Shedding Light on Distributed System Executions

Ivan Beschastnikh
U. British Columbia
Vancouver, BC, Canada
bestchai@cs.ubc.ca

Jenny Abrahamson
Facebook Inc.
Seattle, WA, USA
jennya@fb.com

ABSTRACT

In a distributed system, the hosts execute concurrently, generating
asynchronous logs that are challenging to comprehend. We present
two tools: ShiVector to transparently add vector timestamps to
distributed system logs, and ShiViz to help developers understand
distributed system logs by visualizing them as space-time diagrams.
ShiVector is the first tool to offer automated vector timestamp instru-
mentation without modifying source code. The vector-timestamped
logs capture partial ordering information, useful for analysis and
comprehension. ShiViz space-time diagrams are simple to under-
stand and interactive — the user can explore the log through the
visualization to understand complex system behavior. We applied
ShiVector and ShiViz to two systems and found that they aid devel-
opers in understanding and debugging.

Categories and Subject Descriptors: D.1.3 [Concurrent Program-
ming]: Distributed programming

General Terms: Concurrency, Modeling, Visualization
Keywords: Log analysis, distributed systems

1. INTRODUCTION

Understanding and debugging distributed systems is challenging.
It is difficult to reason about concurrent executions, reproduce race
conditions, and understand how components communicate. Faced
with these challenges, developers often log system executions. Logs
are easy to create, and they allow developers to record useful runtime
state and behavior information. However, manually inspecting logs
is both tedious and complicated: logs can be enormous, spread
across multiple files and hosts, and be cluttered with extraneous
details. Additionally, examining logs from multiple executions
independently, as opposed to side-by-side, can hide errors. These
issues are exacerbated as the systems scale in size and complexity.

This work presents two tools, ShiVector and ShiViz, to help de-
velopers make better sense of their distributed traces. Figure 1
overviews the tools at a high-level. ShiVector augments logs with
structured ordering information emphasizing communication be-
tween components. ShiViz leverages that information to generate
concise visualizations of system behavior.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions @acm.org.

Copyright is held by the author/owner(s). Publication rights licensed to ACM.
ICSE Companion’14, May 31 — June 7, 2014, Hyderabad, India

ACM 978-1-4503-2768-8/14/05
http://dx.doi.org/10.1145/2591062.2591134

U. Massachusetts, Amherst

brun@cs.umass.edu

598

Michael D. Ernst
U. Washington
Seattle, WA, USA
mernst@cs.washington.edu

Yuriy Brun
Amherst, MA, USA

- ShiVector l
[|

Figure 1 Logs generated by distributed systems are challenging to rea-
son about. ShiVector augments such logs, as they are generated, with
partial ordering information. ShiViz uses that information to visually
summarize the system behavior.

ShlVlzI

One way to reason about the ordering of events in the distributed
setting is with partial ordering [7], which defines happens-before
relationships between pairs of events at different hosts. For any two
log events e and ey, the partial ordering will indicate that either e
happens-before e;, e, happens-before e, or e; and e; are concur-
rent. The happens-before relationship can provide useful insights
into system behavior. Unfortunately, many systems do not main-
tain partial ordering information. We have developed ShiVector,
a tool that automates the task of logging partial ordering informa-
tion within the existing execution logs. ShiVector addresses two
challenges. (1) Transparency: The developer gets access to the
useful partial-order information without having to alter the system.
(2) Correctness. The vector clock algorithm is nontrivial and it may
be challenging, time-consuming, and error-prone to integrate this
algorithm with the system logic.

A partial ordering by itself does not resolve the challenges associ-
ated with log analysis. The partial ordering provided by ShiVector
adds structured meta-data to the log, but manually inspecting the
log remains a laborious task. ShiViz uses the partial orderings pro-
vided by ShiVector to visualize a summary of a distributed system
execution. These summaries provide developers with a high-level
overview of a system’s behavior by highlighting the ordering infor-
mation that normally makes such logs difficult to reason about.

2. SHIVECTOR

ShiVector augments system execution logs with partial ordering
information as the logs are generated (Figure 2). ShiVector’s core

| System |+ | ShiVector|

4 ineo Timeline request [3,10,7,2]
GET /timeline [3,11,7,2]

INFO New status [5,12, 10,2]

|| POST status="Lunch” [5, 13,10, 2]

INFO Timeline request
GET /timeline

INFO New status

4 | POST status="Lunch”

Figure 2 ShiVector does not change which events are logged by the sys-
tem, but appends a vector timestamp to each event.

functionality is to manage a vector clock [5] for each host in the
system and to add a vector clock timestamp to every logged event.

ShiVector, implemented in Aspect], works on Java programs. It
intercepts network and logging behavior without modifying the
system’s source code, although it does require recompiling the
source with the Aspect] compiler.

3. SHIVIZ

ShiViz summarizes distributed system execution traces to give
developers an overview of system behavior. The ShiViz visual sum-
maries are concise visual models that emphasize the communication
and ordering information that normally makes distributed systems
difficult to reason about. ShiViz generates space-time diagrams,
which relate events on different hosts based on the partial ordering
information logged with ShiVector. Developers draw such diagrams
to help understand the run-time behavior of a single execution of a
system. Space-time diagrams can help developers tease out likely
chains of causality, which is critical for debugging. ShiViz is de-
ployed as a web service: http://bestchai.bitbucket.org/shiviz/

Figure 3 shows an example space-time diagram. Time flows
from top to bottom. Vertical lines are process timelines, which
represent threads of execution (e.g., processes). Events on a process
timeline are events executed by that process. Edges connect events,
representing the recorded happens-before relations. Paths in the
diagram encode inferred happens-before relations: event e; happens-
before event e; if and only if there is a monotonically downward
path from e to e>. ShiViz is a web-based tool that developers can
use to upload a log file and then explore the happens-before ordering,
collapse process-local events to focus on communication, and view
log lines that correspond to events in the diagram.

4. EVALUATION

We performed two case studies to evaluate the usefulness of
ShiVector and ShiViz. First, we visualized the end-to-end integration
tests of Voldemort', an enterprise distributed system. Second, we
visualized a distributed query in SimpleDB, a parallel database
developed as a course project.

ShiVector added partial ordering information to the Voldemort
and SimpleDB execution logs without modifying any of the sys-
tem’s source code. We then used ShiViz to examine the interactions
between threads in Voldemort. As an example observation, a com-
mon pattern emerged in which clients initiate a request, a server
thread receives the request and forwards it to another server thread,
which then replies to the original client. We observed this pattern 12
times — an easy feature to track in the ShiViz generated diagrams.

The ShiViz visualization quickly provided a useful summary
of the system’s behavior, though there are a number of features
that we plan to add to the tool to improve its utility. For example,
our current prototype of ShiViz is limited to visualizing a single
system execution at a time. We plan to extend the tool to overlap
multiple executions, highlighting differences between executions
and potentially helping developers spot conditions under which
deadlock or other undesirable conditions occur.

S. RELATED WORK

The Poet system [6], designed for debugging, proposes a tool-
chain for instrumenting a distributed system with vector timestamps
and then visualizing the resulting traces as space-time diagrams.
Though similar in design, our ShiVector and ShiViz tools are simpler
to use and focus on improving developer comprehension of their

1 https://github.com/voldemort/voldemort

599

[1,0,0] client 1: search Client 1 Client 2 Server
[0,1,0] client 2: search [

[1,0,1] server : available search _
[1,1,2] server : available B
[2,0,1] client 1: buy
[2,1,3] server : sold
[1,2,2] client 2: buy
[2,2,4] server : sold-out

" available

-~
available
Y

" sold

buy
l ‘sold-out
v

Figure 3 An example vector-timestamped log (left) of a system with
two clients and one server, and a corresponding space-time diagram as
would be produced by ShiViz (right).

systems. Our future work will evaluate our tools’ effects on program
comprehension by following the work of Cornelissen et al. [4].

A variety of tracing systems have been proposed to track requests
in distributed systems [1,2, 8,9]. For example, vPath [9] isa VM
monitor for understanding causality by tracking thread and network
activity, and WAPS [8] relinks a target application to custom system
libraries to monitor network communication and reconstruct request
paths using statistical inference. By contrast, ShiVector uses vector
clocks to reconstruct the exact, partial ordering of events in the
system without singling out requests. To understand a set of such
traces CSight [3] can be used to infer a model of the distributed
system that explains multiple observations. We plan to develop an
alternative approach by adding a query interface to ShiViz to help
developers query and explore multiple traces.

6. CONCLUSION

Logging is a common debugging technique, though the traces
generated by distributed systems are often difficult to reason about
manually. This paper briefly introduces two tools to help developers
reason about distributed traces. ShiVector automatically augments
distributed system execution logs with partial ordering information
without modifying source code. ShiViz visualizes the augmented
logs. Both tools are open-source:
https://bitbucket.org/bestchai/shiviz

7.
(1]

REFERENCES

M. K. Aguilera, J. C. Mogul, J. L. Wiener, P. Reynolds, and

A. Muthitacharoen. Performance debugging for distributed systems of
black boxes. SIGOPS OSR, 37(5):74-89, 2003.

P. Barham, A. Donnelly, R. Isaacs, and R. Mortier. Using magpie for
request extraction and workload modelling. In OSDI, 2004.

1. Beschastnikh, Y. Brun, M. D. Ernst, and A. Krishnamurthy. Inferring
Models of Networked Systems from Logs of their Behavior with
CSight. In ICSE, 2014.

B. Cornelissen, A. Zaidman, and A. van Deursen. A controlled
experiment for program comprehension through trace visualization.
TSE, 37(3):341-355, 2011.

C. J. Fidge. Timestamps in message-passing systems that preserve the
partial ordering. In 77th Australian Computer Science Conference,
pages 55-66, 1988.

T. Kunz, J. P. Black, D. J. Taylor, and T. Basten. Poet: Target-System
Independent Visualizations of Complex Distributed-Application
Executions. The Computer Journal, 40(8):499-512, 1997.

L. Lamport. Time, clocks, and the ordering of events in a distributed
system. CACM, 21(7):558-565, 1978.

P. Reynolds, J. L. Wiener, J. C. Mogul, M. K. Aguilera, and A. Vahdat.
WAPS5: Black-box performance debugging for wide-area systems. In
WWW, 2006.

B. C. Tak, C. Tang, C. Zhang, S. Govindan, B. Urgaonkar, and R. N.
Chang. vPath: Precise discovery of request processing paths from
black-box observations of thread and network activities. In USENIX,
2009.

[2]
[3]

[4

=

[5

—_

[6

=

[7

—

[8

[t

[9]

