
Prioritizing Warning Categories by Analyzing Software History
Sunghun Kim, Michael D. Ernst

Computer Science & Artificial Intelligence Lab (CSAIL)
Massachusetts Institute of Technology

{hunkim, mernst}@csail.mit.edu

Abstract
Automatic bug finding tools tend to have high false

positive rates: most warnings do not indicate real bugs.
Usually bug finding tools prioritize each warning
category (such as the priority of “overflow” is 1 or the
priority of “jumbled incremental” is 3, but the tools’
prioritization is not very effective).

In this paper, we prioritize warning categories by
analyzing the software change history. The underlying
intuition is that if warnings from a category are
resolved quickly by developers, the warnings in the
category are important. Experiments with three bug
finding tools (FindBugs, JLint, and PMD) and two
open source projects (Columba and jEdit) indicate that
different warning categories have very different
lifetimes. Based on that observation, we propose a
preliminary algorithm for warning category
prioritizing.

1. Introduction

Bug finding tools such as FindBugs [6], JLint [1],
and PMD [4] analyze source or binary code and warn
about potential bugs. These tools tend to have a high
rate of false positives: most warning instances do not
indicate real bugs. These tools usually prioritize
warning categories to put likely false positives at the
bottom of the list, but these tools’ prioritization is not
very effective [9].

We use the software change history to prioritize
warning categories. (Often warning instances from bug
finding tools have categories such as overflow or NP
always Null.) Suppose a software change would cause
a bug finding tool to issue a warning instance from the
overflow category. If a developer found the underlying
problem and fixed it quickly, the warning category is
probably important. (We do not assume the software
developer is necessarily using the bug finding tool.)
On the other hand, if a software change introduced a
warning instance that was not removed for a long time,
then warnings of that category may be neglectable,
since the problem was not noticed or was not
considered worth fixing.

Using a version control system that stores a
project’s change history, it is possible to find out when

a file was changed or fixed [8]. We noticed that
different warning categories have different lifetimes
over software history. We list the most short-lived
warning categories (which may be most important or
useful) and the most long-lived warning categories.
The warning category priorities assigned by bug
finding tools do not match the priorities assigned based
on warning category lifetimes. Prioritizing warning
categories based on their lifetimes may help to make
bug detection tools more useful.

Our work aggregates properties of warning
instances to prioritize warning categories. It does not
give different priorities to two different instances from
the same category. For example, warning instances
from the overflow category have the same priority.
This suggests that our technique will be most effective
when the categories are relatively fine-grained and
homogeneous (with respect to their importance and
lifetime).

2. Background and Related Work

We introduce three bug finding tools briefly and
discuss related work in this section.

PMD finds syntactic error patterns from source
code [4]. JLint analyzes Java bytecode and performs
syntactic checking and data flow analysis to find
potential bugs [1]. FindBugs also analyzes Java
bytecode to find pre-defined error [6].

Ruter et al. [10] compared bug finding tools for
Java including PMD, JLint, and FindBugs. They
analyze overlapping warning categories and category
correlation. However, our approach prioritizes warning
categories using change history while their work
compares tools and finds similarities and differences
among tools.

Spacco et al. [11] observed FindBugs warning
categories across software versions. They measure
lifetimes of warning categories, warning number rates,
and the degree of decay using warning numbers. This
research is similar to ours in that they observe warning
category trends over software history. However, they
observe warning categories in very coarse grained
software versions (in releases) while we observe
categories in each version control system transaction.

Kremenek and Engler [9] prioritize warning
categories using frequency of defects. Similarly,
Boogerd and Moonen [3] use execution likelihood
analysis to prioritize warning instances. Our approach
prioritizes warnings analyzing software history.

3. Experiment Setup

Table 1 gives information about our subject
programs, JEdit 1 and Columba 2 . The Kenyon
infrastructure is used to manage software history [2].
Kenyon checks out the software transaction in the
software change history. Then it compiles each
transaction and creates a jar file or class files. Kenyon
ignores transactions which cannot be compiled. For
example, Kenyon only use 1,486 compilable
transactions out of a total of 1,703 transactions for
Columba. Using three bug finding tools (FindBugs,
JLint, and PMD), Kenyon gets warning instances from
each software transaction.

Table 1. Analyzed Projects.

Project Software type Period # of compilable
transaction

of
transaction

Columba Email Client 11/2002 ~
06/2004 1,486 1,703

jEdit Editor 09/2001 ~
11/2006 1,200 1,509

4. Experiment and Reprioritized Warning
Categories

We measure the lifetime of each warning category
over software change history. Based on the lifetime,
we prioritize each warning category.

Whenever a warning instance appears in the
software change history, that time and its category are
marked. When the warning instance disappears, the
time difference between the marked time and the
current transaction time is the lifetime of the warning
category. If a warning instance is never fixed, we give
a penalty to the lifetime by adding 365 days. We then
compute the average lifetime of instances in each
category.

The warning categories and their lifetimes of the
two projects are shown in Figure 1 and Figure 2. Each
bar in Figure 1 and Figure 2 presents a warning
category. In Columba, some warning categories have a
relatively short lifetime as marked in Figure 1. We
assume warning instances in these categories are more
serious than others. Similarly, some warning categories
in Columba have relatively long lifetimes, and
warnings in these categories are less likely to be real
bugs.

1 The jEdit project: http://www.jedit.org/
2 The Columba project: http://www.columbamail.org/

0

50

100

150

200

250

300

350

400

450

500

Warnings categories ordered by lifetime

L
if

e
ti
m

e
 (

d
a
ys

)

short-lived

long-lived

Figure 1. Warning category lifetimes of Columba.

JEdit warning category lifetimes in Figure 2 have
similar properties: some have very short lifetimes
while some have long lifetimes.

0

200

400

600

800

1000

1200

1400

1600

1800

2000

Warnings categories ordered by lifetime

L
if

e
ti
m

e
 (

d
a

ys
)

short-lived

long-lived

Figure 2. Warning category lifetimes of jEdit.

After computing lifetimes for all warning categories,

we order categories by their lifetime. The top 10 short-
lived and long-lived warning categories with detailed
information are listed in Table 2 and Table 3. The
ranks are given based on the lifetimes. The priorities
shown in Table 2 and Table 3 are given by the
corresponding bug finding tool. For example, in
Columba, the 7th ranked warning category is SA
FIELD SELF ASSIGNMENT (the priority given by
FindBugs is 1) occurs 8 times and is fixed within 9
days on average. The high priority such as 1 given by
bug finding tools does not necessarily mean that the
warning category is a short-lived one. For example, the
priority of Weak cmp (rank 108) of JLint is 1, but its
lifetime is very long, 291 days. Note that FindBugs
sometimes gives different priorities to the same
category (see the rank 6 and 7 in Columba).

Are warning category lifetimes between two
projects correlated? We measured the Pearson’s
correlation coefficient between the common warning
category lifetimes shown in the two projects. The
coefficient, r, is 0.218 which indicates the category
lifetimes between the two projects have no correlation.

Table 2. Columba top 10 short-lived and long-lived warning categories ordered by their lifetime.

Lifetime (days)
Rank Tool

Tool
Priority

(1 is high)
Category Group Category Occurr-

ence Average Standard
deviation

1 FindBugs 1 CORRECTNESS NP NULL PARAM DEREF
NONVIRTUAL 1 0.16 0

2 JLint 1 wait_nosync Wait nosync 1 1.0 0
3 PMD 3 Basic Rules Unconditional If Statement 1 1.1 0
4 FindBugs 1 BAD PRACTICE DE MIGHT IGNORE 1 2.8 0
5 FindBugs 2 STYLE SF SWITCH FALLTHROUGH 2 6.2 0.16
6 FindBugs 2 CORRECTNESS SA FIELD SELF ASSIGNMENT 2 8.9 0
7 FindBugs 1 CORRECTNESS SA FIELD SELF ASSIGNMENT 8 8.9 0
8 FindBugs 2 STYLE SA LOCAL SELF ASSIGNMENT 2 8.9 0
9 FindBugs 2 STYLE IM BAD CHECK FOR ODD 2 13.4 9.44

10 JLint 1 zero_result Zero result 2 17.1 0
108 JLint 1 weak_cmp Weak cmp 98 291.1 27.29
109 FindBugs 1 MALICIOUS CODE MS MUTABLE ARRAY 3 292.1 23.12
110 FindBugs 1 CORRECTNESS NP NONNULL RETURN WARNING 2 295.9 190.21
111 FindBugs 2 STYLE BC UNCONFIRMED CAST 94 308.5 29.66
112 JLint 1 Not overridden Hashcode not overridden 12 324.1 19.43
113 PMF 3 Basic Rules Override Both Equals And Hashcode 10 337.4 2.07
114 FindBugs 2 CORRECTNESS NP GUARANTEED DEREF 3 345.1 126.86
115 FindBugs 2 BAD_PRACTICE OS OPEN STREAM 9 374.7 10.57
116 FindBugs 2 BAD_PRACTICE SE BAD FIELD STORE 3 376.7 81.81
118 FindBugs 1 CORRECTNESS EC UNRELATED TYPES 2 431.0 113.73

Table 3. jEdit top 10 short-lived and long-lived warning categories ordered by their lifetime.

Lifetime (days)
Rank Tool

Tool
Priority

(1 is high)
Category Group Category Occurr-

ence Average Standard
deviation

1 FindBugs 1 CORRECTNESS NP ALWAYS NULL 1 0.01 0
2 FindBugs 1 CORRECTNESS NP NULL PARAM DEREF

NONVIRTUAL 1 0.02 0

3 JLint 1 Bounds Bad index 1 0.028 0
4 FindBugs 1 BAD_PRACTICE DE MIGHT IGNORE 1 1.2 0
5 JLint 1 Overflow Overflow 1 2 0
6 JLint 1 Domain Shift count 1 2 0
7 FindBugs 1 CORRECTNESS ICAST BAD SHIFT AMOUNT 1 2 0
8 JLint 1 Zero result Zero result 1 24.1 0
9 FindBugs 2 CORRECTNESS NP UNWRITTEN FIELD 5 28.7 44.90

10 FindBugs 2 STYLE SA LOCAL SELF ASSIGNMENT 1 47.1 0
115 PMD 3 Basic Rules Jumbled Incrementer 3 1733 182.59
116 FindBugs 2 MT CORRECTNESS SC START IN CTOR 2 1735 0
117 FindBugs 2 BAD PRACTICE DM EXIT 3 1787 60.41
118 FindBugs 2 BAD PRACTICE ES COMPARING STRINGS WITH

EQ 2 1892 0

119 FindBugs 2 MT CORRECTNESS WA NOT IN LOOP 2 1892 0
120 FindBugs 2 BAD PRACTICE RR NOT CHECKED 1 1892 0
121 FindBugs 2 MALICIOUS CODE MS OOI PKGPROTECT 2 1892 0
122 FindBugs 2 BAD PRACTICE SR NOT CHECKED 1 1892 0
123 FindBugs 1 BAD PRACTICE SR NOT CHECKED 1 1892 0
124 FindBugs 2 MALICIOUS CODE EI EXPOSE STATIC REP2 1 1892 0

There are ambiguities in this experiment. For
example, suppose foo.c changes over transaction 1, 2,
3, and 4 as shown in Figure 3. Suppose a warning
instance in the (x) category exists at transaction 1 and
another warning instance in the (x) category was added
at transaction 2. At transaction 3, a warning instance in
the (x) category was removed and at transaction 4, the
remaining one was removed.

Figure 3. A warning instance addition and removal example
of foo.c.

It is not clear whether between transaction 1 and 2,
two warning instances are added (and the warning
instance in transaction 1 is deleted) or only one
warning instance is added (and the warning instance in
transaction 1 remains). Similarly, it is not clear which
warning instance is removed between transaction 2 and
3. It is possible that all warning instances disappear
and a new warning instance (in the same category)
appears between transaction 2 and 3. To simplify the
experiments, we measure a lifetime as the period of the
first appearance of warning instances from a warning
category until there is no warning instance from the
same category per file. In this example, the lifetime of
the warning category is the time difference between
transaction 1 to transaction 4.

5. Discussion

It is hard to trace line changes and it is also hard to
trace warning instance changes between transactions.
The annotation graph could solve this problem
partially by mapping each line between two
transactions [12]. When a file name changes between
two transactions, we will lose warning category change
trends or lifetime information, it is necessary to use
origin analysis techniques [5, 7]. Even though it is
possible that warning instance lifetimes in a category
vary, we use the average to measure a category
lifetime. Our prioritization approach does not remove
false positives of warning instances. However, it puts
the bugs (true positives) at the top of the warning list
and false positives at the bottom to make bug finding
tools more useful.

Our analysis does not utilize developer assessments
of the severity of each problem: our technique assumes
that the more critical problems are fixed quickly, but it
is conceivable that some important problems (say that
cause incorrect behavior) are not corrected for a long
time.

6. Conclusions and Future Work

We ran three bug finding tools on each
development transaction of two open source projects,
Columba and JEdit. We computed the lifetime of each
warning category, and found that some warning
categories have a short lifetime, while others have a
long lifetime. We propose prioritization of each
warning category based on its observed lifetime. This
is a generic prioritization approach applicable to any
bug finding tools.

For future work we need to evaluate the prioritized
warning categories through user study or validation
using the change history.

7. References
[1] C. Artho, "JLint - Find Bugs in Java Programs," 2006,

http://jlint.sourceforge.net/.
[2] J. Bevan, E. J. Whitehead, Jr., S. Kim, and M. Godfrey, "Facilitating

Software Evolution with Kenyon," Proc. of the 2005 European
Software Engineering Conference and 2005 Foundations of Software
Engineering (ESEC/FSE 2005), Lisbon, Portugal, pp. 177-186, 2005.

[3] C. Boogerd and L. Moonen, "Prioritizing Software Inspection
Results using Static Profiling," Proc. of the Sixth IEEE International
Workshop on Source Code Analysis and Manipulation (SCAM'06),
pp. 149-160, 2006.

[4] T. Copeland, PMD Applied: Centennial Books, 2005.
[5] M. W. Godfrey and L. Zou, "Using Origin Analysis to Detect

Merging and Splitting of Source Code Entities," IEEE Trans. on
Software Engineering, vol. 31, no. 2, pp. 166-181, 2005.

[6] D. Hovemeyer and W. Pugh, "Finding Bugs is Easy," Proc. of the
19th Object Oriented Programming Systems Languages and
Applications (OOPSLA '04), Vancouver, British Columbia, Canada,
pp. 92-106, 2004.

[7] S. Kim, K. Pan, and E. J. Whitehead, Jr., "When Functions Change
Their Names: Automatic Detection of Origin Relationships," Proc.
of 12th Working Conference on Reverse Engineering (WCRE 2005),
Pennsylvania, USA, pp. 143-152, 2005.

[8] S. Kim, T. Zimmermann, K. Pan, and E. J. Whitehead, Jr.,
"Automatic Identification of Bug Introducing Changes," Proc. of
21st IEEE/ACM International Conference on Automated Software
Engineering (ASE 2006), Tokyo, Japan, 2006.

[9] T. Kremenek and D. R. Engler, "Z-ranking: Using statistical analysis
to counter the impact of static analysis approximations," Proc. of the
10th International Symposium on Static Analysis (SAS 2003), San
Diego, CA, USA, pp. 295-315, 2003.

[10] N. Rutar, C. B. Almazan, and J. S. Foster, "A Comparison of Bug
Finding Tools for Java," Proc. of 15th IEEE International
Symposium on Software Reliability Engineering (ISSRE'04), Saint-
Malo, Bretagne, France, pp. 245-256, 2004.

[11] J. Spacco, D. Hovemeyer, and W. Pugh, "Tracking Defect Warnings
Across Versions," Proc. of Int'l Workshop on Mining Software
Repositories (MSR 2006), Shanghai, China, pp. 133-136, 2006.

[12] T. Zimmermann, S. Kim, A. Zeller, and E. J. Whitehead, Jr.,
"Mining Version Archives for Co-changed Lines," Proc. of Int'l
Workshop on Mining Software Repositories (MSR 2006), Shanghai,
China, pp. 72-75, 2006.

(x) (x)(x) (x)

Transaction 3 Transaction 4 Transaction 1 Transaction 2

