test suite on the original program before executing it on
any mutants. An effective optimization of this category is
to first determine which test covers (i.e., reaches and ex-
ecutes) which mutant, and then for each mutant to only
execute tests that cover the mutant. This is implemented
in mutation tools such as Javalanche [27], Major [19], and
Certitude [11]. Implementation is straightforward; for exam-
ple, mutant schemata can easily be extended to collect the
necessary coverage information [18].

A further run-time optimization is to record execution
times of tests, and then to prioritize tests such that quicker
tests are executed first [19]. The FaMT [33] technique (Faster
Mutation Testing) takes a similar approach by prioritizing
tests for every mutant, and by executing only the tests
estimated to be most likely to detect a mutant. Again, such
optimizations are orthogonal to the optimizations presented
in this paper and are thus well-suited to be combined.

The idea of state infection conditions goes back to DeMillo
et al. [5], who identified reachability, infection, and propaga-

tion as the three necessary conditions to kill a mutant. Their
state infection conditions have since been used to drive test
generation (e.g., [5, 10, 26, 34]). In this context, the condi-
tions have also been used to avoid redundant test executions
during fitness evaluations in a search-based test generation
approach [9]. In contrast, our approach uses state infection
during mutation analysis. It monitors state infection and
avoids executing tests on mutants if they do not infect the
state or if the infected state does not propagate. Moreover,
it also avoids redundant test executions by observing and
partitioning the actual state infections.

Schuler and Zeller have shown that the likelihood of a
mutant being equivalent is related to the impact that it causes
in terms of violations of invariants [28] and changed code
coverage [29]. By measuring state infection and propagation
we essentially determine which mutants are guaranteed to
have no impact. However, our approach determines this from
a single test execution on an instrumented program, without
requiring test executions on any mutants.

7. CONCLUSIONS AND FUTURE WORK
Mutation analysis provides a quality metric for existing test

suites and can guide test generation, but its applicability is
limited by inherent scalability issues. The three optimizations
presented in this paper significantily improve scalability, thus
taking mutation analysis a big step further towards practical
applicability.

There is still potential to further improve the performance
of mutation analysis. For example, we exploit information
about propagation in complex expressions, but even if an
infected state propagates beyond its enclosing expressions, it
may not propagate to an observable output. More advanced
propagation information could identify further test-equivalent
mutants and would provide more opportunity to partition
mutants based on their infected states. A challenge is to de-
rive such information from a single execution before executing
a test on the mutant, like in this paper.

Besides scalability, the second major limitation of mutation
analysis are mutants that are equivalent not only for a par-
ticular test, but for all possible tests. It has been shown that
there is a relation between equivalence and to what extent
state infection propagates and affects control flow [29]. Poten-
tially, test-equivalence offers a means to predict equivalence
without requiring to execute a test on a mutant (cf. [17]).

These considerations are rooted in a scenario where a
developer would use a mutation analysis tool to analyze
an existing test suite or to decide which test should be
written next. However, the presented optimizations might
actually be most useful when implemented in a scenario of
automated test generation, where scalability of mutation
as a test criterion is even more important than for regular
mutation analysis. Future work should consider how test-
equivalence and partitioning can be exploited in that scenario.

The Major mutation framework and the subject programs
used in the evaluation are publicly available at:

http://mutation-testing.org
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