Lightweight and Modular Resource Leak Verification

Martin Kellogg
University of Washington,
Seattle, USA
kelloggm@cs.washington.edu

ABSTRACT

A resource leak occurs when a program allocates a resource, such as
a socket or file handle, but fails to deallocate it. Resource leaks cause
resource starvation, slowdowns, and crashes. Previous techniques to
prevent resource leaks are either unsound, imprecise, inapplicable
to existing code, slow, or a combination of these.

Static detection of resource leaks requires checking that de-
allocation methods are always invoked on relevant objects before
they become unreachable. Our key insight is that leak detection can
be reduced to an accumulation problem, a class of typestate prob-
lems amenable to sound and modular checking without the need
for a heavyweight, whole-program alias analysis. The precision of
an accumulation analysis can be improved by computing targeted
aliasing information, and we augmented our baseline checker with
three such novel techniques: a lightweight ownership transfer sys-
tem; a specialized resource alias analysis; and a system to create a
fresh obligation when a non-final resource field is updated.

Our approach occupies a unique slice of the design space: it is
sound and runs relatively quickly (taking minutes on programs that
a state-of-the-art approach took hours to analyze). We implemented
our techniques for Java in an open-source tool called the Resource
Leak Checker. The Resource Leak Checker revealed 49 real resource
leaks in widely-deployed software. It scales well, has a manageable
false positive rate (comparable to the high-confidence resource
leak analysis built into the Eclipse IDE), and imposes only a small
annotation burden (1/1500 LoC) for developers.

Narges Shadab*
University of California,
Riverside, USA
nshad001@ucr.edu

CCS CONCEPTS

« Software and its engineering — Software verification.

KEYWORDS

Pluggable type systems, accumulation analysis, static analysis, type-
state analysis, resource leaks

ACM Reference Format:

Martin Kellogg, Narges Shadab, Manu Sridharan, and Michael D. Ernst. 2021.
Lightweight and Modular Resource Leak Verification. In Proceedings of the
29th ACM Joint European Software Engineering Conference and Symposium
on the Foundations of Software Engineering (ESEC/FSE 21), August 23-28,
2021, Athens, Greece. ACM, New York, NY, USA, 12 pages. https://doi.org/
10.1145/3468264.3468576

“Both authors contributed equally to this research.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

ESEC/FSE °21, August 23-28, 2021, Athens, Greece

© 2021 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-8562-6/21/08.

https://doi.org/10.1145/3468264.3468576

Michael D. Ernst
University of Washington,
Seattle, USA
mernst@cs.washington.edu

Manu Sridharan
University of California,
Riverside, USA
manu@cs.ucr.edu

1 INTRODUCTION

A resource leak occurs when some finite resource managed by the
programmer is not explicitly disposed of. In an unmanaged lan-
guage like C, that explicit resource might be memory; in a managed
language like Java, it might be a file descriptor, a socket, or a data-
base connection. Resource leaks continue to cause severe failures,
even in modern, heavily-used Java applications [15]. This state-
of-the-practice does not differ much from two decades ago [35].
Microsoft engineers consider resource leaks to be one of the most
significant development challenges [22]. Preventing resource leaks
remains an urgent, difficult, open problem.
Ideally, a tool for preventing resource leaks would be:

o applicable to existing code with few code changes,

e sound, so that undetected resource leaks do not slip into the
program;

e precise, so that developers are not bothered by excessive false
positive warnings; and

e fast, so that it scales to real-world programs and developers
can use it regularly.

Extant approaches fail at least one of these criteria. Language-based
features may not apply to all uses of resource variables: Java’s try-
with-resources statement [24], for example, can only close resource
types that implement the java.lang.AutoCloseable interface, and
cannot handle common resource usage patterns that span multiple
procedures. Heuristic bug-finding tools for leaks, such as those
built into Java IDEs including Eclipse [8] and Intelli] IDEA [18],
are fast and applicable to legacy code, but they are unsound. Inter-
procedural typestate or dataflow analyses [33, 39] achieve more
precise results—though they usually remain unsound—but their
whole-program analysis can require hours to analyze a large-scale
Java program. Finally, ownership type systems [5] as employed in
languages like Rust [20] can prevent nearly all resource leaks (see
section 9.2), but using them would require a significant rewrite for
a legacy codebase, a substantial task which is often infeasible.
The goal of a leak detector for a Java-like language is to ensure
that required methods (such as close()) are called on all relevant
objects; we deem this a must-call property. Verifying a must-call
property requires checking that required methods (or must-call
obligations) have been called at any point where an object may
become unreachable. A static verifier does this by computing an
under-approximation of invoked methods. Our key insight is that
checking of must-call properties is an accumulation problem, and
hence does not require heavyweight whole-program analysis. Our
contribution is a resource leak verifier that leverages this insight to
satisfy all four requirements: it is applicable, sound, precise, and fast.
An accumulation analysis [19] is a special-case of typestate anal-
ysis [29]. Typestate analysis attaches a finite-state machine (FSM)
to each program element of a given type, and transitions the state of

https://doi.org/10.1145/3468264.3468576
https://doi.org/10.1145/3468264.3468576
https://doi.org/10.1145/3468264.3468576

ESEC/FSE *21, August 23-28, 2021, Athens, Greece

the FSM whenever a relevant operation is performed. In an accumu-
lation analysis, the order of operations performed cannot change
what is subsequently permitted, and executing more operations
cannot add additional restrictions. Unlike arbitrary typestate analy-
ses, accumulation analyses can be build in a sound, modular fashion
without any whole-program alias analysis, improving scalability
and usability.

Recent work [19] presented an accumulation analysis for ver-
ifying that certain methods are invoked on each object before a
specific call (e.g., build()). Resource leak checking is similar in that
certain methods must be invoked on each object before it becomes
unreachable. An object becomes unreachable when its references
go out of scope or are overwritten. By making an analogy between
object-unreachability points and method calls, we show that re-
source leak checking is an accumulation problem and hence is
amenable to sound, modular, and lightweight analysis.

There are two key challenges for this leak-checking approach.
First, due to subtyping, the declared type of a reference may not
accurately represent its must-call obligations; we devised a simple
type system to soundly capture these obligations. Second, the ap-
proach is sound, but highly imprecise (more so than in previous
work [19]) without targeted reasoning about aliasing. The most
important patterns to handle are:

e copying of resources via parameters and returns, or storing of
resources in final fields (the RAII pattern [30]);

e wrapper types, which share their must-call obligations with
one of their fields; and,

e storing resources in non-final fields, which might be lazily
initialized or written more than once.

To address this need, we introduced an intra-procedural dataflow
analysis for alias tracking, and extended it with three sound tech-
niques to improve precision:

o alightweight ownership transfer system. This system indicates
which reference is responsible for resolving a must-call obli-
gation. Unlike typical ownership type systems, our approach
does not impact the privileges of non-owning references.

e resource aliasing, for cases when a resource’s must-call obli-
gations can be resolved by closing one of multiple references.

e a system for creating new obligations at locations other than
the constructor, which allows our system to handle lazy ini-
tialization or re-initialization.

Variants of some of these ideas exist in previous work. We bring
them together in a general, modular manner, with full verification
and the ability for programmers to easily extend checking to their
own types and must-call properties. Our approach occupies a novel
point in the design space for a leak detector: unlike most prior
work, it is sound; it is an order of magnitude faster than state-of-
the-art whole-program analyses; it has a false positive rate similar
to a state-of-the-practice heuristic bug-finder; and, though it does
require manual annotations from the programmer, its annotation
burden is reasonable: about 1 annotation for every 1,500 lines of
non-comment, non-blank code.
Our contributions are:
o the insight that the resource leak problem is an accumula-
tion problem, and an analysis approach based on this fact
(section 2).

Martin Kellogg, Narges Shadab, Manu Sridharan, and Michael D. Ernst

o three innovations that improve the precision of our analysis
via targeted reasoning about aliasing: a lightweight owner-
ship transfer system (section 3), a lightweight resource-alias
tracking analysis (section 4), and a system for handling lazy
or multiple initialization (section 5).

e an open-source implementation for Java, called the Resource
Leak Checker (section 6).

e an empirical evaluation: case studies on heavily-used Java
programs (section 7.1), an ablation study that shows the con-
tributions of each innovation to the Resource Leak Checker’s
precision (section 7.2), and a comparison to other state-of-the-
art approaches that demonstrates the unique strengths of our
approach (section 7.3).

2 LEAKDETECTION VIA ACCUMULATION

This section presents a sound, modular, accumulation-based re-
source leak checker (“the Resource Leak Checker”). Sections 3-5
soundly enhance its precision.

The Resource Leak Checker is composed of three cooperating
analyses:

(1) ataint tracking type system (section 2.2) computes a conserva-
tive overapproximation of the set of methods that might need
to be called on each expression in the program.

(2) an accumulation type system (section 2.3) computes a con-
servative underapproximation of the set of methods that are
actually called on each expression in the program.

(3) a dataflow analysis (section 2.4) checks consistency of the
results of the two above-mentioned type systems and provides
a platform for targeted alias reasoning. It issues an error if
some method that might need to be called on an expression is
not always invoked before the expression goes out of scope
or is overwritten.

2.1 Background on Pluggable Types

Sections 2.2 and 2.3 describe pluggable type systems [12] that are lay-
ered on top of the type system of the host language. Types in a plug-
gable type system are composed of two parts: a type qualifier and
a base type. The type qualifier is the part of the type that is unique
to the pluggable type system; the base type is a type from the host
language. Our implementation is for Java (see section 6), so we use
the Java syntax for type qualifiers: “@” before a type indicates that it
is a type qualifier, and a type without “@” is a base type. This paper
sometimes omits the base type when it is obvious from context.
A type system checks programmer-written types. Our system
requires the programmer to write types on method signatures,
but within method bodies it uses flow-sensitive type refinement,
a dataflow analysis that performs type inference. This permits an
expression to have different types on different lines of the program.

2.2 A Type System for Must-Call Obligations

The Must Call type system tracks which methods might need to
be called on a given expression. This type system—and our entire
analysis—is not specific to resource leaks. Another such property is
that the build() method of a builder [13] should always be called.

The Must Call type system supports two qualifiers: @MustCall
and @MustCallUnknown. The @MustCall qualifier’s arguments are

Lightweight and Modular Resource Leak Verification

Socket s = null;
try {

s = new Socket(myHost, myPort);
} catch (Exception e) { // do nothing
} finally {

if (s != null) {

s.close();

}

}

Figure 1: A safe use of a Socket resource.

@MustCallUnknown = T

1

@MustCall({"a", "b"})

— ~

@ustCall({"a"}) @MustCall({"b"})

\ /

@MustCall({}) =L

Figure 2: Part of the MustCall type hierarchy for represent-
ing which methods must be called; the full hierarchy is a
lattice of arbitrary size. If an expression’s type has qualifier
@MustCall({"a", "b"}), then the methods “a” and “b” might
need to be called before the expression is deallocated. Ar-
rows represent subtyping relationships.

the methods that the annotated value must call. The declaration
@MustCall({"a"}) Object obj means that before obj is deallo-
cated, obj .a() might need to be called. The Resource Leak Checker
conservatively requires all these methods to be called, and it issues
a warning if they are not.

For example, consider fig. 1. The expression null has type @Must-
Call({})—it has no obligations to call particular methods—so s has
that type after its initialization. The new expression has type @Must -
Call("close"), and therefore s has that type after the assignment.
At the start of the finally block, where both values for s flow, the
type of s is their least upper bound, which is @ustCall("close").

Part of the type hierarchy appears in fig. 2. All types are subtypes
of @MustCallUnknown. The subtyping relationship for @MustCall
type qualifiers is:

ACB
@MustCall(A) C @MustCall(B)

The default type qualifier is @MustCall({}) for base types without a
programmer-written type qualifier.! Our implementation provides
JDK annotations which require that every object of Closeable type
must have the close() method called before it is deallocated, with
exceptions for types that do not have an underlying resource, e.g.,
ByteArrayOutputStream.

2.3 A Type System for Called Methods

The Called Methods type system tracks a conservative underap-
proximation of which methods have been called on an expression.
It is an extension of a similar system from prior work [19]. The
primary difference in our version is that a method is considered
called even if it throws an exception—a necessity in Java because

!For unannotated local variable types, flow-sensitive type refinement infers a qualifier.

ESEC/FSE "21, August 23-28, 2021, Athens, Greece

Algorithm 1 Finding unfulfilled @MustCall obligations in a
method. Algorithm 2 defines helper functions.

1: procedure FINDMIsSEDCALLS(CFG)

2 // D maps each statement s to a set of dataflow facts reaching
3 //'s. Each fact is of the form (P, e), where P is a set of variables
4 // that must-alias e and e is an expression with a nonempty
5 // must-call obligation.

6 D « INITIALOBLIGATIONS(CFG)

7 while D has not reached fixed point do

8 for s € CFG.statements, (P, e) € D(s) do

9 if s is exit then

10: report a must-call violation for e

11: else if ~MCSATISFIEDAFTER(P, s) then

12: kill « s assigns a variable ? {s.LHS} : 0
13: gen < CREATESALIAS(P, s) ? {s.LHS} : 0
14: N « (P —kill) U gen

15: Vt € CFG.succ(s) . D(t) « D(t) U {(N,e)}

16: procedure INITIALOBLIGATIONS(CFG)
17: D « {s+— 0| s € CFG.statements}
18: for p € CFG.formals, t € CFG.succ(CFG.entry) do

19: if HAsOBLIGATION(p) then

20: D(t) < D(t) U {{{p},p)}

21: for s € CFG.statements of the form p = m(p1, p2, ...) do
22: Vt € CFG.succ(s) . D(t) « D(t) U FACTSFROMCALL(s)
23: return D

Algorithm 2 Helper functions for algorithm 1. Except for
MCAFTER and CMAFTER, all functions will be replaced with more
sophisticated versions in sections 3-5.

1: // Does e introduce a must-call obligation to check?
2: procedure HASOBLIGATION(e)
3 return e has a declared @MustCall type

. // s must be a call statement p = m(p1, p2, ...)

: procedure FACTSFROMCALL(s)

p < s.LHS,c « s.RHS

return HasOBLiGaTION(C) ? {{{p},c)} : 0

: /1 Is the must-call obligation for P satisfied after s?

9: procedure MCSATISFIEDAFTER(P, s)

10: return 3p € P. MCAFTER(p, s) € CMAFTER(p, s)
11: // Does s introduce a must-alias for a var in P?

12: procedure CREATESALIAS(P, s)

13: return dq € P .sisof the formp = q

N oo U

*®

14: procedure MCAFTER(p, $)

15: return methods in @MustCall type of p after s

16: procedure CMAFTER(p, s)

17: return methods in @CalledMethods type of p after s

the close() method in java.io.Closeable is specified to possibly
throw an I0Exception. In the prior work, a method was only con-
sidered “called” when it terminated successfully. The remainder of
this section is a brief summary of the prior work [19].

The checker is an accumulation analysis whose accumulation
qualifier is@CalledMethods. The type @CalledMethods (A) Object

ESEC/FSE *21, August 23-28, 2021, Athens, Greece

represents an object on which the methods in the set A have def-
initely been called; other methods not in A might also have been
called. The subtyping rule is:
BCA
@CalledMethods(A) C @CalledMethods(B)

The top type is @CalledMethods ({}). The qualifier @CalledMeth-
odsBottom is a subtype of every @CalledMethods qualifier.

Thanks to flow-sensitive type refinement, Called Methods types
are inferred within method bodies. In fig. 1 the type of s is initially
@CalledMethods({}), butittransitions to @CalledMethods ("close")
after the call to close.

2.4 Consistency Checking

Given @MustCall and @CalledMethods types, the Must Call Con-
sistency Checker ensures that the @MustCall methods for each
object are always invoked before it becomes unreachable, via an
intra-procedural dataflow analysis. We employ dataflow analysis to
enable targeted reasoning about aliasing, crucial for precision. Here,
we present a simple, sound version of the analysis. Sections 3-5
describe sound enhancements to this approach.

Language. For simplicity, we present the analysis over a simple
assignment language in three-address form. An expression e in
the language is null, a variable p, a field read p.f, or a method
callm(pl,p2,...) (constructor calls are treated as method calls). A
statement s takes one of three forms: p = e, where e is an expres-
sion; p.f = p’, for a field write; or return p. Methods are repre-
sented by a control-flow graph (CFG) where nodes are statements
and edges indicate possible control flow. We elide control-flow
predicates because the consistency checker is path-insensitive.

For amethod CFG, CFG.statements is the statements, CFG.formals
is the formal parameters, CFG.entry is its entry node, CFG.exit is
its exit node, and CFG.succ is its successor relation. For a statement
softheformp = e, s.LHS = pand s.RHS = e.

Pseudocode. Algorithm 1 gives pseudocode for the basic version
of our checker, with helper functions in algorithm 2. At a high level,
the dataflow analysis computes a map D from each statement s
in a CFG to a set of facts of the form (P, e), where P is a set of
variables and e is an expression. The meaning of D is as follows: if
(P, e) € D(s), then e has a declared @MustCall type, and all variables
in P are must aliases for the value of e at the program point before
s. Computing a set of must aliases is useful since any must alias
may be used to satisfy the must-call obligation of e. Using D, the
analysis finds any e that does not have its @MustCall obligation
fulfilled, and reports an error.

Algorithm 1 proceeds as follows. Line 6 invokes INITIALOBLIGA-
TIONS to initialize D. Only formal parameters or method calls can
introduce obligations to be checked (reads of local variables or fields
cannot). The fixed-point loop iterates over all facts (P, e) present
in any D(s) (our implementation uses a worklist for efficiency). If s
is the exit node (line 9), the obligation for e has not been satisfied,
and an error is reported. Otherwise, the algorithm checks if the
obligation for e is satisfied after s (line 11). For the basic checker,
MCSATISFIEDAFTER in algorithm 2 checks whether there is some
p € P such that after s, the set of methods in p’s @MustCall type
are contained in the set of methods in its @CalledMethods type; if

Martin Kellogg, Narges Shadab, Manu Sridharan, and Michael D. Ernst

s = new Socket(...); // 1
if (...) {
s =null; // 2
} else {
t=s;//3
close(t); // 4
}

{<0, e>}

Figure 3: Example code and CFG for illustrating algorithm 1.
“e” is “new Socket(...)”.Non-shaded facts are created by INI-
TIALOBLIGATIONS, and shaded facts are propagated by the

fixed-point loop.

true, all @MustCall methods have already been invoked. This check
uses the inferred flow-sensitive @MustCall and @CalledMethods
qualifiers described in sections 2.2 and 2.3.

If the obligation for e is not yet satisfied, the algorithm propagates
the fact to successors with an updated set N of must aliases. N is
computed in a standard gen-kill style on lines 12—14. The kill set
simply consists of whatever variable (if any) appears on the left-
hand side of s. The gen set is computed by checking if s creates
a new must alias for some variable in P, using the CREATESALIAS
routine. Since our analysis is accumulation, CREATESALIAS could
simply return false without impacting soundness. In algorithm 2,
CREATESALIAS handles the case of a variable copy where the right-
hand side is in P. (Section 4 presents more sophisticated handling.)
Finally, line 15 propagates the new fact to successors. The process
continues until D reaches a fixed point.

Example. To illustrate our analysis, fig. 3 shows a simple pro-
gram (irrelevant details elided) and its corresponding CFG. The
CFG shows the dataflow facts propagated along each edge. For ini-
tialization, statement 1 introduces the fact ({s}, e) (where e is the
new Socket(...) call) to D(2) and D(3). At statement 2, s is killed,
causing (0, e) to be added to D(exit). This leads to an error being re-
ported for statement 1, as the socket is not closed on this path. State-
ment 3 creates a must alias ¢ for s, causing ({s, t}, e) to be added to
D(4). For statement 4, MCSATISFIEDAFTER({s, t }, close(t)) holds,
so no facts are propagated from 4 to exit.

3 LIGHTWEIGHT OWNERSHIP TRANSFER

Section 2 describes a sound accumulation-based checker for re-
source leaks. However, that checker often encounters false posi-
tives in cases where an @MustCall obligation is satisfied in another
procedure via parameter passing, return values, or object fields.
Consider the following code that safely closes a Socket:

void example(String myHost, int myPort) {
Socket s = new Socket(myHost, myPort);
closeSocket(s);

}

void closeSocket(@wning @ustCall("close") Socket t) {
t.close();

}

Lightweight and Modular Resource Leak Verification

The closeSocket () routine takes ownership of the socket—that
is, it takes responsibility for closing it. The checker described by
section 2 would issue a false positive on this code, because it would
warn when s goes out of scope at the end of example().

This section describes a lightweight ownership transfer technique
for reducing false positives in such cases. Programmers write anno-
tations like @wning that transfer an obligation from one expression
to another. Programmer annotations cannot introduce any checker
unsoundness; at worst, incorrect @0wning annotations will cause
false positive warnings. Unlike an ownership type system like Rust’s
(see section 9.2), lightweight ownership transfer imposes no restric-
tions on what operations can be performed through an alias, and
hence has a minimal impact on the programming model.

3.1 Ownership Transfer

@0wning is a declaration annotation, not a type qualifier; it can be
written on a declaration such as a parameter, return, field, etc., but
not on a type. A pseudo-assignment to an @wning Ivalue trans-
fers the right-hand side’s @MustCall obligation. More concretely,
in the Must Call Consistency Checker (section 2.4), at a pseudo-
assignment to an lvalue with an @wning annotation, the right-hand
side’s @MustCall obligation is treated as satisfied.
The MCSATISFIEDAFTER(P, s) and HASOBLIGATION(e) procedures
of algorithm 2 are enhanced for ownership transfer as follows:
procedure MCSATISFIEDAFTER(P, s)
return 3p € P. MCAFTER(p, s) € CMAFTER(p, 5)
V (s is return p A OWNINGRETURN(CFG))
V PAsSEDASOWNINGPARAM(S, p)
V (sisq.f = p Afis @Owning)
procedure HASOBLIGATION(e)
return e has a declared @MustCall type and e’s declaration
is @wning
procedure OWNINGRETURN(CFG)
return CFG’s return declaration is @wning
procedure PAsSSEDASOWNINGPARAM(s,p)
return s passes p to an @wning parameter of its callee

Section 3.2 discusses checking of @wning fields.

Constructor returns are always @wning. The Resource Leak
Checker’s default for unannotated method returns is @wning, and
for unannotated parameters and fields is @NotOwning. These as-
sumptions coincide well with coding patterns we observed in prac-
tice, reducing the annotation burden for programmers. Further, this
treatment of parameter and return types ensures sound handling
of unannotated third-party libraries: any object returned from such
a library is tracked by default, and the checker never assumes that
passing an object to an unannotated library satisfies its obligations.

3.2 Final Owning Fields

Additional class-level checking is required for @wning fields, as
the code satisfying their @MustCall obligations usually spans mul-
tiple procedures. This section handles final fields,? which cannot
be overwritten after initialization of the enclosing object. When

2The Resource Leak Checker treats all static fields as non-owning, meaning that no
assignment to one can satisfy a must-call obligation. In our case studies, we did not
observe any assignments of expressions with non-empty must-call obligations to static
fields. We leave handling owning static fields to future work.

ESEC/FSE "21, August 23-28, 2021, Athens, Greece

checking non-final fields, the checker must ensure that overwriting
the field is safe (see Section 5.1).

For final fields, our checking enforces the “resource acquisition
is initialization (RAII)” programming idiom [30]. Some destructor-
like method d() must ensure the field’s @MustCall obligation is
satisfied, and the enclosing class must have an @MustCall("d")
obligation to ensure the destructor is called.

More formally, consider a final @wning field f declared in class
C, where f has type @MustCall("m"). To modularly verify that
f’s @ustCall obligation is satisfied, the Resource Leak Checker
checks the following conditions:

(1) All C objects must have a type @MustCall("d") for some
method C.d().

(2) C.d() must always invoke this.f.m(), thereby satisfying f’s
@ustCall obligation.

Condition 1 is checked by inspecting the @MustCall annotation on
class C. Condition 2 is checked by requiring an appropriate @En-
suresCalledMethods postcondition annotation on C.d(), which is
then enforced by the Called Methods Checker (section 2.3).

4 RESOURCE ALIASING

This section introduces a sound, lightweight, specialized must-alias
analysis that tracks resource alias sets—sets of pointers that defi-
nitely correspond to the same underlying system resource. Closing
one alias also closes the others. Thus, the Resource Leak Checker
can avoid issuing false positive warnings about resources that have
already been closed through a resource alias.

4.1 Wrapper Types

Java programs extensively use wrapper types. For example, the Java
BufferedOutputStream wrapper adds buffering to some delegate
OutputStream, which may or may not represent a resource that
needs closing. The wrapper’s close () method invokes close() on
the delegate. Wrapper types introduce two additional complexities
for @MustCall checking:

(1) If a delegate has no @MustCall obligation, the corresponding
wrapper object should also have no obligation.

(2) Satisfying the obligation of either the wrapped object or the
wrapper object is sufficient.

For example, if a BufferedOutputStream b wraps a stream with no
underlying resource (e.g., a ByteArrayOutputStream), b’s @Must-
Call obligation should be empty, as b has no resource of its own.
By contrast, if b wraps a stream managing a resource, like a File-
OutputStream f, then close() must be invoked on either b or f.

Previous work has shown that reasoning about wrapper types is
required to avoid excessive false positive and duplicate reports [8,
33]. Wrapper types in earlier work were handled with hard-coded
specifications of which library types are wrappers, and heuristic
clustering to avoid duplicate reports for wrappers [33].

Our technique handles wrapper types more generally by tracking
resource aliases. Two references r; and ry are resource aliases if r;
and ry are must-aliased pointers, or if satisfying r;’s @MustCall
obligation also satisfies r2’s obligation and vice-versa.

Introducing resource aliases. To indicate where an API method
creates a resource-alias relationship between distinct objects, the

ESEC/FSE *21, August 23-28, 2021, Athens, Greece

programmer writes a pair of @MustCallAlias qualifiers: one on a
parameter of a method, and another on its return type. For example,
one constructor of BufferedOutputStream is:

@ustCallAlias BufferedOutputStream(@ustCallAlias OutputStream arg0);

@MustCallAlias annotations are verified, not trusted; see section 4.3.

At a call site to an @MustCallAlias method, there are two effects.
First, the must-call type of the method call’s return value is the same
as that of the @MustCallAlias argument. If the type of the argument
has no must-call obligations (like a ByteArrayOutputStream), the
returned wrapper has no must-call obligations.

Second, the Must Call Consistency Checker (section 2.4) treats
the @MustCallAlias parameter and return as aliases. For our sec-
tion 2.4 pseudocode, this version of CREATESALIAS from algorithm 2
handles resource aliases:

procedure CREATESALIAS(P, s)
return dq € P .sisof theformp = q
V IsMusTCALLALIASPARAM(S, q)

procedure IsSMUsTCALLALIASPARAM(S, p)
return s passes p to an @MustCallAlias parameter of its
callee

4.2 Beyond Wrapper Types

@ustCallAlias can also be employed in scenarios beyond direct
wrapper types, a capability not present in previous work on resource
leak detection. In certain cases, a resource gets shared between
objects via an intermediate object that cannot directly close the
resource. For example, java.io.RandomAccessFile (which must
be closed) has a method getFd() that returns a FileDescriptor
object for the file. This file descriptor cannot be closed directly—it
has no close() method. However, the descriptor can be passed
to a wrapper stream such as FileOutputStream, which if closed
satisfies the original must-call obligation. By adding @MustCall-
Alias annotations to the getFd () method, our technique can verify
code like the below (adapted from Apache Hadoop [31]):

RandomAccessFile file = new RandomAccessFile(myFile, "rws");
FileInputStream in = null;
try {
in = new FileInputStream(file.getFD());
// do something with in
in.close();
} catch (IOException e){
file.close();

}

Because the must-call obligation checker (section 2.2) treats @Must-
CallAlias annotations polymorphically, regardless of the asso-
ciated base type, the Resource Leak Checker can verify that the
same resource is held by the RandomAccessFile and the FileInput-
Stream, even though it is passed via a class without a close()
method.

4.3 Verification of @MustCallAlias

A pair of @MustCallAlias annotations on m’s return type and its
parameter p can be verified if either of the following holds:

(1) pis passed to another method or constructor in an @MustCall-
Alias position, and m returns that method’s result, or the call
is a super() constructor call annotated with @MustCallAlias.

Martin Kellogg, Narges Shadab, Manu Sridharan, and Michael D. Ernst

(2) p is stored in an @Owning field of the enclosing class. (@0wning
field verification is described in sections 3.2 and 5.1.)

These verification procedures permit a programmer to soundly
specify a resource-aliasing relationship in their own code, unlike
prior work that relied on a hard-coded list of wrapper types.

5 CREATING NEW OBLIGATIONS

Every constructor of a class that has must-call obligations im-
plicitly creates obligations for the newly-created object. However,
non-constructor methods may also create obligations when re-
assigning non-final owning fields or allocating new system-level
resources. To handle such cases soundly, we introduce a method
post-condition annotation, @CreatesMustCallFor, to indicate ex-
pressions for which an obligation is created at a call.

At each call-site of a method annotated as @CreatesMustCall-
For (expr), the Resource Leak Checker removes any inferred Called
Methods information about expr, reverting to @CalledMethods ({}).

When checking a call to a method annotated as @CreatesMust-
CallFor(expr), the Must Call Consistency Checker (1) treats the
@ustCall obligation of expr as satisfied, and (2) creates a fresh
obligation to check. We update the FacTsFromCaLL and MCSATIs-
FIEDAFTER procedures of algorithm 2 as follows ({. . .] stands for
the cases shown previously, including those in section 3.1):

procedure FACTSFROMCALL(s)

p < s.LHS,c < s.RHS
return {{({pi}, c) | pi € CMCFTARGETS(c)}
U (HasOBLiGATION(C) ? {{({p}, c)} : 0)

procedure MCSATISFIEDAFTER(P, s)

return 3p € P. [...] V p € CMCFTARGETS(s)

procedure CMCFTARGETS(c)
return { p; | p; passed to an @CreatesMustCallFor target for
c’s callee }

This change is sound: the checker creates a new obligation for calls
to @CreatesMustCallFor methods, and the must-call obligation
checker (section 2.2) ensures the @ustCall type for the target will
have a superset of any methods present before the call. There is
an exception to this check: if an @CreatesMustCallFor method is
invoked within a method that has an @CreatesMustCallFor anno-
tation with the same target—imposing the obligation on its caller—
then the new obligation can be treated as satisfied immediately.

5.1 Non-Final, Owning Fields

@CreatesMustCallFor allows the Resource Leak Checker to verify
uses of non-final fields that contain a resource, even if they are
re-assigned. Consider the following example:

@ustCall("close") // sets default qual. for uses of SocketContainer
class SocketContainer {
private @wning Socket sock;
public SocketContainer() { sock = ...; }
void close() { sock.close() };
@CreatesMustCallFor("this")
void reconnect() {
if (!sock.isClosed()) {
sock.close();
}
sock = ...;
}
}

Lightweight and Modular Resource Leak Verification

ESEC/FSE "21, August 23-28, 2021, Athens, Greece

Table 1: Verifying the absence of resource leaks. Throughout, “LoC” is lines of non-comment, non-blank Java code. “Resources”
is the number of resources created by the program. “Resource leaks” are true positive warnings. “False positives” are where
the tool reported a potential leak, but manual analysis revealed that no leak is possible. “Annotations” and “code changes” are
the number of edits to program text; see section 7.1.2 for details. “Wall-clock time” is the median of five trials.

Resource False Annota- Code | Wall-clock
LoC Resources leaks positives tions changes time
apache/zookeeper:zookeeper-server 45,248 177 13 48 122 5 1m 24s
apache/hadoop:hadoop-hdfs-project/hadoop-hdfs 151,595 365 23 49 117 13 16m 21s
apache/hbase:hbase-server, hbase-client 220,828 55 5 22 45 5 7m 45s
plume-lib/plume-util 10,187 109 8 2 2 19 Om 15s
Total 427,858 706 49 121 286 42 -

In the lifetime of a SocketContainer object, sock might be re-
assigned arbitrarily many times: once at each call to reconnect ().
This code is safe, however: reconnect () ensures that sock is closed
before re-assigning it.

The Resource Leak Checker must enforce two new rules to en-
sure that re-assignments to non-final, owning fields like sock in
the example above are sound:

e any method that re-assigns a non-final, owning field of an
object must be annotated with an @CreatesMustCallFor an-
notation that targets that object.

e when a non-final, owning field f is re-assigned at statement
s, its inferred @MustCall obligation must be contained in its
@CalledMethods type at the program point before s.

The first rule ensures that close() is called after the last call to
reconnect (), and the second rule ensures that reconnect() safely
closes sock before re-assigning it. Because calling an @Creates-
MustCallFor method like reconnect() resets local type inferece
for called methods, calls to close before the last call to reconnect()
are disregarded.

5.2 Unconnected Sockets

@CreatesMustCallFor can also handle cases where object creation
does not allocate a resource, but the object will allocate a resource
later in its lifecycle. Consider the no-argument constructor to
java.net.Socket. This constructor does not allocate an operating
system-level socket, but instead just creates the container object,
which permits the programmer to e.g. set options which will be
used when creating the physical socket. When such a Socket is
created, it initially has no must-call obligation; it is only when the
Socket is actually connected via a call to a method such as bind()
or connect () that the must-call obligation is created.

If all Sockets are treated as @MustCall({"close"}), a false pos-
itive would be reported in code such as the below, which operates
on an unconnected socket (simplified from real code in Apache
Zookeeper [32]):

static Socket createSocket() {
Socket sock = new Socket();
sock.setSoTimeout(...);
return sock;

}

The call to setSoTimeout can throw a SocketException if the
socket is actually connected when it is called. Using @CreatesMust-
CallFor, however, the Resource Leak Checker can soundly show

that this socket is not connected: the type of the result of the no-
argument constructor is @ustCall({}), and @CreatesMustCall-
For annotations on the methods that actually allocate the socket—
connect () or bind()—enforce that as soon as the socket is open, it
is treated as @MustCall("close").

6 IMPLEMENTATION

We implemented the Resource Leak Checker on top of the Checker
Framework [25], an industrial-strength framework for building
pluggable type systems for Java. The checkers which propagate
and infer @MustCall and @CalledMethods annotations are imple-
mented directly as Checker Framework type-checkers. The Must
Call Consistency Checker (algorithm 1) is implemented as a post-
analysis pass over the control-flow graph produced by the Checker
Framework’s dataflow analysis, and is invoked when the other
two checkers terminate. The framework provides the checkers
with flow-sensitive local type inference, support for Java generics
and qualifier polymorphism, and other conveniences. Our imple-
mentation is open-source and distributed as part of the Checker
Framework (https://checkerframework.org/) from version 3.15.0.

7 EVALUATION
Our evaluation has three parts:

e case studies on open-source projects, which show that our
approach is scalable and finds real resource leaks (section 7.1).

e an evaluation of the importance of lightweight ownership,
resource aliasing, and obligation creation (section 7.2).

e a comparison to previous leak detectors: both a heuristic bug
finder and a whole-program analysis (section 7.3).

All code and data for our experiments described in this section,
including the Resource Leak Checker’s implementation, experimen-
tal machinery, and annotated versions of our case study programs,
are publicly available at https://doi.org/10.5281/zenodo.4902321.

7.1 Case Studies on Open-Source Projects

We selected 3 open-source projects that were analyzed by prior
work [39]. For each, we selected and analyzed one or two modules
with many uses of leakable resources. We used the latest version of
the source code that was available when we began. We also analyzed
an open-source project maintained by one of the authors, to simu-
late the Resource Leak Checker’s expected use case, where the user
is already familiar with the code under analysis (see section 7.1.3).

https://checkerframework.org/
https://doi.org/10.5281/zenodo.4902321

ESEC/FSE *21, August 23-28, 2021, Athens, Greece

public InputStream getInputStreamForSection(
FileSummary.Section section, String compressionCodec)
throws IOException {
FileInputStream fin = new FileInputStream(filename);
FileChannel channel = fin.getChannel();
channel.position(section.getOffset());
InputStream in = new BufferedInputStream(new LimitInputStream(fin,
section.getlLength()));
in = FSImageUtil.wrapInputStreamForCompression(conf,
compressionCodec, in);
return in;

Figure 4: A resource leak that the Resource Leak Checker
found in Hadoop. Hadoop’s developers merged our fix [27].

For each case study, our methodology was as follows. (1) We
modified the build system to run the Resource Leak Checker on the
module(s), analyzing uses of resource classes that are defined in
the JDK. It also reports the maximum possible number of resources
(references to JDK-defined classes with a non-empty @ustCall
obligation) that could be leaked: each obligation at a formal pa-
rameter or method call. (2) We manually annotated each program
with must-call, called-methods, and ownership annotations (see
section 7.1.2). (3) We iteratively ran the analysis to correct our
annotations. We measured the run time as the median of 5 trials
on a machine running Ubuntu 20.04 with an Intel Core i7-10700
CPU running at 2.90GHz and 64GiB of RAM. Our analysis is em-
barrassingly parallel, but our implementation is single-threaded
because javac is single-threaded. (4) We manually categorized each
warning as revealing a real resource leak (a true positive) or as a
false positive warning about safe code that our tool is unable to
prove correct. At least two authors agreed on each categorization.

Table 1 summarizes the results. The Resource Leak Checker
found multiple serious resource leaks in every program. The Re-
source Leak Checker’s overall precision on these case studies is 29%
(49/170). Though there are more false positives than true positives,
the number is small enough to be examined by a single developer
in a few hours. The annotations in the program are also a benefit:
they express the programmer’s intent and, as machine-checked
documentation, they cannot become out-of-date.

At the time of writing, the developers of the case study programs
have validated and accepted patches for 16 resource leaks discov-
ered by our tool, including at least one for each project. No patches
we have submitted this way have been rejected.

7.1.1 True and False Positive Examples. This section gives examples
of warnings reported by the Resource Leak Checker.

Figure 4 contains code from Hadoop. If an IO error occurs any
time between the allocation of the FileInputStream in the first line
of the method and the return statement at the end—for example, if
channel.position(section.getOffset()) throwsan IOException,
as it is specified to do—then the only reference to the stream is
lost. Hadoop’s developers assigned this issue a priority of “Major”
and accepted our patch [27]. One developer suggested using a try-
with-resources statement instead of our patch (which catches the
exception and closes the stream), but we pointed out that the file
needs to remain open if no error occurs so that it can be returned.

Martin Kellogg, Narges Shadab, Manu Sridharan, and Michael D. Ernst

Optional<ServerSocket> createServerSocket(...) {
ServerSocket serverSocket;
try {
if (L) Ao
serverSocket = new ServerSocket();
serverSocket.setReuseAddress (true);
serverSocket.bind(...);
return Optional.of(serverSocket);
}
} catch (IOException e) {
// log an error
}
return Optional.empty();
}

Figure 5: Code from the ZooKeeper case study that causes
the Resource Leak Checker to issue a false positive.

Table 2: The annotations we wrote in the case studies.

Annotation Count
@0wning and @NotOwning 98
@EnsuresCalledMethods 54
@MustCall 53
@MustCallAlias 41
@CreatesMustCallFor 40
Total 286

The most common reason for false positives (which caused 22%
of the false positives in our case studies) was a known bug in the
Checker Framework’s type inference algorithm for Java generics,
which the Checker Framework developers are working to fix [23].
The second most common reason (causing 15%) was a generic con-
tainer object like java.util.Optional taking ownership of a re-
source, such as the example in fig. 5. Our lightweight ownership sys-
tem does not support transferring ownership to generic parameters,
so the Resource Leak Checker issues an error when Optional.of is
returned. In this case, the use of the Optional class is unnecessary
and complicates the code [9]. If Optional was replaced by a nullable
Java reference, the Resource Leak Checker could verify this code.
Future work should expand the lightweight ownership system to
support Java generics. The third most common reason (causing 8%)
is nullness reasoning: some resource is closed only if it is non-null,
but our checker expects the resource to be closed on every path. Our
checker handles simple comparisons with null (as in fig. 1), but fu-
ture work could incorporate more complex nullness reasoning [25].

7.1.2 Annotations and Code Changes. We wrote about one annota-
tion per 1,500 lines of code (table 2).

We also made 42 small, semantics-preserving changes to the
programs to reduce false positives from our analysis. In 19 places in
plume-util, we added an explicit extends bound to a generic type.
The Checker Framework uses different defaulting rules for implicit
and explicit upper bounds, and a common pattern in this benchmark
caused our checker to issue an error on uses of implicit bounds. In
18 places, we made a field final; this allows our checker to verify
usage of the field without using the stricter rules for non-final
owning fields given in section 5. In 9 of those cases, we also removed
assignments of null to the field after it was closed; in 1 other we
added an else clause in the constructor that assigned the field a

1The
“w/o OC”
column
hasbeen
corrected
and
differs
slightly
from the
originally-
published

version.

Lightweight and Modular Resource Leak Verification

Table 3: False positives in our case studies (“RLC”) and
without lightweight ownership (“w/o LO”), resource aliasing
(“w/o RA”), and obligation creation (“w/o OC”).

Project w/oLO w/oRA w/oOCt RLC
apache/zookeeper 117 158 47 48
apache/hadoop 97 184 58 49
apache/hbase 82 93 26 22
plume-lib/plume-util 4 11 2 2
Total 300 446 133 121

null value. In 3 places, we re-ordered two statements to remove
an infeasible control-flow-graph edge. In 2 places, we extracted an
expression into a local variable, permitting flow-sensitive reasoning
or targeting by an @CreatesMustCallFor annotation.

7.1.3 Simulating the User Experience. To simulate the experience
of a typical user who understands the codebase being analyzed, one
author used the Resource Leak Checker to analyze plume-util, a
10KLoC library he wrote 23 years ago. The process took about two
hours, including running the tool, writing annotations, and fixing
the 8 resource leaks that the tool discovered. The annotations were
valuable enough that they are now committed to that codebase, and
the Resource Leak Checker runs in CI to prevent the introduction of
new resource leaks. This example is suggestive that the programmer
effort to use our tool is reasonable.

7.2 Evaluating Our Enhancements

Lightweight ownership (section 3), resource aliasing (section 4),
and obligation creation (section 5) reduce false positive warnings
and improve the Resource Leak Checker’s precision. To evaluate
the contribution of each enhancement, we individually disabled
each feature and re-ran the experiments of section 7.1.

Table 3 shows that each of lightweight ownership and resource
aliases prevents more false positive warnings than the total number
of remaining false positives on each benchmark. The system for
creating new obligations at points other than constructors reduces
false positives by a smaller amount: non-final, owning field re-
assignments are rare.

7.3 Comparison to Other Tools

Our approach represents a novel point in the design space of re-
source leak checkers. This section compares our approach with two
other modern tools that detect resource leaks:

e The analysis built into the Eclipse Compiler for Java (ecj),
which is the default approach for detecting resource leaks in
the Eclipse IDE [8]. We used version 4.18.0.

e Grapple [39], a state-of-the-art typestate checker that lever-
ages whole-program alias analysis.

In brief, both of the above tools are unsound and missed 87-93%
of leaks. Both tools neither require nor permit user-written spec-
ifications, a plus in terms of ease of use but a minus in terms of
documentation and flexibility. Eclipse is very fast (nearly instanta-
neous) but has low precision (25% for high-confidence warnings,
much lower if all warnings are included). Grapple is more precise
(50% precision), but an order of magnitude slower than the Resource

ESEC/FSE "21, August 23-28, 2021, Athens, Greece

Table 4: Comparison of resource leak checking tools:
Eclipse, Grapple, and the Resource Leak Checker. Recall
is the ratio of reported leaks to all leaks present in the
code, and precision is the ratio of true positive warnings
to all tool warnings. Different tools were run on different
versions of the case study programs. The number of leaks
and the recall are computed over the code that is common to
all versions of the programs, so recall is directly comparable
within rows. Precision is computed over the code version
analyzed by each tool, so it may not be directly comparable
within rows. Eclipse reports no high-confidence warnings
for JDK types in HBase.

Recall Precision”
Project leaks Ecl Gr RLC | Edd Gr RLC
ZooKeeper 6 17% 17% 100% | 33% 67% 21%
HDFS 7 14% 0% 100% | 20% 71% 32%
HBase 2 0% 0% 100% - 35% 19%
Total 15 13% 7% 100% | 25% 50% 26%

Leak Checker. The Resource Leak Checker had 100% recall and 26%
precision. Users can select whichever tool matches their priorities.

Tables 4 and 5 quantitatively compare the tools. Our comparison
uses parts of the 3 case study programs that Grapple was run on in
the past; see section 7.3.2 for details.

7.3.1 Eclipse. The Eclipse analysis is a simple dataflow analysis
augmented with heuristics. Since it is tightly integrated with the
compiler, it scales well and runs quickly. It has heuristics for own-
ership, resource wrappers, and resource-free closeables, among
others; these are all hard-coded into the analysis and cannot be
adjusted by the user. It supports two levels of analysis: detecting
high-confidence resource leaks and detecting “potential” resource
leaks (a superset of high-confidence resource leaks).

We ran Eclipse’s analysis on the exact same code that we ran the
Resource Leak Checker on for section 7.1 (excluding the plume-util
case study). Table 4 reports results for a subset of the code; this
paragraph reports results for the full code. In “high-confidence”
mode on the three projects, Eclipse reports 8 warnings related to
classes defined in the JDK: 2 true positives (thus, it misses 39 real
resource leaks) and 6 false positives. In “potential” leak mode, the
analysis reports many more warnings. Thus, we triaged only the
180 warnings about JDK classes from the ZooKeeper benchmark.
Among these were 3 true positives (it missed 10 real resource leaks)
and 177 false positives (2% precision). The most common cause of
false positives was the unchangeable, default ownership transfer
assumption at method returns, leading to a warning at each call
that returns a resource-alias, such as Socket#getInputStream.

7.3.2 Grapple. Grapple is a modern typestate-based resource leak
analysis “designed to conduct precise and scalable checking of
finite-state properties for very large codebases” [39]. Grapple mod-
els its alias and dataflow analyses as dynamic transitive-closure
computations over graphs, and it leverages novel path encodings
and techniques from predecessor-system Graspan [34] to achieve
both context- and path-sensitivity. Grapple contains four checkers,
of which two can detect resource leaks. Unlike the Resource Leak

ESEC/FSE *21, August 23-28, 2021, Athens, Greece

Table 5: Run times of resource leak checking tools.

Project Eclipse Grapple Resource Leak Checker
ZooKeeper <5s 1h 07m 02s 1m 24s
HDFS <5s 1h 54m 52s 16m 21s
HBase <5s 33h 51m 59s 7m 45s

Checker, Grapple is unsound, as it performs a fixed bounded un-
rolling of loops to make path sensitivity tractable. The Resource
Leak Checker reports violations of a user-supplied specification
(which takes effort to write but provides documentation benefits),
so it can ensure that a library is correct for all possible clients. By
contrast, Grapple checks a library in the context of one specific
client; it only reports issues in methods reachable from entry points
(like a main() method) in a whole-program call graph [38].

The Grapple authors evaluated their tool on earlier versions of
the first three case study programs in section 7.1 [39]. Unfortunately,
a direct comparison on our benchmark versions is not possible,
because Grapple’s leak detector currently cannot be run (by us or
by the Grapple authors) due to library incompatibilities and bitrot
in the implementation. The Grapple authors provided us with the
finite-state machine (FSM) specifications used in Grapple to detect
resource leaks, and also details of all warnings issued by Grapple
in the versions of the benchmarks they analyzed.

We used the following methodology to permit a head-to-head
comparison. We started with all warnings issued by either tool. We
disregarded any warning about code that is not present identically
in the other version of the target program (due to refactoring, added
code, bug fixes, etc.). We also disregarded warnings about code that
is not checked by both tools. For example, Grapple analyzed test
code, but our experiments did not write annotations in test code nor
type-check it. The remaining warnings pertain to resource leaks in
identical code that both tools ought to report. For each remaining
warning, we manually identified it as a true positive (a real resource
leak) or a false positive (correct code, but the tool cannot deter-
mine that fact). Table 4 reports the precision and recall of Eclipse,
Grapple, and the Resource Leak Checker. Some of Grapple’s false
positives are reports about types like java.io.StringWriter with
no underlying resource that must be closed. (These reports were
mis-classified as true positives in [39], which is one reason the num-
bers there differ from table 4.) Grapple’s false negatives might be
due to analysis unsoundness or gaps in API modeling (e.g., Grapple
does not include FSM specifications for OutputStream classes).

Grapple runs can take many hours (run times are from [39]),
whereas the Resource Leak Checker runs in minutes (table 5). Fur-
ther, Grapple is not modular, so if the user edits their program,
Grapple must be re-run from scratch [38]. After a code edit, the
Resource Leak Checker only needs to re-analyze modified code (and
possibly its dependents if the modified code’s interface changed).

8 LIMITATIONS AND THREATS TO VALIDITY

Like any tool that analyzes source code, the Resource Leak Checker
only gives guarantees for code that it checks: the guarantee excludes
native code, the implementation of unchecked libraries (such as
the JDK), and code generated dynamically or by other annotation
processors such as Lombok. Though the Checker Framework can

Martin Kellogg, Narges Shadab, Manu Sridharan, and Michael D. Ernst

handle reflection soundly [3], by default (and in our case studies) the
Resource Leak Checker compromises this guarantee by assuming
that objects returned by reflective invocations do not carry must-
call obligations. (Users can customize this behavior.) Within the
bounds of a user-written warning suppression, the Resource Leak
Checker assumes that 1) any errors issued can be ignored, and 2)
all annotations written by the programmer are correct.

The Resource Leak Checker is sound with respect to specifi-
cations of which types have a @MustCall obligation that must be
satisfied. We wrote such specifications for the Java standard library,
focusing on IO-related code in the java.io and java.nio packages.
Any missing specifications of @ustCall obligations could lead the
Resource Leak Checker to miss resource leaks.

The results of our experiments may not generalize, compromis-
ing the external validity of the experimental results. The Resource
Leak Checker may produce more false positives, require more anno-
tations, or be more difficult to use if applied to other programs. Case
studies on legacy code represents a worst case for a source code
analysis tool. Using the Resource Leak Checker from the inception
of a project would be easier, since programmers know their intent
as they write code and annotations could be written along with the
code. It would also be more useful, since it would guide the program-
mers to a better design that requires fewer annotations and has no
resource leaks. The need for annotations could be viewed as a limi-
tation of our approach. However, the annotations serve as concise
documentation of properties relevant to resource leaks—and un-
like traditional, natural-language documentation, machine-checked
annotations cannot become out-of-date.

Like any practical system, it is possible that there might be de-
fects in the implementation of the Resource Leak Checker or in
the design of its analyses. We have mitigated this threat with code
review and an extensive test suite: 119 test classes containing 3,776
lines of non-comment, non-blank code. This test suite is publicly
available and distributed with the Resource Leak Checker.

9 RELATED WORK

Most prior work on resource leak detection either uses program
analysis to detect leaks or adds language features to prevent them.
Here we focus on the most relevant work from these categories.

9.1 Analysis-Based Approaches

Static analysis. Tracker [33] performs inter-procedural dataflow
analysis to detect resource leaks, with various additional features to
make the tool practical, including issue prioritization and handling
of wrapper types. Tracker avoids whole-program alias analysis
to improve scalability, instead using a local, access-path-based ap-
proach. While Tracker scales to large programs, it is deliberately
unsound, unlike the Resource Leak Checker.

The Eclipse Compiler for Java includes a dataflow-based bug-
finder for resource leaks [8]. Its analysis uses a fixed set of own-
ership heuristics and a fixed list of wrapper classes; unlike the Re-
source Leak Checker, it is unsound. It is very fast. Similar analyses—
with similar trade-offs compared to the Resource Leak Checker—
exist in other heuristic bug-finding tools, including SpotBugs [28],
PMD [26], and Infer [17]. Section 7.3.1 experimentally evaluates
the Eclipse analysis.

Lightweight and Modular Resource Leak Verification

Typestate analysis [11, 29] can be used to find resource leaks.
Grapple [39] is the most recent system to use this approach, leverag-
ing a disk-based graph engine to achieve unprecedented scalability
on a single machine. Compared to the Resource Leak Checker, Grap-
ple is more precise but suffers from unsoundness and longer run
times. Section 7.3.2 gives a more detailed comparison to Grapple.

The CLOSER [7] automatically inserts Java code to dispose of
resources when they are no longer “live” according to its dataflow
analysis. Their approach requires an expensive alias analysis for
soundness, as well as manually-provided aliasing specifications
for linked libraries. The Resource Leak Checker uses accumulation
analysis [10, 19] to achieve soundness without the need for a whole-
program alias analysis.

Dynamic analysis. Some approaches use dynamic analysis to
ameliorate leaks. Resco [6] operates similarly to a garbage collector,
tracking resources whose program elements have become unreach-
able. When a given resource (such as file descriptors) is close to
exhaustion, the runtime runs Resco to clean up any resources of
that type that are unreachable. With a static approach such as ours,
leaks are impossible and a tool like Resco is unnecessary.

Automated test generation can also be used to detect resource
leaks. For example, leaks in Android applications can be found by
repeatedly running neutral—i.e. eventually returning to the same
state—GUI actions [36, 37]. Other techniques detect common misuse
of the Android activity lifecycle [2]. Testing can only show the
presence of failures, not the absence of defects; the Resource Leak
Checker verifies that no resource leaks are present.

Data sets and surveys. The DroidLeaks benchmark [21] is a set
of Android apps with known resource leaks. Unfortunately, it in-
cludes only the compiled apps. The Resource Leak Checker runs on
source code, so we were unable to run the Resource Leak Checker
on DroidLeaks. Ghanavati et al. [15] performed a detailed study
of resource leaks and their repairs in Java projects, showing the
pressing need for better tooling for resource leak prevention. In
particular, their study showed that developers consider resource
leaks to be an important problem, and that previous static analysis
tools are insufficient for preventing resource leaks. We plan to apply
the Resource Leak Checker to more programs from their study.

9.2 Language-Based Approaches

Ownership types and Rust. Ownership type systems [5] impose
control over aliasing, which in turn enables guaranteeing other
properties, like the absence of resource leaks. We do not discuss
the vast literature on ownership type systems [5] here. Instead, we
focus on ownership types in Rust [20] as the most popular practical
example of using ownership to prevent resource leaks.

For a detailed overview of ownership in Rust, see chapter 4
of [20]; we give a brief overview here. In Rust, ownership is used to
manage both memory and other resources. Every value associated
with a resource must have a unique owning pointer, and when an
owning pointer’s lifetime ends, the value is “dropped,” ensuring
all resources are freed. Rust’s ownership type system statically
prevents not only resource leaks, but also other important issues like
“double-free” defects (releasing a resource more than once) and “use-
after-free” defects (using a resource after it has been released). But,

ESEC/FSE "21, August 23-28, 2021, Athens, Greece

this power comes with a cost; to enforce uniqueness, non-owning
pointers must be invalidated after an ownership transfer and can
no longer be used. Maintaining multiple usable pointers to a value
requires use of language features like references and borrowing,
and even then, borrowed pointers have restricted privileges.

The Resource Leak Checker has less power than Rust’s owner-
ship types; it cannot prevent double-free or use-after-free defects.
But, the Resource Leak Checker’s lightweight ownership annota-
tions impose no restrictions on aliasing; they simply aid the tool
in identifying how a resource will be closed. Lightweight owner-
ship is better suited to preventing resource leaks in existing, large
Java code bases; adapting such programs to use a full Rust-style
ownership type system would be impractical.

Other approaches. Java’s try-with-resources construct [24] was
discussed in section 1. Java also provides finalizer methods [16,
Chapter 12], which execute before an object is garbage-collected,
but they should not be used for resource management, as their
execution may be delayed arbitrarily.

Compensation stacks [35] generalize C++ destructors and Java’s
try-with-resources, to avoid resource leak problems in Java. While
compensation stacks make resource leaks less likely, they do not
guarantee that leaks will not occur, unlike the Resource Leak Checker.

Previous work has performed modular typestate analysis for an-
notated Java programs [4] or proposed typestate-oriented program-
ming languages with modular typestate checking [1, 14]. The type
systems of these approaches can express arbitrary typestate proper-
ties, beyond what can be checked with the Resource Leak Checker.
However, these systems impose restrictions on aliasing and a higher
type annotation burden than the Resource Leak Checker, making
adoption for existing code more challenging.

10 CONCLUSION

We have developed a new, sound, modular approach for detecting
and preventing resource leaks in large-scale Java programs. The
Resource Leak Checker consists of sound core analyses, built on
the insight that leak checking is an accumulation problem, aug-
mented by three new features to handle common aliasing patterns:
lightweight ownership transfer, resource aliasing, and obligation
creation by non-constructor methods.

The Resource Leak Checker discovered 49 resource leaks in
heavily-used, heavily-tested Java code. Its analysis speed is an order
of magnitude faster than whole-program analysis, and its false
positive rate is similar to a state-of-the-practice heuristic bug-finder.
It reads and verifies user-written specifications; the annotation
burden is about 1 annotation per 1,500 lines of code.

ACKNOWLEDGMENTS

Thanks to Rashmi Mudduluru, Ben Kushigian, Chandrakana Nandi,
and the anonymous reviewers for their comments on earlier ver-
sions of this paper. This research was supported in part by the
National Science Foundation under grants CCF-2005889 and CCF-
2007024, a gift from Oracle Labs, and a Google Research Award.

ESEC/FSE *21, August 23-28, 2021, Athens, Greece

REFERENCES

(1]

(2]

=L

[11]

Jonathan Aldrich, Joshua Sunshine, Darpan Saini, and Zachary Sparks. 2009.
Typestate-oriented programming. In OOPSLA Companion: Object-Oriented Pro-
gramming Systems, Languages, and Applications. Orlando, FL, USA, 1015-1022.
Domenico Amalfitano, Vincenzo Riccio, Porfirio Tramontana, and Anna Rita Fa-
solino. 2020. Do memories haunt you? An automated black box testing approach
for detecting memory leaks in android apps. IEEE Access 8 (2020), 12217-12231.
Paulo Barros, René Just, Suzanne Millstein, Paul Vines, Werner Dietl, Marcelo
d’Amorim, and Michael D. Ernst. 2015. Static analysis of implicit control flow:
Resolving Java reflection and Android intents. In ASE 2015: Proceedings of the
30th Annual International Conference on Automated Software Engineering. Lincoln,
NE, USA, 669-679.

Kevin Bierhoff and Jonathan Aldrich. 2007. Modular typestate checking of aliased
objects. In OOPSLA 2007, Object-Oriented Programming Systems, Languages, and
Applications. Montreal, Canada, 301-320.

Dave Clarke, Johan Ostlund, Ilya Sergey, and Tobias Wrigstad. 2013. Ownership
Types: A Survey. In Aliasing in Object-Oriented Programming. Types, Analysis
and Verification. Springer, Berlin, Heidelberg.

Ziying Dai, Xiaoguang Mao, Yan Lei, Xiaomin Wan, and Kerong Ben. 2013. Resco:
Automatic collection of leaked resources. IEICE TRANSACTIONS on Information
and Systems 96, 1 (2013), 28-39.

Isil Dillig, Thomas Dillig, Eran Yahav, and Satish Chandra. 2008. The CLOSER:
automating resource management in Java. In International symposium on Memory
management. 1-10.

Eclipse developers. 2020. Avoiding resource leaks. https://help.eclipse.org/2020-
12/index.jsp?topic=%2Forg.eclipse.jdt.doc.user%2Ftasks%2Ftask-avoiding_
resource_leaks.htm&cp%3D1_3_9_3. Accessed 3 February 2021.

Michael D. Ernst. 2016. Nothing is better than the Optional type. https://homes.
cs.washington.edu/~mernst/advice/nothing-is-better-than-optional.html.
Manuel Fiahndrich and K. Rustan M. Leino. 2003. Heap Monotonic Typestates. In
IWACO 2003: International Workshop on Aliasing, Confinement and Ownership in
object-oriented programming. Darmstadt, Germany.

Stephen J. Fink, Eran Yahav, Nurit Dor, G. Ramalingam, and Emmanuel Geay.
2008. Effective typestate verification in the presence of aliasing. ACM TOSEM 17,
2, Article Article 9 (2008), 34 pages.

[12] Jeffrey S. Foster, Manuel Fihndrich, and Alexander Aiken. 1999. A theory of

[13]
[14]

[15]

[16]
[17]
(18]

[19

[20]

type qualifiers. In PLDI °99: Proceedings of the ACM SIGPLAN °99 Conference on
Programming Language Design and Implementation. Atlanta, GA, USA, 192-203.
Erich Gamma, Richard Helm, Ralph E. Johnson, and John Vlissides. 1995. Design
Patterns. Addison-Wesley, Reading, MA.

Ronald Garcia, Eric Tanter, Roger Wolff, and Jonathan Aldrich. 2014. Foundations
of Typestate-Oriented Programming. ACM Trans. Program. Lang. Syst. 36, 4
(2014), 12:1-44.

Mohammadreza Ghanavati, Diego Costa, Janos Seboek, David Lo, and Artur
Andrzejak. 2020. Memory and resource leak defects and their repairs in Java
projects. Empirical Software Engineering 25, 1 (2020), 678-718.

James Gosling, Bill Joy, Guy L. Steele, Gilad Bracha, and Alex Buckley. 2014. The
Java Language Specification, Java SE 8 Edition. Addison-Wesley Professional.
Infer developers. 2021. Resource leak in Java. https://fbinfer.com/docs/checkers-
bug-types#resource-leak-in-java. Accessed 4 February 2021.

JetBrains. 2020. List of Java Inspections. https://www.jetbrains.com/help/idea/list-
of-java-inspections.html#resource-management. Accessed 5 February 2021.
Martin Kellogg, Manli Ran, Manu Sridharan, Martin Schaf, and Michael D. Ernst.
2020. Verifying Object Construction. In ICSE 2020, Proceedings of the 42nd Inter-
national Conference on Software Engineering. Seoul, Korea.

Steve Klabnik and Carol Nichols. 2018. The Rust Programming Language. https:
//doc.rust-lang.org/1.50.0/book/

[21

[22

[23

[24

[25

[26

[27

[28

[29

[30

(32]

[33

[34

@
i

Martin Kellogg, Narges Shadab, Manu Sridharan, and Michael D. Ernst

Yepang Liu, Jue Wang, Lili Wei, Chang Xu, Shing-Chi Cheung, Tianyong Wu, Jun
Yan, and Jian Zhang. 2019. DroidLeaks: a comprehensive database of resource
leaks in Android apps. Empirical Software Engineering 24, 6 (2019), 3435-3483.
David Lo, Nachiappan Nagappan, and Thomas Zimmermann. 2015. How practi-
tioners perceive the relevance of software engineering research. In ESEC/FSE 2015:
The 10th joint meeting of the European Software Engineering Conference (ESEC)
and the ACM SIGSOFT Symposium on the Foundations of Software Engineering
(FSE). Bergamo, Italy.

Suzanne Millstein. 2016. Implement Java 8 type argument inference. https:
//github.com/typetools/checker-framework/issues/979. Accessed 17 April 2020.
Oracle. 2020. The try-with-resources Statement (The Java Tutorials). https://
docs.oracle.com/javase/tutorial/essential/exceptions/tryResourceClose.html. Ac-
cessed 24 February 2021.

Matthew M. Papi, Mahmood Ali, Telmo Luis Correa Jr., Jeff H. Perkins, and
Michael D. Ernst. 2008. Practical pluggable types for Java. In ISSTA 2008, Proceed-
ings of the 2008 International Symposium on Software Testing and Analysis. Seattle,
WA, USA, 201-212.

PMD developers. 2021. CloseResource. https://pmd.github.io/pmd-6.31.0/pmd

rules_java_errorprone.html#closeresource. Accessed 4 February 2021.
Narges Shadab. 2021. HDFS-15791. Possible Resource Leak in FSImageFormat-

Protobuf. https://github.com/apache/hadoop/pull/2652. Accessed 16 June 2021.
SpotBugs developers. 2021. OBL: Method may fail to clean up stream or resource.
https://spotbugs.readthedocs.io/en/latest/bugDescriptions.html#obl-method-
may-fail-to- clean-up- stream- or-resource- obl-unsatisfied- obligation. Accessed
4 February 2021.

Robert E. Strom and Shaula Yemini. 1986. Typestate: A programming language
concept for enhancing software reliability. IEEE TSE SE-12, 1 (Jan. 1986), 157-171.
Bjarne Stroustrup. 1994. 16.5, Resource Management. In The design and evolution
of C++. Pearson Education India, 388-389.

The Apache Hadoop developers. 2018. Storagelnfo.java. https://github.com/
apache/hadoop/blob/aa96f1871bfd858f9bac59cf2a81ec470da649af/hadoop-hdfs-
project/hadoop-hdfs/src/main/java/org/apache/hadoop/hdfs/server/common/
Storagelnfo.java#L246. Accessed 22 February 2021.

The Apache ZooKeeper developers. 2020. Learnerjava. https://github.
com/apache/zookeeper/blob/c42c8c94085ed1d94a22158fbdfe2945118a82bc/
zookeeper-server/src/main/java/org/apache/zookeeper/server/quorum/
Learner.java#L465. Accessed 24 February 2021.

Emina Torlak and Satish Chandra. 2010. Effective interprocedural resource leak
detection. In International Conference on Software Engineering (ICSE). 535-544.
Kai Wang, Aftab Hussain, Zhigiang Zuo, Guoqing (Harry) Xu, and Ardalan Amiri
Sani. 2017. Graspan: A Single-machine Disk-based Graph System for Interproce-
dural Static Analyses of Large-scale Systems Code. In Architectural Support for
Programming Languages and Operating Systems (ASPLOS). 389-404.

Westley Weimer and George C Necula. 2004. Finding and preventing run-time
error handling mistakes. In Object-oriented programming, systems, languages, and
applications (OOPSLA). 419-431.

Haowei Wu, Yan Wang, and Atanas Rountev. 2018. Sentinel: generating GUI tests
for Android sensor leaks. In International Workshop on Automation of Software
Test (AST). IEEE, 27-33

Hailong Zhang, Haowei Wu, and Atanas Rountev. 2016. Automated test genera-
tion for detection of leaks in Android applications. In International Workshop on
Automation of Software Test (AST). 64-70.

Zhigiang Zuo. 2021. Personal communication.

Zhiqiang Zuo, John Thorpe, Yifei Wang, Qiuhong Pan, Shenming Lu, Kai Wang,
Guoging Harry Xu, Linzhang Wang, and Xuandong Li. 2019. Grapple: A graph
system for static finite-state property checking of large-scale systems code. In
EuroSys. 1-17.

https://help.eclipse.org/2020-12/index.jsp?topic=%2Forg.eclipse.jdt.doc.user%2Ftasks%2Ftask-avoiding_resource_leaks.htm&cp%3D1_3_9_3
https://help.eclipse.org/2020-12/index.jsp?topic=%2Forg.eclipse.jdt.doc.user%2Ftasks%2Ftask-avoiding_resource_leaks.htm&cp%3D1_3_9_3
https://help.eclipse.org/2020-12/index.jsp?topic=%2Forg.eclipse.jdt.doc.user%2Ftasks%2Ftask-avoiding_resource_leaks.htm&cp%3D1_3_9_3
https://homes.cs.washington.edu/~mernst/advice/nothing-is-better-than-optional.html
https://homes.cs.washington.edu/~mernst/advice/nothing-is-better-than-optional.html
https://fbinfer.com/docs/checkers-bug-types#resource-leak-in-java
https://fbinfer.com/docs/checkers-bug-types#resource-leak-in-java
https://www.jetbrains.com/help/idea/list-of-java-inspections.html#resource-management
https://www.jetbrains.com/help/idea/list-of-java-inspections.html#resource-management
https://doc.rust-lang.org/1.50.0/book/
https://doc.rust-lang.org/1.50.0/book/
https://github.com/typetools/checker-framework/issues/979
https://github.com/typetools/checker-framework/issues/979
https://docs.oracle.com/javase/tutorial/essential/exceptions/tryResourceClose.html
https://docs.oracle.com/javase/tutorial/essential/exceptions/tryResourceClose.html
https://pmd.github.io/pmd-6.31.0/pmd_rules_java_errorprone.html#closeresource
https://pmd.github.io/pmd-6.31.0/pmd_rules_java_errorprone.html#closeresource
https://github.com/apache/hadoop/pull/2652
https://spotbugs.readthedocs.io/en/latest/bugDescriptions.html#obl-method-may-fail-to-clean-up-stream-or-resource-obl-unsatisfied-obligation
https://spotbugs.readthedocs.io/en/latest/bugDescriptions.html#obl-method-may-fail-to-clean-up-stream-or-resource-obl-unsatisfied-obligation
https://github.com/apache/hadoop/blob/aa96f1871bfd858f9bac59cf2a81ec470da649af/hadoop-hdfs-project/hadoop-hdfs/src/main/java/org/apache/hadoop/hdfs/server/common/StorageInfo.java#L246
https://github.com/apache/hadoop/blob/aa96f1871bfd858f9bac59cf2a81ec470da649af/hadoop-hdfs-project/hadoop-hdfs/src/main/java/org/apache/hadoop/hdfs/server/common/StorageInfo.java#L246
https://github.com/apache/hadoop/blob/aa96f1871bfd858f9bac59cf2a81ec470da649af/hadoop-hdfs-project/hadoop-hdfs/src/main/java/org/apache/hadoop/hdfs/server/common/StorageInfo.java#L246
https://github.com/apache/hadoop/blob/aa96f1871bfd858f9bac59cf2a81ec470da649af/hadoop-hdfs-project/hadoop-hdfs/src/main/java/org/apache/hadoop/hdfs/server/common/StorageInfo.java#L246
https://github.com/apache/zookeeper/blob/c42c8c94085ed1d94a22158fbdfe2945118a82bc/zookeeper-server/src/main/java/org/apache/zookeeper/server/quorum/Learner.java#L465
https://github.com/apache/zookeeper/blob/c42c8c94085ed1d94a22158fbdfe2945118a82bc/zookeeper-server/src/main/java/org/apache/zookeeper/server/quorum/Learner.java#L465
https://github.com/apache/zookeeper/blob/c42c8c94085ed1d94a22158fbdfe2945118a82bc/zookeeper-server/src/main/java/org/apache/zookeeper/server/quorum/Learner.java#L465
https://github.com/apache/zookeeper/blob/c42c8c94085ed1d94a22158fbdfe2945118a82bc/zookeeper-server/src/main/java/org/apache/zookeeper/server/quorum/Learner.java#L465

	Abstract
	1 Introduction
	2 Leak detection via accumulation
	2.1 Background on Pluggable Types
	2.2 A Type System for Must-Call Obligations
	2.3 A Type System for Called Methods
	2.4 Consistency Checking

	3 Lightweight ownership transfer
	3.1 Ownership Transfer
	3.2 Final Owning Fields

	4 Resource aliasing
	4.1 Wrapper Types
	4.2 Beyond Wrapper Types
	4.3 Verification of @MustCallAlias

	5 Creating new obligations
	5.1 Non-Final, Owning Fields
	5.2 Unconnected Sockets

	6 Implementation
	7 Evaluation
	7.1 Case Studies on Open-Source Projects
	7.2 Evaluating Our Enhancements
	7.3 Comparison to Other Tools

	8 Limitations and threats to validity
	9 Related Work
	9.1 Analysis-Based Approaches
	9.2 Language-Based Approaches

	10 Conclusion
	Acknowledgments
	References

