
Which Warnings Should I Fix First?

Sunghun Kim and Michael D. Ernst

Computer Science & Artificial Intelligence Lab (CSAIL)
Massachusetts Institute of Technology

{hunkim, mernst}@csail.mit.edu

ABSTRACT
Automatic bug-finding tools have a high false positive rate: most
warnings do not indicate real bugs. Usually bug-finding tools
assign important warnings high priority. However, the
prioritization of tools tends to be ineffective. We observed the
warnings output by three bug-finding tools, FindBugs, JLint, and
PMD, for three subject programs, Columba, Lucene, and Scarab.
Only 6%, 9%, and 9% of warnings are removed by bug fix
changes during 1 to 4 years of the software development. About
90% of warnings remain in the program or are removed during
non-fix changes – likely false positive warnings. The tools’
warning prioritization is little help in focusing on important
warnings: the maximum possible precision by selecting high-
priority warning instances is only 3%, 12%, and 8% respectively.

In this paper, we propose a history-based warning prioritization
algorithm by mining warning fix experience that is recorded in
the software change history. The underlying intuition is that if
warnings from a category are eliminated by fix-changes, the
warnings are important. Our prioritization algorithm improves
warning precision to 17%, 25%, and 67% respectively.

Categories and Subject Descriptors
D.2.7 [Software Engineering]: Distribution, Maintenance, and
Enhancement – Restructuring, reverse engineering, and

reengineering, D.2.8 [Software Engineering]: Metrics – Product

metrics, K.6.3 [Management of Computing and Information

Systems]: Software Management – Software maintenance

General Terms

Algorithms, Measurement, Experimentation

Keywords

Fault, Bug, Fix, Bug-finding tool, Prediction, Patterns

1. INTRODUCTION
Bug-finding tools such as FindBugs [12], JLint [2], and PMD [6]
analyze source or binary code and warn about potential bugs.
These tools have a high rate of false positives: most warnings do
not indicate real bugs [17]. Most bug-finding tools assign
categories and priorities to warning instances, such as Overflow

(priority 1) or Empty Static Initializer (priority 3). The tools’
prioritization is supposed to put important warnings at the top of
the list, but the prioritization is not very effective [17]. We
performed two experiments that support this observation. Our
experiments use three bug-finding tools (FindBugs, JLint, and
PMD) and three subject programs (Columba, Lucene, and Scarab).

First, we measured the percentages of warnings that are actually
eliminated by fix-changes, since generally a fix-change indicates
a bug [7-9, 22]. We select a revision and determine warnings
issued by the bug-finding tools. Only 6%, 9%, and 9% of
warnings are removed by fix-changes during 1~4 years of the
software change history of each subject program respectively –
about 90% of warnings either remain or are removed during non-
fix changes.

Second, we observed whether the tools’ warning prioritization
(TWP) favors important warnings. The maximum possible
warning precision by selecting high priority warning instances is
only 3%, 12%, and 8% respectively. This fact indicates that TWP
is ineffective.

Our goal is to propose a new, program-specific prioritization that
more effectively directs developers to errors. The new history-
based warning prioritization (HWP) is obtained by mining the
software change history for removed warnings during bug fixes.

A version control system indicates when each file is changed. A
software change can be classified as a fix-change or a non-fix
change. A fix-change is a change that fixes a bug or other
problem. A non-fix change is a change that does not fix a bug,
such as a feature addition or refactoring.

Suppose that during development, a bug-finding tool would issue
a warning instance from the Overflow category. If a developer
finds the underlying problem and fixes it, the warning is probably
important. (We do not assume the software developer is
necessarily using the bug-finding tool.) On the other hand, if a
warning instance is not removed for a long time, then warnings of
that category may be neglectable, since the problem was not
noticed or was not considered worth fixing.

Using this intuition, we set a weight for each warning category to
represent its importance. The weight of a category is proportional
to the number of warning instances from that category that are
eliminated by a change, with fix-changes contributing more to the

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
ESEC-FSE’07, September 3–7, 2007, Cavat near Dubrovnik, Croatia.
Copyright 2007 ACM 978-1-59593-811-4/07/0009...$5.00.

weight than non-fix changes. The weight of each category
determines its priority. Selecting the top weighted warnings
improves precision up to 17%, 25%, and 67% respectively – a
significant improvement in warning precision.

In previous research [13], we observed that some warnings are
removed quickly, whereas others persist for a long time.
Furthermore, we observed that warning lifetime is poorly
correlated with tools’ priority. We extend the previous work as
follows:

• Use bug-fix information: We incorporate information
regarding bug fixes instead of warning lifetime.

• Prioritization algorithm: We propose a prioritization
algorithm rather than merely observing the varying lifetimes
of warnings.

• Evaluation: We use the software change history to classify
each warning as a true or false positive. Using that
information, we show that the HWP algorithm improves the
warning precision.

In the remainder of the paper, we start by presenting background
on bug-finding tools (Section 2) and then report our experiment to
measure the precision of warnings (Section 3). Section 4
introduces our new HWP algorithm that mines the software
change history (Section 4). We discuss our assumptions and
threats to the validity (Section 5). We round off the paper with
related work (Section 6) and conclusions (Section 7).

2. BACKGROUND
Bug-finding tools for Java such as ESC/Java [10], PMD [6], JLint
[2], and FindBugs [12] are widely used [21]. Most bug-finding
tools use syntactic pattern matching, model checking, or type
checking to identify potential bugs. These tools are good at
detecting common bugs such as null pointer dereferencing.

In this research, we use three bug-finding tools, FindBugs, JLint,
and PMD. FindBugs analyzes Java bytecode to find pre-defined
errors [12]. JLint also analyzes Java bytecode and performs
syntactic checking and data flow analysis to find potential bugs
[2]. PMD finds syntactic error patterns from source code [6].

Bug-finding tools warn about potential bugs with location
information (filename and line number). For example, Figure 1
shows a FindBugs warning example [12]. The warning indicates a
potential bug: the bug category is EI_EXPOSE_REP, the priority
is 2, and the location is line 139 of the ConstructorInfo.java file.

EI org.apache.commons.modeler.ConstructorInfo.getSignature()
may expose internal representation by returning
org.apache.commons.modeler.ConstructorInfo.parameters

Bug type EI_EXPOSE_REP, Priority: 2

In class org.apache.commons.modeler.ConstructorInfo
[…]

Field org.apache.commons.modeler.ConstructorInfo.parameters

At ConstructorInfo.java:[line 139]

Figure 1. A FindBugs warning example [12].

The priority given by tools represents the importance of the
warning. If the priority is 1, the tool author believes the warning
is likely to indicate a real, important bug. If the priority is 3 or 4,
the warning may be neglectable.

3. MEASURING WARNING PRECISION
Each warning issued by a bug-finding tool either indicates an
underlying issue that is important enough for a developer to
notice and consider worth fixing, or it is a false positive (never
noticed or not worth fixing). This section describes how we make
this determination for each warning instance, and presents results
from three subject programs. The intuition is that if a warning is
eliminated by a fix change and the warning line number indicates
a line that was modified in the bug fix, then the warning category
probably indicates a real bug.

We consider a line to be a bug-related if it is modified by a fix-
change, since in order to resolve a problem the line was changed
or removed. Our approach is to mark each line of a file at a
revision as bug-related or clean. A bug may have multiple
manifestations or possible fixes, but a bug-finding tool should aim
to indicate at least one of those to the developer, and ideally
should indicate lines that the developer chooses to fix.

If a warning reports a bug-related line, then the warning is a true
positive:

%100
#

#
×

−
=

warningsof

linesrelatedbugonwarningsof
precision

Otherwise, the warning is a false positive:

precisionratepositivefalse −= %100

Table 1 briefly describes the three analyzed subject programs.
They have about 2~5 years of program history with 1,398 ~ 2,483
revisions.

Table 1. Analyzed subject programs. The number n is the maximum revision of each program. We evaluate the HWP algorithm at
revision n/2. *The number of FindBugs warnings in Columba is high and many are STYLE related (240 warnings). ** Similarly, Lucene
has many race-condition-related JLint warning instances. Still, the HWP algorithm by mining the software history increases warning
precision significantly for all three subject programs. †††† For Scarab, about half of the total revisions (1,241) were committed in one year.

Revision n/2 # of warning instances at revision n/2
Program

Software

type
Period

Date # of files LOC FindBugs JLint PMD

of

revisions

(n)

of

compilable

revisions

Columba
Email
Client

11/25/2002 ~
06/29/2004

09/11/2003 870 121K *448 509 1,374 1,703 1,486

Lucene
Search
Engine

10/19/2001~
11/9/2006

08/30/2004 233 37K 66 **518 929 1,398 1,160

Scarab
Issue

tracker
1/2/2002 ~
11/8/2006

† 12/10/2002 314 64K 57 556 870 2,483 1,947

3.1 Extracting Software Change History and

Warnings
Kenyon [3] is a system that extracts source code change histories
from SCM systems such as CVS and Subversion. Kenyon
automatically checks out the source code of each revision and
extracts change information such as the change log, author,
change date, source code, and change deltas.

Kenyon ignores revisions that cannot be compiled (see Table 1).
Using the three bug-finding tools, FindBugs, JLint, and PMD,
Kenyon gets warning instances for each revision of each subject
program.

Usually bug-finding tools allow developers to tune output options
to issue more or less warnings. We used the tools’ default options
for our experiments.

3.2 Fix Changes
We identify fix changes by mining change log messages in the
software history. Two approaches for this step are widely used:
searching for keywords such as "Fixed" or "Bug" [19] and
searching for references to bug reports like “#42233” [7, 9, 22].
We use the former technique. The detailed keywords used to
identify fixes for each program are shown in Table 2. Chen et al.
studied open source change log quality and their correctness [5].
They checked the correctness of each change log and found that
almost all logs are correct.

Some open source projects have strong guidelines for writing
change logs. For example, 100% of Columba’s change logs used
in our experiment have a tag such as ‘[bug]’, ‘[intern]’, ‘[feature]’,
and ‘[ui]’. Lucene and Scarab do not use tags in change logs, but
they have good quality change logs.

Table 2. Keywords for fix commit identification.

Program Fix change identification keywords

Columba [bug], [bugfix]

Lucene Patch, fix, bug

Scarab Patch, fix bug, issue number

3.3 Bug-Related Lines
After identifying fix changes, we observe what lines have been
deleted or changed (delta) in these fix changes. A line, l is a bug-
related line iff l is modified or removed during any fix-change.

Suppose there is a fix change between revision 6 and revision 7 as
shown at the right of Figure 2. Two lines at revision 6 are fixed
and the fixed code appears at revision 7. We mark the two lines at
revision 6 as bug-related, since the two lines are modified to
resolve a problem. Now, consider the previous revision 5
(assuming the revision numbers are consecutive). If the two
marked lines at revision 6 are not changed between revision 5 and
revision 6, the bug-related marks in these lines are propagated to
the previous revision. If the change between revision 5 and
revision 6 is a fix, the modified lines at revision 5 are marked as
bug-related. Suppose the change between revision 4 and revision
5 is non-fix. The changed part of the code at revision 4 is not
marked as bug-related.

Revision 6 Revision 7

If (x!=y &&
z!=x) {

If (x==y &&
z==x) {Fix

Revision 5

If (x!=y &&
z!=x) { Marks

Fix

Revision 4

Non-fix

Marks

Marks

Figure 2. Marking bug-related lines. Code changes are

highlighted. Bug-related lines are marked with “X”.

Starting at the last revision, this process can mark all lines of the
files at any revision as either bug-related or clean. Our
experiments use revision n/2 (n is the maximum revision of each
program). The bug-related marks of a revision are used as an
oracle set – the marked lines are used to measure the precision of
warnings assuming the marks are all correct.

Table 3 shows that 4% to 12% of lines at revision n/2 are marked
as bug-related.

Table 3. Marked bug-related line LOC and percentages, at

revision n/2.

Program LOC (K)
Bug-related

marked LOC

Bug-related

marked LOC %

Columba 121K 5,336 4%

Lucene 37K 2,608 7%

Scarab 64K 7,899 12%

This marking algorithm is similar to algorithms for identifying
buggy changes [15, 22]. While identifying buggy changes focuses
on finding when a bug was introduced, our buggy-marking
algorithm tries to identify bug-related lines of files at a revision.

3.4 False Positive Rates
To compute false positive rates, we compare the warnings to bug-
related lines. If a warning matches any bug-related line, we
assume the warning is correct. Otherwise, it is a false positive
warning.

For example, suppose lines 3, 4, 6, 8, and 9 are marked as bug-
related in a file at revision n/2 as shown in Figure 3. Suppose a
bug-finding tool warns about lines 1, 3, 5, and 8. Then, the
precision of warnings is 50% (two correct warnings out of 4
warnings) and recall is 40% (found 2 bug-related lines out of 5
bug-related lines).

In the same way, we compute warning precision for three subject
programs, Columba, Lucene, and Scarab. First we mark lines in
all files at revision n/2 (n is the maximum revision of each
program) as bug-related or clean by mining the software change
history between revision n/2 and revision n. Next we run three
bug-finding tools (FindBugs, JLint, and PMD) on all files at
revision n/2 to identify warnings. Finally, we compare warnings
and marked bug-related lines to compute precision and recall.

Revision n/2

Bug-finding
tools

Revision n/2

1
2
3
4
5
6
7
8
9

1
2
3
4
5
6
7
8
9

Figure 3. Measuring false positives. On the left, bug-related
lines as indicated by mining fix-changes in the software change
history. On the right, warnings issued by bug-finding tools.

3.5 Grouping Warnings
To help understand tool performance, we group warning
categories by tool name and warning priorities, as shown in Table
4. The All group contains all warning categories output by bug-
finding tools. The Tools’ priority 1 group includes FindBugs 1,
PMD 1, and JLint warnings. In the same way, we group warning
categories by tool and each tool-specific priority levels. For
example, the PMD 2 group includes all priority 2 warnings issued
by PMD. Additionally, the FindBugs(1-3) group aggregates all
warnings issued by FindBugs, and the PMD(1-4) group combines
all PMD warnings.

As shown in Table 4, the bug-finding tools have a total of 349
categories (such as Overflow or Empty Static Initializer). The
bug-finding tools issue warnings from 89 categories for Columba
at revision n/2. Among them, 25 warning categories are set as
priority 1 by the tools.

Many warning categories are concentrated in one priority, which
limits the ability of the tools to differentiate. For example, most
PMD warning categories have priority 3. Similarly, FindBugs 2
includes most FindBugs warning instances.

Table 4. Number of categories in each group.
†

The FindBugs

warning priorities are context-sensitive and the same warning
categories may have different priorities. ‡‡‡‡ By default, FindBugs

reports only priority 1 and 2 warnings. *JLint does not provide
priority information so we assume all warnings are priority 1.

Categories observed

at revision n/2
Number of

categories
Columba Lucene Scarab

All 349 89 54 62

Tools’ priority 1 N/A 25 17 20

FindBugs(1-3) 271 47 15 27

FindBugs 1 † 9 2 8

FindBugs 2 † 38 13 19
‡ FindBugs 3 † 0 0 0
*JLint 30 16 15 12

PMD(1-4) 44 26 24 23

PMD 1 1 0 0 0

PMD 2 3 3 1 3

PMD 3 37 22 21 18

PMD 4 3 1 2 2

0

5

10

15

20

25

P
re

ci
si

o
n

 (
%

)

Columba

0

5

10

15

20

25

P
re

ci
si

o
n

 (
%

)

Lucene

0

5

10

15

20

25

P
re

ci
si

o
n

 (
%

)

Scarab

Figure 4. Warning precision for three subject programs. The
‘*’ mark indicates that no warning from the group is issued for the
subject program. For example, for the three subject programs,
PMD issued no priority 1 warnings.

3.6 Warning Precision and Recall
The precision of each warning group in Table 4 at revision n/2 is
shown in Figure 4. The overall precision in Figure 4 is low,
around 6-9%, indicating that over 90% of warnings at revision n/2
are not fixed by revision n (about 1~4 years later).

In the bug prediction literature, line-based prediction is
considered a hard problem, and our numbers are consistent with
previous results. Most research tries to predict bugs at the module,
file, and function level [11, 16, 20]. Line-based prediction
precision is about 7.9~16.1% [14].

Figure 4 shows that the prioritization of tools is not very effective.
If tools’ prioritization were effective, the higher priority warnings
would have also high precision. For example, the precision of
tools’ priority 1 warnings should be higher (probably much
higher) than that of All: Columba shows the opposite pattern.
Similarly, the precision of PMD 3 in Lucene is lower than that of
PMD 4.

Figure 5 shows the recall of all warnings for three subject
programs. Recall shows how many bugs (marked as bug-related
lines) are caught by warnings. The recall range is 2%~5%.

0

1

2

3

4

5

6

Columba Lucene Scarab

R
e

ca
ll

 (
%

)

Subject Programs

Figure 5. Warning recall of three subject programs.

The reason for this low recall is that line-based prediction is a
hard problem, and that tools can only catch certain types of bugs,
not all bugs. Recent studies indicate the most prevalent type of
bug is semantic or program specific [14, 18]. These kinds of bugs
cannot be easily detected by generic bug-finding tools. Most of all,
we marked bug-related lines based on fix-changes. Usually a fix-
change includes multiple lines, but bug-finding tools may predict
only one or two on these lines correctly. This is probably
sufficient to help programmers locate and fix the error.

Our goal is improving precision by mining the software change on
warnings given by bug-finding tools. Improving recall requires
modifying bug-finding tools and is beyond this research.

4. PRIORITIZATION ALGORITHM
We showed that the tools’ warning prioritization is not effective
at identifying important warnings. How can we find warnings that
are more important? Our solution is mining the fix-changes and
warning removal experience that is recorded in the software
change history.

4.1 Warning Instance and Warning Category
Our technique sets the priority of each warning category (for
example, Zero Operand is more important than Empty Static

Initializer), but it does not differentiate among warning instances
in the same category (for example, Zero Operand on line 10 has
the same importance as Zero Operand on line 50). Once we set a
weight for a warning category, the weight determines the priority
of all warnings in the category.

This suggests that our technique will be most effective when the
categories are relatively fine-grained and internally homogeneous
(with respect to their importance and weight). If a bug-finding
tool uses only one warning category, our technique would be
unable to differentiate among warning instances, and hence
unable to set weights.

4.2 Training Warning Category Weights
Consider three distinct warning categories, c1, c2, and c3. c1 is
often removed by fix changes, c2 is removed by non-fix changes,
and c3 is not removed for a long time. We assume c1 is more
important or relevant to fixes (bugs), and c3 is less likely a real
bug or developers do not bother to remove the warnings.

The basic idea of training weights for categories is taking each
warning instance as a bug predictor. If the prediction is correct
(the warning is eliminated by a fix-change), we promote the
weight.

We exclude removed warnings due to any file deletion. If there is
a file deletion during a fix, all warnings in the files are removed.
These all removed warnings are not necessarily the results of the
fix.

The HWP algorithm is described in Figure 6. The initial weight
wc of category c is set to 0. After that, if a warning in a category c
is removed during a fix change, we promote the weight byα .

Similarly, if a warning in a category c is removed during a non-
fix change, we increase the weight by β . Since there are only

promotion steps, the warning category weights are decided by the
ratio of α and β rather than the actual values of α and β . We

make α an independent variable and β a dependent variable on

α (i.e. αβ −= 1 and 10 ≤≤ α).

// initialize weight wc

0=cw

for each warning instance i in category C
// fix-change promotion step
if i is removed in a fix change

then α+= cc ww

// non-fix change promotion step
if i is removed in a non-fix change

then β+= cc ww

// weight normalization step

||/ Cww cc = where |C| is the number of warning instances in

category C

Figure 6. The HWP algorithm by mining the software change

history.

A warning category gets a high weight if warning instances from
the category are removed many times by fix-changes or non-fix
changes. In contrast, a warning category gets a low weight if
warning instances from the category are seldom removed.

This algorithm is inspired by the Weighted majority voting and
Winnow online machine learning algorithms [1]. These
algorithms take features from learning instances. Each feature has
a weight and the weight is adjusted based on the feature’s
prediction result. If a feature’s prediction is correct, the feature
weight is promoted. Otherwise, the feature’s weight is demoted.
These simple online machine-learning algorithms work well in
practice.

The next step of our algorithm is weight normalization. Consider
the following two warning categories shown in Figure 7. There
are 9 warning instances (i1) from the c1 category, and there is one
warning instance (i2) from the c2 warning category. Two warning
instances from c1 and one warning instance from c2 are removed
during a fix change shown in Figure 7

Fix

Figure 7. Warning instances from two categories are removed

by a single fix change.

In the prioritization algorithm as described, the quantity of a
warning category dominates the weight. For example if α =1

then w1 is 2 and w2 is 1, since two warning instances from c1 are
removed. In fact, the precision of c2 is higher than that of w1 in
this example.

In order to avoid this problem, we normalize weights by the total
number of warning instances of the category shown in Figure 6.

4.3 Evaluation Method
To evaluate our algorithm, we need to train weights for each
warning category by mining the software change history during a
training period: revision 1 to revision n/2-1. To measure the
precision of the weights, we also use the software change history,
but during a testing period: and revision n/2 to revision n. To be a
fair comparison, the two periods should not overlap.

4.4 Selecting α
As described in Section 4.2, the HWP algorithm uses a

variable,)1(αβα −= , that affects the category weights. Some

examples are:

� 5.0,5.0 == βα : promotion for all changes equally.

� 0,1 == βα : promotion only for fix-changes

� 1.0,9.0 == βα : promotion for all changes. More

promotion for fix-changes.

We experimentally determined that the best α for Columba,

Lucene, and Scarab is 0.8, 0.9, and 1 respectively. We use α =

0.9 for the rest of experiments. In Figure 8, the y-axis indicates
the precision of the top 30 warning instances, as weighted by
HWP.

0

5

10

15

20

25

30

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

P
re

ci
si

o
n

 (
%

)

alpha

Columba

Lucene

Scarab

Figure 8. The top 30 warning instance precision for various

α values at revision n/2. α = 0.9 is used for the rest of

experiments.

4.5 Evaluation Results
After computing a weight for each warning category, we
prioritized warning instances according to their category weights.

Figure 9 plots precision for the top 100 warning instances when
all warnings output by the tools (when applied to revision n/2 of
the given subject program) are sorted by their priority – either
TWP or HWP. For example, for the Columba subject program,
the precision is 17% for selecting the 12 highest-priority warning
instances according to HWP. By contrast, the precision is about
3% for the 12 highest-priority warning instances according to the
tools' own built-in prioritization. When multiple warnings have
the same priority, the figures use the expected value of precision
if warnings of that priority are chosen at random.

Programmers are unlikely to look at all warnings output by a tool,
so the most important part of the graphs is the portion near the
origin, which indicates how precise the highest-prioritized
warnings are.

Figure 9 demonstrates that our prioritization outperforms the
built-in prioritization, often by a substantial margin. For our
prioritization, the best precision for a subset of the warnings is
17% (top 12 warnings for Columba), 25% (top 16 for Lucene),
and 67% (top 6 for Scarab) for the three subject programs
respectively. For the top 30 warnings, the TWP precision is 3%,
12%, and 8% respectively. HWP improves this to 9%, 23%, and
21% respectively.

0

2

4

6

8

10

12

14

16

18

0 20 40 60 80 100

P
re

ci
si

o
n

 (
%

)

Warning Instances

Columba

HWP

TWP

0

5

10

15

20

25

30

0 20 40 60 80 100

P
re

ci
si

o
n

 (
%

)

Warning Instances

Lucene

HWP

TWP

0

10

20

30

40

50

60

70

0 20 40 60 80 100

P
re

ci
si

o
n

 (
%

)

Warning Instances

Scarab

HWP

TWP

Figure 9. Precision of the top 100 warning instances sorted by

HWP and TWP.

Table 5 and Table 6 compare the top priority warnings by HWP
and TWP for Scarab at revision n/2. The top warnings from TWP
and HWP are very different. The occurrences indicate the number
of warning instances from the corresponding category for Scarab
at revision n/2.

5. DISCUSSION
In this section, we discuss some limitations of the HWP algorithm
and experiment results.

5.1 Homogeneous Categories
We assume that warning instances in a warning category are
homogeneous with respect to importance and precision. The
jitters in Figure 9 suggest that some categories are not
homogenous. Some instances in a category are removed many
times by fix-changes between revision 1 and revision n/2-1, but
between revision n/2 and revision n the instances are not removed
by fix changes. After about 45 warnings for Lucene, the precision
of HWP is worse than that of the prioritization of the tools.
Adding warning instances from one or two non-homogeneous
categories may reduce the precision significantly.

5.2 Initial Mining Data
The HWP algorithm uses the change history to train weights of
warning categories. In order for a category to have a non-zero
weight at least one instance from the category must be removed.
If an instance from a new warning category appears, we do not
have any weight information for the warning. In this paper, we
used about 1~2 years of the program history to train weights of
warning categories which yields a reasonable precision
improvement.

5.3 Threats to Validity
We note some threats to the validity of this work.

The subject programs might not be representative. We
examined 3 open source systems written in Java, and it is possible
that we accidentally chose subject programs that have better (or
worse) than average warning precision. Since we intentionally
chose programs whose change log text indicates bug-fix changes,
there is a program selection bias.

Some developers may use bug-finding tools in their

development cycle. If individual developers use FindBugs, JLint,
or PMD, and fix warnings issued by bug-finding tools, then the
measured precision of the tool will be high. We queried
developers of each subject program, and developers of Columba
and Lucene confirmed that they are not using any bug-finding
tools. It is also possible that our results indicate that programmers
in different projects are culturally attuned for making, finding, or
removing certain types of errors. All of our subject programs are
open-source systems written in Java, with 12, 24, and 29
developers making commits, respectively.

Table 5. Categories of all property-1 warnings issues by bug-finding tools for Scarab at revision n/2 (20 categories in all). The
occurrences indicate the number of warning instances from the corresponding category at revision n/2.

Tool
Tools'

priority
Category HWP weight

Precision

(%)
Occurrences

FindBugs 1 correctness: il infinite recursive loop 0.211 0 2

FindBugs 1 correctness: np null param deref nonvirtual 1.1 0 1

FindBugs 1 correctness: rcn redundant nullcheck would have been a npe 0.222 100 1

FindBugs 1 correctness: rv return value ignored 0 0 1

FindBugs 1 malicious code: ms should be final 0.125 0 2

FindBugs 1 performance: dm gc 0.3 0 1

FindBugs 1 style: dls dead local store 0.238 0 1

FindBugs 1 style: st write to static from instance method 0.475 100 1

jLint 1 bounds: maybe bad index 0.175 0 2

jLint 1 bounds: maybe neg len 0.175 0 2

jLint 1 field redefined: field redefined 0 1 184

jLint 1 not overridden: hashcode not overridden 0.046 0 8

jLint 1 not overridden: not overridden 0.001 0 98

jLint 1 null reference: null param 0.122 14 7

jLint 1 null reference: null var 0.007 33 36

jLint 1 race condition: concurrent access 0.013 0 28

jLint 1 race condition: concurrent call 0.004 1 67

jLint 1 redundant: same result 0.01 0 3

jLint 1 shadow local: shadow local 0.006 30 61

jLint 1 weak cmp: weak cmp 0.016 18 22

Table 6. Categories of the top 20 warnings by HWP for Scarab at revision n/2 (20 categories in all).

Tool
Tools'

priority
Category HWP weight

Precision

(%)
Occurrences

PMD 3 java.lang.string rules: stringtostring 2.8 0 1

FindBugs 1 correctness: np null param deref nonvirtual 1.1 0 1

FindBugs 2 style: st write to static from instance method 0.475 100 1

FindBugs 2 style: rec catch exception 0.475 100 1

FindBugs 2 malicious code: ms pkgprotect 0.475 100 1

FindBugs 1 style: st write to static from instance method 0.475 100 1

FindBugs 1 performance: dm gc 0.3 0 1

FindBugs 2 performance: dm string tostring 0.288 25 4

FindBugs 1 style: dls dead local store 0.238 0 1

FindBugs 2 performance: sbsc use stringbuffer concatenation 0.222 0 1

FindBugs 2 correctness: rcn redundant nullcheck would have been a npe 0.222 0 1

FindBugs 1 correctness: rcn redundant nullcheck would have been a npe 0.222 100 1

FindBugs 1 correctness: il infinite recursive loop 0.211 0 2

jLint 1 bounds: maybe neg len 0.175 0 2

jLint 1 bounds: maybe bad index 0.175 0 2

FindBugs 2 mt correctness: is2 inconsistent sync 0.175 0 2

FindBugs 2 correctness: sa field self assignment 0.175 0 2

FindBugs 1 malicious code: ms should be final 0.125 0 2

jLint 1 null reference: null param 0.122 14 7

FindBugs 2 performance: dm string ctor 0.112 67 3

Bug fix data is incomplete. Even though we selected programs
that have change logs with good quality (see Section 3.),
developers might forget to mark some changes as a bug fix in the
history or use different keywords to indicate fix changes. Partial
bug-fix data may decrease warning precision. It is also possible
that developers check in both a fix and many other changes in a
commit, or incorrectly mark a non-fix change as a fix. This could
lead us to mark too many lines as bug-related, leading to
unrealistically high precision.

Some revisions are not compilable. Some bug-finding tools such
as JLint and FindBugs take jar or class files to generate warnings.

This requires compilation of each revision. Unfortunately, some
revisions are not compilable. To get warning changes along with
source code change, two consecutive revisions should be
compilable. It is possible to combine revisions, but then we have
to merge change logs and separate changes in each revision to
identify fix-changes. To make our experiments simple, we ignore
revisions that are not compilable and this may affect the warning
precision.

Latent bugs: Maybe some important bugs never got noticed or
fixed between revision n/2 and revision n, even though a tool
would have indicated them. This would make the precision and

recall results for such a tool too low. We suspect that most
important bugs will be noticed and fixed over a 1~ 4-year period.

Prioritization and bug severity: The tools’ priority may be
based not on the likelihood that the warning is accurate, but on the
potential severity of the fault. For example, maybe priority 1
warnings have a high false positive rate, but the true positives are
so critical that the tool writers placed them in priority 1. Such a
policy would probably be counterproductive, since it is widely
reported that false positive rates for the first-presented warnings
are critical to user acceptance of a bug-finding tool. If this is true,
then HWP which ranks each bug fix equality is orthogonal to
TWP.

Warning location vs. fix location: Different warning and fix
locations may inflate the warning false positive rate. Additionally,
Adding new code may fix an existing warning. For example, if a
warning is about unused import statements in Java, it could be
fixed by adding code that uses the imports.

6. RELATED WORK
Kremenek and Engler [17] prioritize checks (warning categories)
using the frequency of check results. Software checkers output
success (indicating a successful check of an invariant) or failure
(the invariant did not hold). If the ratio of successes to failures is
high, the failures are assumed to be real bugs. If we apply this
idea to warning categories, a warning category that has fewer
warning instances is important. Our HWP algorithm is different
from their approach in that we use previous warning fix
experience (the ratio of true positives) to identify important
warnings.

Boogerd and Moonen [4] use execution likelihood analysis to
prioritize warning instances. For each warning location, they
compute the execution likelihood of the location. If the location is
very likely to be executed, the warning gets a high priority. If the
location is less likely to be executed, the warning gets a low
priority. This technique may help developers to focus on warnings
at the location which has high execution likelihood. However, a
location which has low execution likelihood or warnings at the
location could be important. In fact, severe bugs in lines with low
chance of execution are more difficult to detect.

Williams and Hollingsworth use software change histories to
improve existing bug-finding tools [24]. When a function returns
a value, using the value without checking it may be a potential
bug. The problem is that there are too many false positives if a
bug-finding tool warns all source code that uses unchecked return
values. To remove the false positives, Williams and
Hollingsworth use the software histories and find what kinds of
function return values must be checked. For example, if the return
value of ‘foo’ was always checked in the software history, but not
checked in current source code, it is very suspicious. This
approach is similar to ours, since they leverage the software
history to remove false positives. However, they only focus on the
small sets bug patterns such as return value checking, while our
approach is generic to all warnings.

Spacco et al. [23] observed FindBugs warning categories across
software versions. They measure lifetimes of warning categories,
warning number rates, and the degree of decay using warning
numbers. Kim et al. [13] observed warning lifetimes by observing
warnings in each revision and suggested using the lifetime for
reprioritizing warnings. As noted in Section 1, those approaches

just reported the observed results, while we use the observation
results to prioritize warning categories and evaluate the prioritized
warnings.

7. CONCLUSIONS AND FUTURE WORK
We compared warnings and bug fixes in the software change
history of three subject programs, Columba, Lucene, and Scarab.
Only 6%, 9%, and 9% of the warnings issued by bug-finding tools
are removed by a fix-change within about 1~4 years of the
software change history. Over 90% of warnings remain in the
program or are removed during non-fix changes. Only 3%, 12%,
and 8% of tools’ high priority warnings (priority 1) are eliminated
by fix-changes. This fact indicates that the prioritization of bug-
finding tools is not effective.

We proposed an automated history-based warning prioritization
(HWP) algorithm that mines previous fix and warning removal
experience that is stored in the software change history. If a
warning instance from a warning category is eliminated by a fix-
change, we assume that this warning category is important. For
Columba, Lucene, and Scarab, selecting the top HWP warnings
improves precision up to 17%, 25%, and 67% respectively – a
significant precision improvement.

This research makes the following contributions:

• Measuring false positive warnings: By mining fix-changes
in the software change history, we measured the precision
(true and false positive rates) of warnings issued by bug-
finding tools.

• Line-based bug evaluation: In the bug prediction literature,
mostly module, file, and function level entities are used to
train a prediction model and evaluate the model. By mining
the fix-changes in the software history, we mark each line as
bug-related or clean. We use the marked lines as an oracle
set for evaluating bug prediction.

• Generic warning prioritization algorithm: The proposed
automated warning prioritization algorithm is generic and is
applicable to any warnings.

• Finer-grained prioritization: We observe that the
prioritization of tools is coarse grained and a prioritization
group (such as FindBugs 2 and PMD 3 in Table 4) includes
many warning categories. There is no way to prioritize
warning categories in the same priority group. Our
prioritization provides finer-grained priorities so that it is
possible to select an arbitrary number of important warnings.

• Leveraging the software change history for warning

prioritization: Our approach uses the software change
history for warning prioritization. We show that the software
change history is useful for warning prioritization.

Our prioritization algorithm increases the precision of warnings
significantly. Even so, we still see room for improvement.
Combing tools’ priorities with HWP priorities may lead to better
precision. We analyzed three subject programs and thee bug-
finding tools; more programs and tools should be analyzed.

Overall, we expect that future approaches will use the software
change history for warning prioritization – and as a source for
continued correction and adaptation of warning priorities.

8. ACKNOWLEDGEMENTS
We thank E. J. Whitehead, Jr., Yoav Zibin, Miryung Kim,
Andreas Zeller, and the ESEC/FSE reviewers for their valuable
feedback on earlier revisions of this paper. This work was
supported by DARPA contracts FA8750-06-2-0189 and HR0011-
07-1-0023 and by NSF grant SOD-HCER 0613793.

9. REFERENCES
[1] E. Alpaydin, Introduction to Machine Learning: The

MIT Press, 2004.
[2] C. Artho, "Jlint - Find Bugs in Java Programs," 2006,

http://jlint.sourceforge.net/.
[3] J. Bevan, E. J. Whitehead, Jr., S. Kim, and M. Godfrey,

"Facilitating Software Evolution with Kenyon," Proc. of
the 2005 European Software Engineering Conference

and 2005 Foundations of Software Engineering

(ESEC/FSE 2005), Lisbon, Portugal, pp. 177-186, 2005.
[4] C. Boogerd and L. Moonen, "Prioritizing Software

Inspection Results using Static Profiling," Proc. of the

Sixth IEEE International Workshop on Source Code

Analysis and Manipulation (SCAM 2006), Philadelphia,
PA, USA, pp. 149-160, 2006.

[5] K. Chen, S. R. Schach, L. Yu, J. Offutt, and G. Z.
Heller, "Open-Source Change Logs," Empirical

Software Engineering, vol. 9, no. 3, pp. 197-210, 2004.
[6] T. Copeland, PMD Applied: Centennial Books, 2005.
[7] D. Cubranic and G. C. Murphy, "Hipikat:

Recommending pertinent software development
artifacts," Proc. of 25th International Conference on

Software Engineering (ICSE 2003), Portland, OR, USA,
pp. 408-418, 2003.

[8] D. Cubranic, G. C. Murphy, J. Singer, and K. S. Booth,
"Hipikat: A Project Memory for Software
Development," IEEE Trans. Software Engineering, vol.
31, no. 6, pp. 446-465, 2005.

[9] M. Fischer, M. Pinzger, and H. Gall, "Populating a
Release History Database from Version Control and
Bug Tracking Systems," Proc. of 19th International

Conference on Software Maintenance (ICSM 2003),
Amsterdam, Netherlands, pp. 23-32, 2003.

[10] C. Flanagan, K. R. M. Leino, M. Lillibridge, G. Nelson,
J. B. Saxe, and R. Stata, "Extended Static Checking for
Java," Proc. of the ACM SIGPLAN 2002 Conference on

Programming Language Design and Implementation

(PLDI 2002), Berlin, Germany, pp. 234-245, 2002.
[11] T. L. Graves, A. F. Karr, J. S. Marron, and H. Siy,

"Predicting Fault Incidence Using Software Change
History," IEEE Transactions on Software Engineering,
vol. 26, no. 7, pp. 653-661, 2000.

[12] D. Hovemeyer and W. Pugh, "Finding Bugs is Easy,"
Proc. of the 19th Object Oriented Programming

Systems Languages and Applications (OOPSLA '04),
Vancouver, British Columbia, Canada, pp. 92-106,
2004.

[13] S. Kim and M. D. Ernst, "Prioritizing Warning
Categories by Analyzing Software History," Proc. of
Int'l Workshop on Mining Software Repositories (MSR

2007), Minneapolis, MN, USA, pp. 27, 2007.

[14] S. Kim, K. Pan, and E. J. Whitehead, Jr., "Memories of
Bug Fixes," Proc. of the 2006 ACM SIGSOFT

Foundations of Software Engineering (FSE 2006),
Portland, OR, USA, pp. 35-45, 2006.

[15] S. Kim, T. Zimmermann, K. Pan, and E. J. Whitehead,
Jr., "Automatic Identification of Bug Introducing
Changes," Proc. of 21st IEEE/ACM International

Conference on Automated Software Engineering (ASE

2006), Tokyo, Japan, 2006.
[16] S. Kim, T. Zimmermann, E. J. Whitehead, Jr., and A.

Zeller, "Predicting Bugs from Cached History," Proc. of
the 29th International Conference on Software

Engineering (ICSE 2007), Minneapolis, USA, pp. 489-
498, 2007.

[17] T. Kremenek and D. R. Engler, "Z-ranking: Using
statistical analysis to counter the impact of static
analysis approximations," Proc. of the 10th

International Symposium on Static Analysis (SAS 2003),
San Diego, CA, USA, pp. 295-315, 2003.

[18] Z. Li, L. Tan, X. Wang, S. Lu, Y. Zhou, and C. Zhai,
"Have Things Changed Now? An Empirical Study of
Bug Characteristics in Modern Open Source Software,"
Proc. of 1st Workshop on Architectural and System

Support for Improving Software Dependability, San
Jose, CA, USA, pp. 25-33, 2006.

[19] A. Mockus and L. G. Votta, "Identifying Reasons for
Software Changes Using Historic Databases," Proc. of
16th International Conference on Software

Maintenance (ICSM 2000), San Jose, CA, USA, pp.
120-130, 2000.

[20] T. J. Ostrand, E. J. Weyuker, and R. M. Bell, "Where
the Bugs Are," Proc. of 2004 ACM SIGSOFT

International Symposium on Software Testing and

Analysis, Boston, Massachusetts, USA, pp. 86-96, 2004.
[21] N. Rutar, C. B. Almazan, and J. S. Foster, "A

Comparison of Bug Finding Tools for Java," Proc. of
15th IEEE International Symposium on Software

Reliability Engineering (ISSRE'04), Saint-Malo,
Bretagne, France, pp. 245-256, 2004.

[22] J. Śliwerski, T. Zimmermann, and A. Zeller, "When Do
Changes Induce Fixes?" Proc. of Int'l Workshop on

Mining Software Repositories (MSR 2005), Saint Louis,
Missouri, USA, pp. 24-28, 2005.

[23] J. Spacco, D. Hovemeyer, and W. Pugh, "Tracking
Defect Warnings Across Versions," Proc. of Int'l

Workshop on Mining Software Repositories (MSR 2006),
Shanghai, China, pp. 133-136, 2006.

[24] C. C. Williams and J. K. Hollingsworth, "Automatic
Mining of Source Code Repositories to Improve Bug
Finding Techniques," IEEE Trans. Software

Engineering, vol. 31, no. 6, pp. 466-480, 2005.

