
Timelapse
Interactive record/replay for web apps

Brian Burg Andrew J. Ko Michael D. Ernst

Computer Science and Engineering
University of Washington

Richard J.
Bailey

1

“It’s hard to debug failures in
the field”

2

Distributed across time and space

Hardware and software variation

Users are not software testers

Users can’t report failures
accurately

Works
for me..

“a piece doesn’t
rotate properly!!”

end-user encounters
bug in production

code

files bug report with
ad-hoc information

developer unable to
reproduce the bug

3

Users can’t report failures
accurately

“The most severe problems were errors
in steps to reproduce and incomplete
information.”

“What makes a good bug report”. Zimmerman et al. TSE Vol. 36,
No 5 2010

“a piece doesn’t
rotate properly!!”

4

Works
for me..

Users can’t report failures
accurately

Bug reporters and developers want better
tool support for reproducing buggy
behavior.

“What makes a good bug report”. Zimmerman et al. TSE Vol. 36,
No 5 2010

“a piece doesn’t
rotate properly!!”

5

Works
for me..

Existing tools are imprecise and hard
to use

6

Selenium/
WebDriver

CoScripter
Leshed et al, CHI 2008

Sikuli Script
Yeh et al, UIST 2009

Capture and simulate user input.
Designed for test and task
automation.

macro replay
(CoScripter, Selenium,
Sikuli)

Existing tools are imprecise and hard
to use

macro replay
(CoScripter, Selenium,
Sikuli)

7

Capture and simulate user input.
Designed for test and task
automation.

deterministic
replay
(Mugshot, WaRR)

Nondeterministic. Requires extra
setup ahead of time. Can’t use
with a debugger.

Save and reuse nondeterministic
inputs
to exactly recreate a specific
execution. Play/pause buttons only. Slows
down execution. Can’t use with a
debugger.

Timelapse: a precise, fast, integrated
replay tool

This talk:

• An interface for capturing and replaying program behavior

• Techniques for cheap, precise record/replay in web
browsers

• How developers use record/replay during debugging tasks

 8

How to capture program
behavior

9

How to navigate a recording

10

Using replay while
debugging

11

Browsers interpret input, render
output

Output Browser Input
(User, Network, Timers)

12

Web Interpreter
(WebKit, Gecko)

Timelapse captures a browser’s
inputs

Output

13

Inputs Log

Web Interpreter
(WebKit, Gecko)

Browser Input
(User, Network, Timers)

Timelapse replays a browser’s
inputs

Output

Inputs Log

14

Web Interpreter
(WebKit, Gecko)

Browsers have layered
architectures

User input,
commands

policy
decisions

Date.now,
win.colorDepth

event loop
callbacks

Web Interpreter
(WebKit, Gecko)

Platforms

15

Embedders
(Firefox, Safari,

Chrome)

Timelapse intercepts input at layer
boundaries

16

Embedders
(Firefox, Safari,

Chrome)

Web Interpreter
(WebKit, Gecko)

Platforms

• Hardware interrupts

• Nondeterministic
instructions

• Instruction counts

VM record/replay

• Async callbacks

• Nondeterministic APIs

• DOM event counts

Browser
record/replay

17

Inspired by VM
record/replay

Memoizing nondeterministic
APIs

During normal execution, Date.now() returns the current time.

 oo(a,b) { return a + b; }
 (c) { return “now:”+ Date.now(); }

/* file: Source/wtf/DateMath.h */

inline double jsCurrentTime()
{
return floor(WTF::currentTimeMS());
}

18 Web Interpreter Platform API

Inputs Log

Memoizing nondeterministic
APIs

During recording, the return value of Date.now() is saved.

 oo(a,b) { return a + b; }
 (c) { return “now:”+ Date.now(); }

/* file: Source/wtf/DateMath.h */

inline double jsCurrentTime()
{
return floor(WTF::currentTimeMS());
}

19 Web Interpreter Platform API

Memoizing nondeterministic
APIs

On replay, the logged return value of Date.now() is used.

 oo(a,b) { return a + b; }
 (c) { return “now:”+ Date.now(); }

/* file: Source/wtf/DateMath.h */

inline double jsCurrentTime()
{
return floor(WTF::currentTimeMS());
}

Inputs Log Web Interpreter Platform API

Making callbacks
deterministic

enqueue()

 while (true) {
 var event = queue.pop();

this.dispatchToListeners(event);
 }

Event Loop

timerFired()

Callback
executes

Callback
registered

Problem: accurately
capturing and

simulating event loop
dispatches.

timer 42,
34 DOM events

Making callbacks
deterministic

enqueue()

timerFired()

Callback
executes

Callback
registered

 while (true) {
 var event = queue.pop();
 this.dispatch(event);
 }

Inputs Log

Event Loop

Making callbacks
deterministic

enqueue()

Callback
registered

 while (true) {
 var event = queue.pop();

this.dispatchToListeners(event);
 }

Event Loop

timerFired()

Callback
executes Inputs Log

34 DOM
events!

...

...

...

Runtime overheads are
acceptable

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Run times
(multiple of
baseline)

Baseline

Recording

1× Replay

Seeking

24

Recordings are small and
compressible

25

0

100

200

300

400

500

600

700

800
JS

Li
nu

x
JS

 R
ay

tra
ce

r
S

pa
ce

 In
va

de
rs

M
oz

ill
a.

or
g

C
od

eM
irr

or
C

ol
or

pi
ck

er
D

uc
kD

uc
kG

o

Size (KB)

In-memory

Serialized

Compresse
d

Site
recording
duration

(s)

resources
on page

(KB)

log
growth

(KB/sec)

JSLinux 10.5 4500 0.8

JS Raytracer 6.3 5.9 1.6

Space
Invaders 25.8 712 2.2

Mozilla.org 22.3 2800 1.3

CodeMirror 16.6 168 1.0

Colorpicker 15.3 577 1.7

DuckDuckGo 14.1 1900 2.1

Page resources dominate
recording size

26

0
500

1000
1500
2000
2500
3000
3500
4000
4500
5000

JS
Li

nu
x

JS
 R

ay
tra

ce
r

S
pa

ce
 In

va
de

rs
M

oz
ill

a.
or

g
C

od
eM

irr
or

C
ol

or
pi

ck
er

D
uc

kD
uc

kG
o

Size (KB)

In-memory

Serialized

Compresse
d

Site
recording
duration

(s)

resources
on page

(KB)

log
growth

(KB/sec)

JSLinux 10.5 4500 0.8

JS Raytracer 6.3 5.9 1.6

Space
Invaders 25.8 712 2.2

Mozilla.org 22.3 2800 1.3

CodeMirror 16.6 168 1.0

Colorpicker 15.3 577 1.7

DuckDuckGo 14.1 1900 2.1

How would developers use it?

27

Study Design 20+ developers with industry
experience
within-subjects, 2 tasks per person,
45 minutes per task, 4 treatments

Performance

RQ: changes to
frequency/duration?

Reproduction

RQ: complete tasks more
quickly? more successfully?
Who, why?

How did developers use it?

28

Study Design 20+ developers with industry
experience
within-subjects, 2 tasks per person,
45 minutes per task, 4 treatments

Performance

Shorter and more frequent repro
actions;
Time spent unchanged (max. 25%;
avg.15%) Successful developers quickly
integrated replay into their existing
workflows. Unsuccessful developers who used
opportunistic strategies were
distracted.

Reproduction

Current & Future Work

Visualizations Interaction histories aid navigation,
but not program understanding.

Passive
capturing

Precision and low overhead don’t
matter if you forget to start capturing.

Post-hoc
analysis

Developers can gather more runtime
data without reproducing behavior:

Post-hoc logging, Post-hoc Whyline,
Post-hoc SeeSS, Testcase
extraction

Conclusion

Visualizations Interaction histories supported–but
didn’t reduce–reproduction of
program state.

Infrastructure Replay infrastructure enables new
research, tools and workflows.

Record/Replay Virtual machine replay techniques
work well when applied to web
applications.

github.com/burg/timelapse

Replay fidelity and
completeness

Web interpreters expose a large and ever-changing API.

Timelapse doesn’t tame all sources of nondeterminism (yet).

Excepting untamed sources, the DOM tree and JavaScript heap are
identical for all recorded and replayed executions.

Possible divergence is automatically detected when:
• DOM event counts differ on capture and replay
• Memoized inputs are overused or unused
• Network request details differ unexpectedly
• Known-bad APIs are used by client code

Divergence detection supports piecewise implementation.

31

Interpreter inputs by source
User: mouse, keyboard, scroll, resize
Network: images, scripts, HTML, AJAX
Commands: page navigation

Internal nondeterminism:
Animations, transitions, multimedia,
async script and parser yields

Functions: Date.now, Math.random, etc
Caching: resources, cookies
Timers: timer schedule

32

Shim: the thing in the
middle

Shims are used to implement deterministic record/replay.

The hard part of implementing record/replay is designing and placing shims.
33

Embedding and platform APIs

Embedder
s

E
M

B
E

D
D

IN
G

A

P
I

P
LA

T
FO

R
M

 A
P

I

Web Interpreter
(WebKit, Gecko)

Abstraction layers separate web interpreters from platforms/embedders.

Platforms

34

Embedding and platform APIs

Embedder
s

E
M

B
E

D
D

IN
G

A

P
I

P
LA

T
FO

R
M

 A
P

I

Web Interpreter
(WebKit, Gecko)

Abstraction layers separate web interpreters from platforms/embedders.

Platforms

35

Embedding and platform APIs

Embedder
s

Web Interpreter
(WebKit, Gecko) Platforms

E
M

B
E

D
D

IN
G

A

P
I

P
LA

T
FO

R
M

 A
P

I

Shims sit between the web interpreter and abstraction layers.

36

Embedding and platform APIs

Embedder
s

Web Interpreter
(WebKit, Gecko) Platforms

E
M

B
E

D
D

IN
G

A

P
I

P
LA

T
FO

R
M

 A
P

I

Shims sit between the web interpreter and abstraction layers.

37

	Timelapse �Interactive record/replay for web apps
	“It’s hard to debug failures in the field”
	Users can’t report failures accurately
	Users can’t report failures accurately
	Users can’t report failures accurately
	Existing tools are imprecise and hard to use
	Existing tools are imprecise and hard to use
	Timelapse: a precise, fast, integrated replay tool
	How to capture program behavior
	How to navigate a recording
	Using replay while debugging
	Browsers interpret input, render output
	Timelapse captures a browser’s inputs
	Timelapse replays a browser’s inputs
	Browsers have layered architectures
	Timelapse intercepts input at layer boundaries
	Slide Number 17
	Memoizing nondeterministic APIs
	Memoizing nondeterministic APIs
	Memoizing nondeterministic APIs
	Making callbacks deterministic
	Making callbacks deterministic
	Making callbacks deterministic
	Runtime overheads are acceptable
	Recordings are small and compressible
	Page resources dominate recording size
	How would developers use it?
	How did developers use it?
	Current & Future Work
	Conclusion
	Replay fidelity and completeness
	Interpreter inputs by source
	Shim: the thing in the middle
	Embedding and platform APIs
	Embedding and platform APIs
	Embedding and platform APIs
	Embedding and platform APIs

