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Abstract 
Automatic bug finding tools tend to have high false 

positive rates: most warnings do not indicate real bugs. 
Usually bug finding tools prioritize each warning 
category (such as the priority of “overflow” is 1 or the 
priority of “jumbled incremental” is 3, but the tools’ 
prioritization is not very effective). 

In this paper, we prioritize warning categories by 
analyzing the software change history. The underlying 
intuition is that if warnings from a category are 
resolved quickly by developers, the warnings in the 
category are important. Experiments with three bug 
finding tools (FindBugs, JLint, and PMD) and two 
open source projects (Columba and jEdit) indicate that 
different warning categories have very different 
lifetimes. Based on that observation, we propose a 
preliminary algorithm for warning category 
prioritizing. 
 
1. Introduction 

Bug finding tools such as FindBugs [6], JLint [1], 
and PMD [4] analyze source or binary code and warn 
about potential bugs. These tools tend to have a high 
rate of false positives: most warning instances do not 
indicate real bugs. These tools usually prioritize 
warning categories to put likely false positives at the 
bottom of the list, but these tools’ prioritization is not 
very effective [9]. 

We use the software change history to prioritize 
warning categories. (Often warning instances from bug 
finding tools have categories such as overflow or NP 
always Null.) Suppose a software change would cause 
a bug finding tool to issue a warning instance from the 
overflow category. If a developer found the underlying 
problem and fixed it quickly, the warning category is 
probably important. (We do not assume the software 
developer is necessarily using the bug finding tool.) 
On the other hand, if a software change introduced a 
warning instance that was not removed for a long time, 
then warnings of that category may be neglectable, 
since the problem was not noticed or was not 
considered worth fixing.  

Using a version control system that stores a 
project’s change history, it is possible to find out when 

a file was changed or fixed [8]. We noticed that 
different warning categories have different lifetimes 
over software history. We list the most short-lived 
warning categories (which may be most important or 
useful) and the most long-lived warning categories. 
The warning category priorities assigned by bug 
finding tools do not match the priorities assigned based 
on warning category lifetimes. Prioritizing warning 
categories based on their lifetimes may help to make 
bug detection tools more useful. 

Our work aggregates properties of warning 
instances to prioritize warning categories. It does not 
give different priorities to two different instances from 
the same category. For example, warning instances 
from the overflow category have the same priority. 
This suggests that our technique will be most effective 
when the categories are relatively fine-grained and 
homogeneous (with respect to their importance and 
lifetime).  
 
2. Background and Related Work 

We introduce three bug finding tools briefly and 
discuss related work in this section.  

PMD finds syntactic error patterns from source 
code [4]. JLint analyzes Java bytecode and performs 
syntactic checking and data flow analysis to find 
potential bugs [1]. FindBugs also analyzes Java 
bytecode to find pre-defined error [6].  

Ruter et al. [10] compared bug finding tools for 
Java including PMD, JLint, and FindBugs. They 
analyze overlapping warning categories and category 
correlation. However, our approach prioritizes warning 
categories using change history while their work 
compares tools and finds similarities and differences 
among tools.  

Spacco et al. [11] observed FindBugs warning 
categories across software versions. They measure 
lifetimes of warning categories, warning number rates, 
and the degree of decay using warning numbers. This 
research is similar to ours in that they observe warning 
category trends over software history. However, they 
observe warning categories in very coarse grained 
software versions (in releases) while we observe 
categories in each version control system transaction. 



 

Kremenek and Engler [9] prioritize warning 
categories using frequency of defects. Similarly, 
Boogerd and Moonen [3] use execution likelihood 
analysis to prioritize warning instances. Our approach 
prioritizes warnings analyzing software history. 

 
3. Experiment Setup 

Table 1 gives information about our subject 
programs, JEdit 1  and Columba 2 . The Kenyon 
infrastructure is used to manage software history [2]. 
Kenyon checks out the software transaction in the 
software change history. Then it compiles each 
transaction and creates a jar file or class files. Kenyon 
ignores transactions which cannot be compiled. For 
example, Kenyon only use 1,486 compilable 
transactions out of a total of 1,703 transactions for 
Columba. Using three bug finding tools (FindBugs, 
JLint, and PMD), Kenyon gets warning instances from 
each software transaction. 

Table 1. Analyzed Projects. 

Project Software type Period # of compilable 
transaction 

# of 
transaction

Columba Email Client 11/2002 ~ 
06/2004 1,486 1,703 

jEdit Editor 09/2001 ~ 
11/2006 1,200 1,509 

 
4. Experiment and Reprioritized Warning 
Categories 

We measure the lifetime of each warning category 
over software change history. Based on the lifetime, 
we prioritize each warning category. 

Whenever a warning instance appears in the 
software change history, that time and its category are 
marked. When the warning instance disappears, the 
time difference between the marked time and the 
current transaction time is the lifetime of the warning 
category. If a warning instance is never fixed, we give 
a penalty to the lifetime by adding 365 days. We then 
compute the average lifetime of instances in each 
category. 

The warning categories and their lifetimes of the 
two projects are shown in Figure 1 and Figure 2. Each 
bar in Figure 1 and Figure 2 presents a warning 
category. In Columba, some warning categories have a 
relatively short lifetime as marked in Figure 1. We 
assume warning instances in these categories are more 
serious than others. Similarly, some warning categories 
in Columba have relatively long lifetimes, and 
warnings in these categories are less likely to be real 
bugs.  

                                                           
1 The jEdit project: http://www.jedit.org/ 
2 The Columba project: http://www.columbamail.org/ 
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Figure 1. Warning category lifetimes of Columba. 

 
JEdit warning category lifetimes in Figure 2 have 
similar properties: some have very short lifetimes 
while some have long lifetimes. 
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Figure 2. Warning category lifetimes of jEdit. 

 
After computing lifetimes for all warning categories, 

we order categories by their lifetime. The top 10 short-
lived and long-lived warning categories with detailed 
information are listed in Table 2 and Table 3. The 
ranks are given based on the lifetimes. The priorities 
shown in Table 2 and Table 3 are given by the 
corresponding bug finding tool. For example, in 
Columba, the 7th ranked warning category is SA 
FIELD SELF ASSIGNMENT (the priority given by 
FindBugs is 1) occurs 8 times and is fixed within 9 
days on average. The high priority such as 1 given by 
bug finding tools does not necessarily mean that the 
warning category is a short-lived one. For example, the 
priority of Weak cmp (rank 108) of JLint is 1, but its 
lifetime is very long, 291 days. Note that FindBugs 
sometimes gives different priorities to the same 
category (see the rank 6 and 7 in Columba). 

Are warning category lifetimes between two 
projects correlated? We measured the Pearson’s 
correlation coefficient between the common warning 
category lifetimes shown in the two projects. The 
coefficient, r, is 0.218 which indicates the category 
lifetimes between the two projects have no correlation. 



 

Table 2. Columba top 10 short-lived and long-lived warning categories ordered by their lifetime. 

Lifetime (days) 
Rank Tool 

Tool 
Priority 

(1 is high) 
Category Group Category Occurr- 

ence Average Standard 
deviation

1 FindBugs 1 CORRECTNESS NP NULL PARAM DEREF 
NONVIRTUAL 1 0.16 0

2 JLint 1 wait_nosync Wait nosync 1 1.0 0
3 PMD 3 Basic Rules Unconditional If Statement 1 1.1 0
4 FindBugs 1 BAD PRACTICE DE MIGHT IGNORE 1 2.8 0
5 FindBugs 2 STYLE SF SWITCH FALLTHROUGH 2 6.2 0.16
6 FindBugs 2 CORRECTNESS SA FIELD SELF ASSIGNMENT 2 8.9 0
7 FindBugs 1 CORRECTNESS SA FIELD SELF ASSIGNMENT 8 8.9 0
8 FindBugs 2 STYLE SA LOCAL SELF ASSIGNMENT 2 8.9 0
9 FindBugs 2 STYLE IM BAD CHECK FOR ODD 2 13.4 9.44

10 JLint 1 zero_result Zero result 2 17.1 0
108 JLint 1 weak_cmp Weak cmp 98 291.1 27.29
109 FindBugs 1 MALICIOUS CODE MS MUTABLE ARRAY 3 292.1 23.12
110 FindBugs 1 CORRECTNESS NP NONNULL RETURN WARNING 2 295.9 190.21
111 FindBugs 2 STYLE BC UNCONFIRMED CAST 94 308.5 29.66
112 JLint 1 Not overridden Hashcode not overridden 12 324.1 19.43
113 PMF 3 Basic Rules Override Both Equals And Hashcode 10 337.4 2.07
114 FindBugs 2 CORRECTNESS NP GUARANTEED DEREF 3 345.1 126.86
115 FindBugs 2 BAD_PRACTICE OS OPEN STREAM 9 374.7 10.57
116 FindBugs 2 BAD_PRACTICE SE BAD FIELD STORE 3 376.7 81.81
118 FindBugs 1 CORRECTNESS EC UNRELATED TYPES 2 431.0 113.73

 

Table 3. jEdit top 10 short-lived and long-lived warning categories ordered by their lifetime.  

Lifetime (days) 
Rank Tool 

Tool 
Priority 

(1 is high) 
Category Group Category Occurr-

ence Average Standard 
deviation

1 FindBugs 1 CORRECTNESS NP ALWAYS NULL 1 0.01 0
2 FindBugs 1 CORRECTNESS NP NULL PARAM DEREF 

NONVIRTUAL 1 0.02 0

3 JLint 1 Bounds Bad index 1 0.028 0
4 FindBugs 1 BAD_PRACTICE DE MIGHT IGNORE 1 1.2 0
5 JLint 1 Overflow Overflow 1 2 0
6 JLint 1 Domain Shift count 1 2 0
7 FindBugs 1 CORRECTNESS ICAST BAD SHIFT AMOUNT 1 2 0
8 JLint 1 Zero result Zero result 1 24.1 0
9 FindBugs 2 CORRECTNESS NP UNWRITTEN FIELD 5 28.7 44.90

10 FindBugs 2 STYLE SA LOCAL SELF ASSIGNMENT 1 47.1 0
115 PMD 3 Basic Rules Jumbled Incrementer 3 1733 182.59
116 FindBugs  2 MT CORRECTNESS SC START IN CTOR 2 1735 0
117 FindBugs 2 BAD PRACTICE DM EXIT 3 1787 60.41
118 FindBugs 2 BAD PRACTICE ES COMPARING STRINGS WITH 

EQ 2 1892 0

119 FindBugs 2 MT CORRECTNESS WA NOT IN LOOP 2 1892 0
120 FindBugs 2 BAD PRACTICE RR NOT CHECKED 1 1892 0
121 FindBugs 2 MALICIOUS CODE MS OOI PKGPROTECT 2 1892 0
122 FindBugs 2 BAD PRACTICE SR NOT CHECKED 1 1892 0
123 FindBugs 1 BAD PRACTICE SR NOT CHECKED 1 1892 0
124 FindBugs 2 MALICIOUS CODE EI EXPOSE STATIC REP2 1 1892 0



 

There are ambiguities in this experiment. For 
example, suppose foo.c changes over transaction 1, 2, 
3, and 4 as shown in Figure 3. Suppose a warning 
instance in the (x) category exists at transaction 1 and 
another warning instance in the (x) category was added 
at transaction 2. At transaction 3, a warning instance in 
the (x) category was removed and at transaction 4, the 
remaining one was removed.  

 
Figure 3.  A warning instance addition and removal example 
of foo.c.  

It is not clear whether between transaction 1 and 2, 
two warning instances are added (and the warning 
instance in transaction 1 is deleted) or only one 
warning instance is added (and the warning instance in 
transaction 1 remains). Similarly, it is not clear which 
warning instance is removed between transaction 2 and 
3. It is possible that all warning instances disappear 
and a new warning instance (in the same category) 
appears between transaction 2 and 3. To simplify the 
experiments, we measure a lifetime as the period of the 
first appearance of warning instances from a warning 
category until there is no warning instance from the 
same category per file. In this example, the lifetime of 
the warning category is the time difference between 
transaction 1 to transaction 4. 
 
5. Discussion 

It is hard to trace line changes and it is also hard to 
trace warning instance changes between transactions. 
The annotation graph could solve this problem 
partially by mapping each line between two 
transactions [12]. When a file name changes between 
two transactions, we will lose warning category change 
trends or lifetime information, it is necessary to use 
origin analysis techniques [5, 7]. Even though it is 
possible that warning instance lifetimes in a category 
vary, we use the average to measure a category 
lifetime. Our prioritization approach does not remove 
false positives of warning instances. However, it puts 
the bugs (true positives) at the top of the warning list 
and false positives at the bottom to make bug finding 
tools more useful. 

Our analysis does not utilize developer assessments 
of the severity of each problem: our technique assumes 
that the more critical problems are fixed quickly, but it 
is conceivable that some important problems (say that 
cause incorrect behavior) are not corrected for a long 
time. 

 
6. Conclusions and Future Work 

We ran three bug finding tools on each 
development transaction of two open source projects, 
Columba and JEdit. We computed the lifetime of each 
warning category, and found that some warning 
categories have a short lifetime, while others have a 
long lifetime. We propose prioritization of each 
warning category based on its observed lifetime. This 
is a generic prioritization approach applicable to any 
bug finding tools. 

For future work we need to evaluate the prioritized 
warning categories through user study or validation 
using the change history. 
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