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Goal:

Automatically identify refactoring candidates
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Refactoring

(Local) program restructuring

Enhance readability, performance, abstraction, 

maintainability, flexibility, ...

Beloved of Extreme Programming

Example:  Extract Method

• find repeated code

• replace each occurrence by call to a new method
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Refactoring steps

Select a refactoring

Typically done by hand or via lexical analysis

Apply the refactoring

Some tool support exists
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Identifying refactoring 
opportunities

Pattern of invariants  refactoring is applicable

An invariant is a program property (as in 
asserts or specifications)
• x > abs(y)

• x = 16*y + 4*z + 3

• array a contains no duplicates
• for each node n, n = n.child.parent

• graph g is acyclic
• if  ptr  null then  *ptr > i

Invariants are rarely present in practice
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Tool architecture
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Dynamic invariant detection

Goal:  recover invariants from programs

Technique:  run the program, examine values

• postulate potential invariants

• check for each set of variable values

Results are likely invariants
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Dynamic invariant detection

Implementation:  Daikon

http://sdg.lcs.mit.edu/daikon

Experiments indicate accuracy and usefulness

Recover/prove formal specs, aid programmers

Dynamically detected invariants may identify 

more refactoring opportunities

Static analysis fails for pointers



Michael Ernst, page 8

Refactorings examined

• Remove Parameter

• Eliminate Return Value

• Separate Query from Modifier

• Encapsulate Downcast

• Replace Temporary Variable by Query

Refactoring catalogs [Opdyke 92, Fowler 99] focus 

on simple lexical transformations
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Remove Parameter

Applicable when parameter is constant or unused

• param = constant, or

• param = f(a, b, ...), where a, b, ... are in scope

Examples:

• height = width for all icons

• isAutomaticAspect = true in Aspect constructor

• SetFirstItemFlag called with constant argument
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Eliminate Return Value

Applicable if return value is constant or unused

• return = constant, or

• return = f(a, b, ...), where a, b, ... are in scope

Example:

• return = true in MakeObjectObey
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Separate Query from Modifier

Applicable when a method returns a value and 

has a side effect

• return  constant, and

• a  orig(a) for some a in scope

Example:

• mCurrentIndex = orig(mCurrentIndex) +1

in CursorHistory.GetNextItem
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Encapsulate Downcast

Applicable when return value needs to be 

downcasted by the caller

• LUB(return.class)  declaredtype(return)

Approximation:

• return.class = constant, and

• return.class  declaredtype(return)

Example:

• comboBoxItems.class = AspectTraverseListItem[]

in AspectTraverseComboBox
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Replace Temp. Var. by Query

Applicable when a temporary variable holds

the value of an expression

• temp = orig(temp), and

• a = orig(a) for all vars a in initializer of temp

Examples found after adding wrapper functions
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Case study:  Nebulous

A component of Aspect Browser [Griswold 01]

Visualizes cross-cutting aspects of a program

Manages changes to such aspects

Uses pattern matching and the map metaphor

78 files, 7000 non-comment non-blank lines
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Case study methodology

Wrote a Perl script to identify invariant 

patterns in Daikon output

Ran Daikon over Nebulous executions

Ran script to identify refactoring opportunities

Nebulous programmer evaluated the 

recommendations
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Programmer assessment

Remove Parameter:  singletons, flags (another refactoring)

Eliminate Return Value:  test suite, convenience

Separate Query from Modifier:  style

Encapsulate Downcast:  static count

yes maybe no total

Remove Parameter 6 4 5 15

Eliminate Return Value 1 2 4 7

Sep. Query from Modifier 0 2 0 2

Encapsulate Downcast 1 1 0 2

Total 8 9 9 26
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Evaluation

Tool suggestions revealed architectural flaws, 

prompted redesign and code simplification

Easy to filter out poor suggestions

• No set of rules is right for all users and tasks

• Some are a matter of degree or of style

Maintainer had not previously identified these 

refactoring opportunities

• Suggestions orthogonal to clone detection tool
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Future work

Add patterns for more refactorings

Perform more case studies

Combine with static analysis

• Static analysis better for "large method", 

"variable never used"

• Refactorings requiring static and dynamic info

• Compare dynamic and static counts

Combine with tool for applying refactorings
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Conclusions

Program invariants effectively identify 

refactoring candidates

Automatic technique

Justified in terms of run-time properties

Programmer assessment demonstrates utility 

and ease of use
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Questions?


