
Michael Ernst, page 1

Automated Support
for Program Refactoring

Using Invariants

Yoshio Kataoka (Toshiba)

Michael Ernst (MIT)

William Griswold (UCSD)

David Notkin (UW)

Goal:

Automatically identify refactoring candidates

Michael Ernst, page 2

Refactoring

(Local) program restructuring

Enhance readability, performance, abstraction,

maintainability, flexibility, ...

Beloved of Extreme Programming

Example: Extract Method

• find repeated code

• replace each occurrence by call to a new method

Michael Ernst, page 3

Refactoring steps

Select a refactoring

Typically done by hand or via lexical analysis

Apply the refactoring

Some tool support exists

Michael Ernst, page 4

Identifying refactoring
opportunities

Pattern of invariants  refactoring is applicable

An invariant is a program property (as in
asserts or specifications)
• x > abs(y)

• x = 16*y + 4*z + 3

• array a contains no duplicates
• for each node n, n = n.child.parent

• graph g is acyclic
• if ptr  null then *ptr > i

Invariants are rarely present in practice

Michael Ernst, page 5

Tool architecture

Original

program

Invariant

Detector

(Daikon)

Test suite

Invariants

Invariant

patterns

Refactoring

Candidate

Detector

Refactoring

candidates

Michael Ernst, page 6

Dynamic invariant detection

Goal: recover invariants from programs

Technique: run the program, examine values

• postulate potential invariants

• check for each set of variable values

Results are likely invariants

Michael Ernst, page 7

Dynamic invariant detection

Implementation: Daikon

http://sdg.lcs.mit.edu/daikon

Experiments indicate accuracy and usefulness

Recover/prove formal specs, aid programmers

Dynamically detected invariants may identify

more refactoring opportunities

Static analysis fails for pointers

Michael Ernst, page 8

Refactorings examined

• Remove Parameter

• Eliminate Return Value

• Separate Query from Modifier

• Encapsulate Downcast

• Replace Temporary Variable by Query

Refactoring catalogs [Opdyke 92, Fowler 99] focus

on simple lexical transformations

Michael Ernst, page 9

Remove Parameter

Applicable when parameter is constant or unused

• param = constant, or

• param = f(a, b, ...), where a, b, ... are in scope

Examples:

• height = width for all icons

• isAutomaticAspect = true in Aspect constructor

• SetFirstItemFlag called with constant argument

Michael Ernst, page 10

Eliminate Return Value

Applicable if return value is constant or unused

• return = constant, or

• return = f(a, b, ...), where a, b, ... are in scope

Example:

• return = true in MakeObjectObey

Michael Ernst, page 11

Separate Query from Modifier

Applicable when a method returns a value and

has a side effect

• return  constant, and

• a  orig(a) for some a in scope

Example:

• mCurrentIndex = orig(mCurrentIndex) +1

in CursorHistory.GetNextItem

Michael Ernst, page 12

Encapsulate Downcast

Applicable when return value needs to be

downcasted by the caller

• LUB(return.class)  declaredtype(return)

Approximation:

• return.class = constant, and

• return.class  declaredtype(return)

Example:

• comboBoxItems.class = AspectTraverseListItem[]

in AspectTraverseComboBox

Michael Ernst, page 13

Replace Temp. Var. by Query

Applicable when a temporary variable holds

the value of an expression

• temp = orig(temp), and

• a = orig(a) for all vars a in initializer of temp

Examples found after adding wrapper functions

Michael Ernst, page 14

Case study: Nebulous

A component of Aspect Browser [Griswold 01]

Visualizes cross-cutting aspects of a program

Manages changes to such aspects

Uses pattern matching and the map metaphor

78 files, 7000 non-comment non-blank lines

Michael Ernst, page 15

Case study methodology

Wrote a Perl script to identify invariant

patterns in Daikon output

Ran Daikon over Nebulous executions

Ran script to identify refactoring opportunities

Nebulous programmer evaluated the

recommendations

Michael Ernst, page 16

Programmer assessment

Remove Parameter: singletons, flags (another refactoring)

Eliminate Return Value: test suite, convenience

Separate Query from Modifier: style

Encapsulate Downcast: static count

yes maybe no total

Remove Parameter 6 4 5 15

Eliminate Return Value 1 2 4 7

Sep. Query from Modifier 0 2 0 2

Encapsulate Downcast 1 1 0 2

Total 8 9 9 26

Michael Ernst, page 17

Evaluation

Tool suggestions revealed architectural flaws,

prompted redesign and code simplification

Easy to filter out poor suggestions

• No set of rules is right for all users and tasks

• Some are a matter of degree or of style

Maintainer had not previously identified these

refactoring opportunities

• Suggestions orthogonal to clone detection tool

Michael Ernst, page 18

Future work

Add patterns for more refactorings

Perform more case studies

Combine with static analysis

• Static analysis better for "large method",

"variable never used"

• Refactorings requiring static and dynamic info

• Compare dynamic and static counts

Combine with tool for applying refactorings

Michael Ernst, page 19

Conclusions

Program invariants effectively identify

refactoring candidates

Automatic technique

Justified in terms of run-time properties

Programmer assessment demonstrates utility

and ease of use

Michael Ernst, page 20

Questions?

