
Using Predicate Fields
in a Highly Flexible Industrial Control System

Shay Artzi
∗

Michael D. Ernst

MIT Computer Science & Artificial Intelligence Lab
32 Vassar St, Cambridge, MA 02139 USA

{artzi,mernst}@csail.mit.edu

ABSTRACT
Predicate fields allow an object’s structure to vary at runtime based
on the object’s state: a predicate field is present or not, depending
on the values of other fields. Predicate fields and related concepts
have not previously been evaluated outside a research environment.
We present a case study of two industrial applications with similar
requirements, one of which uses predicate fields and one of which
does not. The use of predicate fields was motivated by requirements
for high flexibility, by unavailability of many requirements, and by
high user interface development costs. Despite an implementation
of predicate fields as a library (rather than as a language extension),
developers found them natural to use, and in many cases they sig-
nificantly reduced development effort.

Categories and Subject Descriptors
D.1.5 [Programming Techniques]: Object-oriented Programming;
D.2.2 [Software Engineering]: Design Tools and Techniques—
User interfaces; D.3.3 [Programming Languages]: Language Con-
structs and Features—Data types and structures

General Terms
Design, Experimentation, Languages

Keywords
Predicates, Predicate Fields, Classifiers, Structure, User Interface
Development, Experimental Control System

1. INTRODUCTION
At the heart of object-oriented programming is the ability for

run-time values to affect program behavior. For example, dynamic
dispatch selects which implementation of a method to invoke, based
on the run-time class of the receiver object. Researchers have pro-
posed other, more powerful ways for run-time values to affect both
the behavior and the structure of objects.

Multiple dispatching [2, 7, 11] permits dynamic dispatch to de-
pend on the types of all arguments, not just the receiver. Predicate
dispatching [13, 22] uses arbitrary predicates (boolean expressions)
to select the most specific applicable implementation, so dispatch
can depend on any aspect of program state.

∗Work done while at Rafael, Israel Armament Development Au-
thority, Ltd.

Copyright is held by the author/owner.
OOPSLA’05, October 16–20, 2005, San Diego, California, USA.
ACM 1-59593-193-7/05/0010.

Predicate fields (the subject of this paper) give a way of affecting
object structure rather than object behavior. A predicate field is a
field of an object that is present (can be read and written) depending
on the values of other fields. In other words, the structure of an
object varies at run time depending on the values of its own fields.

Other research combines aspects of both lines of research, per-
mitting dynamic changes in both behavior and structure. Predi-
cate classes [8] use predicates to dynamically classify an object
to its subclasses. Classifiers in the KEA programming language
[19, 23], which are based on the value of a single enumerated-
type attribute, are also used to automatically classify an object to
mutually-exclusive subclasses. Taivalsaari’s Modes [28] are an-
other similar mechanism.

Despite lively interest from the research community, we are not
aware of any prior substantive evaluation of predicate-oriented pro-
gramming. We have implemented a library that supports the cre-
ation of dynamic objects, which are objects with predicate fields.
While the library forces users to use a special syntax for accessing
dynamic objects, and the predicates are of limited expressiveness,
the library was nonetheless powerful enough and usable enough to
be the basis for a mission-critical industrial system.

This paper presents a case study of two systems built to similar
requirements. The first implementation is a command and control
system for a facility in which physical experiments are performed.
The second implementation is similar, though more ambitious, and
was designed around the use of predicate fields in order to mitigate
deficiencies in the first implementation. This use of predicate fields
was successful: the resulting system is very flexible, the user in-
terface is highly configurable, and development costs, especially in
the user interface (which can account for 50% of effort expended
[24]), were greatly reduced.

We believe this is the first evaluation of predicate-oriented com-
puting in a large-scale development effort. Our observations help
to indicate circumstances in which predicate fields are most use-
ful, and the practical obstacles to their use. Our observations also
suggest that many important benefits are obtained even in the ab-
sence of sophisticated predicate expressions and dispatching mech-
anisms. One implication for practitioners is that it can be advan-
tageous to use even a primitive implementation of this language
feature.

The remainder of this paper is organized as follows. Section 2 re-
views predicate fields, and Section 3 discusses use of our predicate
fields library. Sections 4–7 present our case study: requirements,
system implementation, use in practice, and evaluation. Section 8
details the library implementation. Section 9 surveys related work,
and Section 10 concludes.



// A statement in an interpreter for the MML
// programming language (Section 4.1). Either
// a manual statement, or an automatic statement.
class Statement;
enum StatementType

{ManualStatement, AutomaticStatement};

// PStatement is a predicate that is true
// when the object is of type Statement.
// dynamicType is a built-in field; see Figure 10.
pred PStatement

dynamicType = Statement;
pred PManualStatement

statementType = ManualStatement;
pred PAutomaticStatement

statementType = AutomaticStatement;

// The field named statementType (of type
// StatementType) exists in any object for which
// the predicate PStatement evaluates to true
// (namely, any object of class Statement).
field StatementType statementType when@PStatement;
field string description when@PManualStatement;
field Device device when@PAutomaticStatement;

Statment s = new Statement();
s.description = "Please push red button"; // ERROR
s.statementType = ManualStatement;
s.description = "Please push red button";
s.device = new Oscilloscope(); // ERROR
s.statementType = AutomaticStatement;
s.device = new Oscilloscope();

Figure 1: Using predicate fields to emulate dynamic classifica-
tion for IDE development (stylized syntax). Lines marked as
“ERROR” result in run-time exceptions.

2. PREDICATE FIELDS
A predicate field is a field whose presence in an object depends

on the run-time value of a predicate — a boolean expression. Predi-
cate fields allow an object’s structure to vary at run time. When the
predicate is satisfied, the field is part of the object’s structure and
can be read and written. If the predicate later becomes unsatisfied,
the field ceases to be part of the object’s structure.

Different proposals for predicate-oriented programming use pred-
icates of varying complexity. Predicate classes [8] permit arbitrary
boolean expressions, while Kea classifiers [19, 17] are determined
by the value of a single attribute of an enumerated type. Our imple-
mentation is similar to Kea in that predicates are based on equality
of a single variable to a specified value. However, the variable’s
type may be a string or any primitive type.

Predicate fields may seem to be a limited mechanism. However,
they can be used to emulate predicate classes (dynamic classifica-
tion of an object into subclasses), as shown in Figure 1. This is
similar to, but more convenient than, design patterns such as deco-
rator or state aimed at a similar purpose [14].

Here we note four motivations for predicate fields. (Other re-
search has provided additional motivations.)

First, predicate fields allow an object to change its structure dur-
ing its life cycle. For example, an employee might initially have a
field for his hourly wage. After a promotion to salaried status, such
a field is no longer relevant, but a monthly or yearly salary field is
necessary. Instead of using an elaborate class hierarchy to, for in-
stance, separate the employee object from his method of payment,
a developer can use predicate fields to create the suitable object
structure.

Second, predicate fields permit the user to recover from errors,

pred hasThesisProposal
thesisProposal != null;

class StudentProgress
{

...
String thesisProposal;
Date anticipatedDate when@hasThesisProposal;

}

Figure 2: Definitions for controlling visibility of fields in a grad-
uate student progress report.

such as changing the type of a created object while preserving all
the data which is mutual to both types. The alternative, deleting the
old object and creating a new one, can cause lost work and errors.

Third, predicate fields can ease development of graphical inter-
faces (and other components) by presenting a unified view on ar-
bitrarily many collections of fields. As one example, if reflection
properly recognizes the fields, then even though there may exist
many different varieties of object, each with its own collection of
fields, the code for manipulating objects can be simple and com-
pact.

Fourth, predicate fields permit fine-grained customization of ob-
jects or object behavior, without requiring new class definitions.
For example, extending the employee example above, a specific
employee’s human resource information might be tagged with spe-
cial fields relevant only to that employee.

2.1 Predicate field example
As another example of use of predicate fields, consider a web site

where a graduate student enters information about progress toward
his degree. The information includes (among others) PhD thesis
proposal, and expected date for the completion of the PhD thesis.

The expected date for the PhD thesis is not meaningful until the
PhD thesis proposal is submitted: the former field should not exist,
or at least not appear in the web form, when the PhD thesis proposal
is empty. A possible object oriented solution would be to abstract
the notion of the field’s existence in the student object, by creat-
ing an association object between the student object and its various
fields. User interface code would consult this association object
when generating or updating the screen. Figure 2 shows another
solution using predicate fields. When thesisProposal gets set,
the field anticipatedDate becomes part of the object’s structure.
The developer can even generate the user interface using reflection
to automatically incorporate field changes into the user interface.

3. USING PREDICATE FIELDS
This section discusses how a programmer uses our implementa-

tion of predicate fields.

3.1 Library implementation
We have implemented predicate fields as a library in C#. Previ-

ous predicate-oriented systems [17, 19, 8, 28, 13, 22] are based on
language extensions, some of which are accompanied by a proto-
type implementation. Our decision to use a library is a pragmatic
one.

Developing a library is much easier than modifying or creating
a new compiler, not to mention the continuing work of adapting it
to new versions of evolving languages such as Java and C#. Use
of a library allows the software to remain compatible with existing
tools (IDEs, compilers, editors, etc.), and it is congruous with the
programmer’s knowledge and practices.

Choosing a library implementation over a language extension



// Statement represents the dynamic type
// definition for the statement hierarchy.
DynamicType Statement {

storageType storage = DataBase;
String tableName = TStatements;

}

Figure 3: Stylized dynamic type definition representing state-
ments in the MML programming language. For simplicity of
presentation, most figures use a simplified syntax that assumes
that predicate fields are built into the C# language. The actual
implementation is as a library (see Section 8), making the syn-
tax less convenient than that shown here.

has negative consequences as well. Using the library is more cum-
bersome. A library may suffer from worse performance than a lan-
guage implementation. The choice of a library also caused us to
restrict the expressiveness of the predicate fields. The predicates
are based on the value of a single field, and only changes to object
structure (not to object behavior as in predicate classes or predicate
dispatching) are supported.

As noted in Section 2, predicate fields can emulate subclassing,
and reflection can be used to respond to structure changes. One
of the contributions of our work is that the relatively impoverished
version of predicate fields that we implemented was nonetheless of
significant practical benefit, and was sufficient for the needs of a
substantial industrial project.

3.2 Defining dynamic objects
Our library supports the creation of dynamic objects, objects in

which each field is a predicate field. A dynamic object is an in-
stance of a dynamic type. Conceptually, the declaration of a dy-
namic type lists the (predicate) fields contained in each object of
the type. However, our library implementation uses distinct syntax
for type definitions, fields, field types, and predicates. Together,
these support declaration, creation, and use of dynamic types and
dynamic objects.

The following sections show how the four pieces (dynamic types,
fields, field types, and predicates) are used to create an automatic
statement, which is a statement in the MML programming language
(see Section 4.1) that can be executed without human interaction.
When the user defines an automatic statement, he must select a
device type, a command that is valid for this device type, and the
target device of this type.

3.2.1 Dynamic type declaration
Each dynamic object has a type, called its dynamic type; the dy-

namic types partition the set of all dynamic objects. The dynamic
type is stored in a dynamic object upon creation and is permitted to
change subsequently. The fields that belong to a dynamic type are
not listed in the dynamic type declaration, but are separately spec-
ified (Section 3.2.2), permitting predicate fields to be added to a
dynamic type without changing the type declaration.

In our case study, the experimental control system supports per-
sistent objects, so the dynamic type definition indicates where ob-
jects of the given type should be stored to and loaded from. Two
common choices for the storage location are a database table name
or an XML file name; the system also supports storage in memory.

Figure 3 gives an example of a stylized definition of the Statement
dynamic type.

3.2.2 Fields
A field definition contains the following information:

Fundamental information name, field type (see Section 3.2.3),

// The command field in an automatic statement
// contains the command that is sent to the device.
Field command
{

// Fundamental information
fieldType DeviceCommand;
pred PAutomaticCommand;
name = "Command"

// Persistence information
column = "CommandId";

// User interface information
shouldRaiseEvent = true;
category = "Device Information";
description = "Command sent to the device";
viewable = true;

// Optional information
defaultValue = nopCommand;

}

Figure 4: Stylized field definition.

predicate (see Section 3.2.4). The field exists in any object
for which the predicate is true.

Persistence information How to store to or load from a database.
Field values are automatically loaded and saved. The storage
information includes the column name, table name, foreign
key 1, and foreign key 2. The last three properties determine
the field’s storage location, when it is not stored in the object
table as defined in the dynamic type. See Section 8.2.

User interface information How to display, edit, and parse val-
ues. The user interface information includes category (used
to separate the fields into different sections), description, and
visibility. This user interface information cannot be speci-
fied in the field type, since the same field type might be used
for several fields, each of them has different user interface
properties; consider the String field type as an example.

Optional information default value, read-only, assignable-once (if
true, the field becomes read-only after it is set for the first
time), change notification (an object, such as a container, can
register to receive an event when a field value changes).

Figure 4 contains an example, the command field declaration.
An implementation could create and allocate a predicate field

lazily (only when it is needed); alternatively the field might always
be part of the object structure, but unavailable until the predicate is
satisfied [8]. Our library implementation allows both approaches,
storing fields either in the database or in memory. The values of
fields stored in the database are preserved over time. The predi-
cates control which of those values can be accessed. Fields stored
in memory are created and deleted when predicates’ satisfaction
changes and do not save their value over time.

3.2.3 Field types
Field types specify the type of the data that is stored in the field,

a class used to edit its value, and a class used to convert its value to
and from a printed representation.

As an example of a field type definition, consider the Device-
Command field type in Figure 5, which defines a field type for device
commands. A device command is used to abstract a method in the
device’s API.

As another example of customization of editors and converters,
we replaced the Boolean type default editor with a type editor that
lets the user choose from a list of native language words rather than



// FieldType Wrapper which allows a
// dynamic object to have dynamic
// command field.
FieldType DeviceCommand
{

// The Command class is an abstraction
// of a method in the device’s API.
type Command;
// The CommandEditor is a class which will
// query the object for its device type, then
// it will build and present the list of
// available commands for this device type.
editor Editors:CommandEditor;
// CommandConverter will convert the field
// enumerated value to a viewable command
// name and vice versa.
converter Converters:CommandConverter;

}

Figure 5: Stylized field type definition.

pred PStatement dynamicType = Statement;
pred PDevice dynamicType = Device;
pred PDeviceType dynamicType = DeviceType;
pred PCable dynamicType = Cable;
pred PDeviceCommand dynamicType = DeviceCommand;
pred PGroup dynamicType = Group;
pred PSetup dynamicType = Setup;

Figure 6: Stylized predicate definitions.

“true” or “false”. The converter was then used to convert true and
false to native language and back.

Field types are distinct from dynamic types (Section 3.2.1): we
made a simplifying implementation decision disallowing a field
from containing a dynamic object, and so one dynamic object can-
not directly refer to another. Nevertheless, fields in different dy-
namic objects can share the same storage location (such as a par-
ticular database table), thereby allowing an indirect connection be-
tween the objects. For example, if a statement’s device field refers
to a device in the database, then the device name could be changed
either in the statement, or in a dynamic object representing the de-
vice. Either modification will be reflected in the backing database
and in the other dynamic object.

3.2.4 Predicates
In our library, a predicate is constructed from a pair of a field

name and a value of the field’s type. Predicates are not arbitrary
boolean formulas. Our predicates can be used to capture any de-
sired property of dynamic objects, so the syntactic limitation is not
a semantic one.

This decision implies that developers can define a predicate on
every possible value of the object’s state. Setting a special field
name for the dynamic type allows us to define the group of pred-
icates shown in Figure 6; these predicates are used to define the
common structure of the type.

4. CASE STUDY: EXPERIMENTAL CON-
TROL SYSTEM

We performed a case study involving two systems that control
facilities for complex experiments. The two implementations serve
as command and control software for experiment-conducting facil-
ities. Their goal is to enable scientists and technicians to define,
control, execute, and examine these experiments. The experiments
demand control of complex events involving vast numbers of accu-
rate measurement devices and often very delicate equipment. The

1. Manual(“Input object serial number, or zero to stop”);
2. Setup(vacuum machine, MRM);
3. Manual(“Place object on scale”);
4. scale.Read();
5. Manual(“Place object on MRM”);
6. camera.Setup(1);
7. vacuum machine.Start();
8. If vacuum machine.status = on, then

(a) MRM.Release();
(b) camera.ReadPhotos();
(c) vacuum machine.Stop();

9. Goto step 1

Figure 7: Galileo’s free fall experiment, expressed in a variant
of the MML programming language. “MRM” stands for “me-
chanical release machine”.

experiments’ results must be saved. Those results are later pro-
cessed and analyzed by the experiments’ orderers.

Section 4.1 explains the abstraction that models an experiment
and the language in which users write experiments. Section 4.2
presents the high-level requirements and the relevant design deci-
sions used to meet those requirements. Section 4.3 discusses user
interaction with the system. Finally, Section 4.4 compares the sys-
tem to a programming language implementation.

4.1 Experiments and the MML language
An experiment consists of a set of devices and a sequence of op-

erations of those devices. Examples of devices are thermometers
and drill presses. Examples of operations are measuring the tem-
perature and drilling a hole, in addition to setting up the devices
with initial parameters and rudimentary data analysis.

The operations of an experiment are written in a language called
MML, or Mission Modeling Language. (The term “mission” is a
synonym for “experiment”.) MML includes statements that are ex-
ecuted automatically, statements that must be executed manually
(in which case MML prints a message and waits for a human op-
erator to confirm that the operation has been performed), and state-
ments that are executed semi-automatically. MML’s control struc-
tures include sequential composition, parallel composition, proce-
dure calls, conditional (if) statements, and limited support for it-
eration (loops), which is rarely necessary in our context. The C#
implementation of the MML programming language uses predicate
fields — though the MML language itself does not support predi-
cate fields.

To give a flavor of the MML language, Figure 7 shows how
Galileo’s free fall experiment might be expressed in MML. The
purpose of this experiment is to show that the rules of gravity apply
equally to all objects. The experiment is performed in a vacuum
and consists of dropping different objects from different locations
and measuring their trajectories and fall time. The weight, initial
height, and fall time of each object is measured and stored.

The list of devices (not shown) includes all the equipment that
participates in the experiment: a vacuum machine, a mechanical
release machine (MRM), a time-stamped camera, and a scale. Con-
sumable hardware (such as the objects that are dropped) is not con-
sidered part of the experiment definition nor included in the list of
devices.

4.2 Requirements and design
The key requirement for the experimental control system is adapt-

ability to physical hardware changes and replacements. New de-



vices are developed constantly; incorporating those devices into the
system should require no software changes in the experimental con-
trol system (but may require changes to experiments). In addition,
the system should give the users the ability to conduct an experi-
ment, repeat it, and run simultaneous experiments, as well as repeat
the same experiment steps with a different set of hardware. These
requirements were met by adopting two major design decisions.

The first design decision is the definition and development of a
Mission Modeling Language (MML) for writing experiments. The
system software controls and manages various experiments (“mis-
sions”) that take place simultaneously. Experiments expressed in
MML specify both system behavior and user interaction with the
system. MML was described in Section 4.1.

The second design decision is use of a highly configurable two-
level system architecture. The two levels of the system are a knowl-
edge level and an operational level. The operational level describes
the concrete model of the system, derived from the functional re-
quirements. The knowledge level contains the meta-model of the
system and defines the legal configurations of operational level ob-
jects. The knowledge level describes the physical world that should
be known to the system, including devices, device types, com-
mands, protocols, cables, and IO channels.

4.3 Users
The system serves three different user groups: Experiment De-

signers, Experiment Operators, and Knowledge Level Editors.
The Experiment Designer creates an experiment from require-

ments supplied by a domain expert. The Experiment Designer also
performs rudimentary analysis on the results to verify that the ex-
periment was executed correctly.

The Experiment Operator runs the experiment. His editing capa-
bilities are limited to skipping or re-executing statements and mak-
ing minor changes to the information sent to the devices. He cannot
make permanent changes to the experiment.

The Knowledge Level Editor is an electrical engineer respon-
sible for developing new hardware and drivers for the system. He
can edit the knowledge level in order to incorporate the new devices
into the system.

The user interface for the Experiment Designer and the Experi-
ment Operator is tree-based. The Experiment Designer adds new
statements to the statements tree and new devices to the devices
tree. Each element in the tree can be configured by a related prop-
erties form. The Experiment Operator can observe the properties
of the various items in the trees as well as the progress of the ex-
periment shown on the statement tree.

4.4 Programming language metaphor
The experimental control system can be viewed not only as a

command and control software for defining and controlling ex-
periments, but also as a programming language implementation
supporting persistent objects. Because none of the system’s users
is trained in computer science or programming, a typical editor-
compiler interface to MML would not be appropriate.

In the programming language metaphor, the Experiment Designer
is a programmer, and the Experiment Operator executes an exper-
iment in debug mode. The operational level of the architecture
(Section 4.2) is the analog of the development environment, editor,
compiler, linker, and executor. The knowledge level of the architec-
ture includes the type definitions, and the Knowledge Level Editor
defines new types. The developers used predicate fields to add the
MML statements definitions to the knowledge level.

Ordinarily, a programmer can change the type of a variable by
changing a declaration in a program. The Experiment Designer

can change types by using the tree-structured GUI to set the type
of an object. This change of type affects what fields exist in the
object. In the system, all objects are persistent (they are stored in a
database, for example), so the change of type must be reflected in
all accesses to the existing object rather than by exiting the program
and re-running it to create a new object.

5. IMPLEMENTATIONS
We built two implementations of the experimental control sys-

tem that satisfy the requirements of Section 4. The first imple-
mentation is in daily use at one experimental facility. The sec-
ond implementation is in incremental integration at a different fa-
cility and will eventually replace the first implementation. Re-
implementation took advantage of knowledge gained from the first
effort and permitted exploration of different design decisions, most
notably the use of predicate fields.

5.1 Implementation 1
It took almost fifteen man years to develop Implementation 1.

It was developed in Borland’s Delphi IDE [29] using the Object
Pascal programming language. Is was designed as a multi-tiered
application [18] composed from many distributed components re-
lying on Microsoft COM/DCOM technology [6, 10, 4]. This im-
plementation contains approximately 100,000 lines of code.

The project was divided into four clients: experiment editing,
experiment execution, knowledge level architecture, and results an-
alyzer. The defined experiments, the knowledge level, and the re-
sults are stored in the database. Their corresponding objects, re-
siding in the appropriate server components, are persistent objects
[25]. The implementation contained the following servers: device
engine, statement engine, result engine, experiment engine, and a
message dispatcher. The clients communicated with the appropri-
ate server to receive and send information about the persistent ob-
jects (statements, devices, experiments, etc). For example, the de-
vice engine component was responsible for supplying and editing
device information as well as using the device when the experiment
was activated.

The software system contained knowledge level capabilities that
enable the dynamic addition of new types of devices — with their
specific sets of protocols, commands, and I/O channels — as a plug-
in operation, without software changes or re-compilation. Let us
consider “oscilloscope” (in short, “scope”) as an example. A scope
is a measurement device; different scopes are manufactured by dif-
ferent companies, but since they are all made for the same purpose
they all share a basic set of commands such as: turn on/off, BIT
(built in test), read measurements. However, different scopes sup-
port different numbers of I/O channels, and some scopes offer more
advanced commands. The system is flexible enough to enable the
use of different kinds of scopes, the addition of new modern scopes
to replace old ones, and the utilization of the new options provided
by the modern equipment.

5.1.1 Deficiencies of Implementation 1
Implementation 1 is considered highly successful. It has been

used daily since 2001 to design and run many experiments. It trans-
formed the way that work was performed at the facility where it is
installed, and other facilities are eager to obtain it. The develop-
ment team won several company prizes for outstanding contribu-
tion to goals of a core division project.

While Implementation 1’s adaptability to anticipated changes is
a success, in retrospect its design unduly burdens users when adapt-
ing to other, unanticipated changes. An example for such a change
is adding a new device types that require system awareness of their



setups. This section discusses three design deficiencies that led to
the decision to use predicate fields for the development of Imple-
mentation 2.

First, each object in the user interface (statement, device, device
type, group, command, etc.) had a custom-made property page for
editing its information. User interface development took a signifi-
cant share of the development time, and it was difficult to integrate
new devices with unfamiliar editing information. For example, a
new form had to be developed (possibly inheriting and extending
an existing form) when adding a new statement type (a statement is
one step in an experiment, as described in Section 4.1), a new field
to an existing statement type, or a new device type with different
setup fields.

Second, changes to the structure of the statements required cross
cutting layer changes. As an example, consider adding a max repeat
field that limits the number of times the Experiment Operator can
repeat a statement. This modification results in changes to the
database, database connectivity layer, business logic, client to busi-
ness logic facade server side, client to business logic facade client
side, statement view object client side, and the statement abstract
form. This seemingly simple change required extensive developer
effort and expensive process before releasing a new version or even
a patch.

Third, the type of an object could not be changed. Suppose the
Experiment Designer added an automatic statement, then wanted
to change it to a manual statement. He would have to delete the
automatic statement and create a new manual statement in its place.
All the information in that statement is deleted and similar fields
must be set again. Other tools used for experiment design suffer
from the same problem [15].

5.2 Implementation 2
Implementation 2 was developed using Microsoft Visual Studio

.NET and the C# language [16, 20, 5]. The DCOM underlying
distribution layer was replaced with .NET Remoting [27, 21]. Al-
though the fundamental requirements were similar to the previous
project, Implementation 2 controls more, and more complicated,
hardware than Implementation 1, and it will eventually replace Im-
plementation 1. Management decided to develop Implementation
2 from scratch in the new language and environment, based on per-
ceived longevity of the development environment, availability of
libraries, and opportunities to improve the system’s design. Most
notably, Implementation 2 uses predicate fields.

The schedule of the project, which was dictated by external sources,
required starting development while most of the requirements (con-
trolled devices and experiments) were unknown or vague. A team
of five developers (two of whom, including the team leader, also
worked on Implementation 1) produced functionally equal to Im-
plementation 1 in less then two years. This decrease in develop-
ment time can be attributed to reusing knowledge learned from Im-
plementation 1, using a better development framework, and using
predicate fields to address some of the problems of Implementation
1. One design change is that whereas Implementation 1 is a pack-
age of four client programs, Implementation 2 consists of one client
with all the necessary functionality, in order to create a unified look
and feel.

5.2.1 Motivation for predicate fields
This section gives three motivations for the use of predicate fields.
First, we realized that all objects share the same characteristics

while being edited. Implementation 1 connected the user interface
tree’s nodes (statement, device, . . . ) with viewers of the appropri-
ate objects. However, it caused tight coupling between the objects

Figure 8: Example of the Visual Studio .NET editing concept.
The user is editing or browsing in the left frame. On the right
hand side is a property frame that shows the contents of the
currently selected object (or the mutual properties of several
selected objects). Each editable property provides a way to
change its value (selecting from a list, opening a new window,
writing text directly, . . . ).

in the user interface layer and the objects in the business logic layer
resulting in the cross cutting modification problem mentioned in
Section 5.1.1. The information required when editing an object
consists of four parts: the object data structure, the possible values
for each field in this structure, the storage location of each field, and
the connection between the different fields. This led us to design
a dynamic object, whose structure is defined by predicates on its
state. The fields carry all the information that is used to edit, save,
and load them. We have also decided to adopt the Visual Studio
.NET editing concept (see Figure 8). Every object that is selected
has the same property page created using a PropertyGrid gadget.
The PropertyGrid gadget queries the object about its fields using
reflection and presents them in a readable way to the user. Having
objects with similar interface greatly simplified the task of wrap-
ping those objects with an object that can be queried by a Prop-
ertyGrid. The outcome is a very homogeneous look and feel for
the user interface and greatly reduced user interface development
effort.

Second, the level of uncertainty in which the development team
had to work pushed us into generalizing beyond Implementation
1, which was itself highly flexible. Implementation 1’s knowledge
level included devices, device types, and commands. Using predi-
cates to emulate dynamic reclassification into subclasses allowed us
to move the statement hierarchy from the operational level into the
knowledge level. Predicate fields also enabled us to insert device
types’ user interface information into the knowledge level. More-
over, controlling the entire knowledge level with predicates allows
finer control over the operational level. For example, the devel-
oper can use a predicate to force the Experiment Designer to sup-
ply additional information when using a specific Scope X and a
different piece of information when using Scope Y. Therefore, the
augmented knowledge level is highly configurable and the level of
re-usability is increased. Finally, by having each field contain all
the knowledge needed to edit, load, and save it, the Knowledge
Level Editor can easily use the predicates to support new devices
which are combinations of the existing fields.

Third, using dynamic classification permitted us to improve the
user interface by allowing the designer to change the type of edited



objects without removing the old one and creating the new one.
The changed objects retain all their mutual information, saving the
Experiment Designer the trouble of supplying the same information
repeatedly.

5.2.2 Predicate Use
In Implementation 2, dynamic types, fields, field types, and pred-

icates, described in Section 3, were defined as part of the knowl-
edge level in the database. When the Experiment Designer is de-
signing the experiment, the Experiment Operator is viewing a run-
ning experiment, or the Knowledge Level Editor is modifying the
system’s knowledge of the physical world (Cables, Devices, . . . ),
the system instantiates objects with the appropriate dynamic type.
An object’s visible state is modified (or viewed) by the appropriate
user and when a change in the state causes predicates to be fulfilled
or unfulfilled, the object’s structure is updated.

The developers created dynamic types for all the different objects
used in viewing and editing the experiments and physical struc-
ture (Devices, Devices Types, Statements, Signals, Setups, Groups,
. . . ).

The system developers, not users, obtain the benefits of predicate
fields. The Knowledge Level Editor interface was created using
predicate fields and allows controlled changes to them. However,
the users are oblivious to the existence of predicate fields.

6. EXAMPLE USES OF PREDICATE FIELDS
We will examine the use and effects of the predicate field’s li-

brary through several examples. In Section 6.1, an Experiment
Designer modifies an experiment. In Section 6.2, a developer aug-
ments the statement hierarchy with an additional field and exercises
fine-grained control over the data supplied by the Experiment De-
signer.

6.1 Experiment Designer interaction
Using the partial definitions in Figure 9, we will observe two

modifications to an existing experiment: adding a statement whose
purpose is to send the automatic start command to vacuum machine
#2, and replacing a manual statement with an automatic statement.

6.1.1 Creating and specializing a new object
The Experiment Designer starts the process by selecting “add

new statement” from a pop-up generated from the selected state-
ment. The newly created object satisfies only the predicate for be-
ing a statement, PStatement. Since the predicate is satisfied, two
fields, StatementType (used to imitate sub-typing) and name, are
added (exposed) to the dynamic object. Those fields are visible to
the Experiment Designer in the user interface.

When the Experiment Designer sets the statement type to auto-
matic statement, a new predicate PAutomaticStatement is satis-
fied and two new fields, device type and number of iterations, are
added to the dynamic object (and to the statement properties form).
The Experiment Designer can now set the device type to vacuum
machine (chosen from a list of device types) and since a new pred-
icate is fulfilled the command field is added to the statement. The
designer can select the start command from the list of vacuum ma-
chine commands and vacuum machine #2 from the list of available
vacuum machines, completing the construction of the statement.

6.1.2 Changing the dynamic type of an object
Suppose the Experiment Designer wishes to change a manual

statement to an automatic statement in an experiment.1 When the

1We started integrating the system before all the hardware was de-

enum StatementType {ManualStatement, AutomaticStatement};
pred PStatement dynamicType = Statement;
pred PManualStatement statementType = ManualStatement;
pred PAutomaticStatement statementType = AutomaticStatement;
pred PAnyDeviceType deviceType != null;

field StatementType statementType when@PStatement;
field string name when@Pstatement;
field DeviceType deviceType when@PAutomaticStatement;
field IntType numOfIterations when@PAutomaticStatement;
field Command command when@PAnyDeviceType;
field Device device when@PAnyDeviceType;

Figure 9: Definition of fields, field types, and predicates used
to demonstrate specializing a statement and changing a state-
ment’s type.

Experiment Designer changes the type of the statement from man-
ual to automatic, the system detects that the PManualStatement
predicate is no longer satisfied and that the PAutomaticStatement
predicate is satisfied. The system removes accessibility to all the
fields connected with PManualStatement, possibly causing more
predicates to be unsatisfied. Then, the system adds all the field
controlled by the newly satisfied predicate PAutomaticStatement.
It is important to realize that those fields which are shared by both
statement types will retain their value over this exchange, even if
they are eliminated and then revived. The reason is that they are
saved in the same place in the database.

6.2 Developer interaction
As an example of the developer’s interaction consider augment-

ing the statement hierarchy with the max repeat field discussed in
Section 5.1.1.2 The Experiment Designer uses this field to limit
how many times a certain statement can be executed by the Exper-
iment Operator. Three changes to the system are required.

First, the developer adds a max repeat field to the knowledge
level. The new field’s type is unsignedAndInfinity(this field
type allows the infinity value as well as any positive integer) and its
predicate is the statement predicate. The default value for this field
is infinity (for backward compatibility).

Second, the developer creates a storage location for the new
value in the database. It can be an additional column in the state-
ment table or in any table directly connected (by foreign key rela-
tion) to the statement table. Since the last two modifications are
done to the knowledge level, they can even be done while an Ex-
periment Designer is working. The Experiment Designer will see
this new field and will have the option to change its value.

The third change is done to the code. The new field cannot be
used in an automated way (presenting a description, sending setup
to the device) but requires behavior changes. The developer modi-
fies the execute method of the statement class (a real type) residing
in the logic tier to count the number of times it has been executed,
prohibiting execution after max repeat times.

6.2.1 Fine-grained control

veloped. For hardware with known interface, we connected the
device’s commands to the null device driver until the device driver
was developed. For devices with unknown interface, the Experi-
ment Designer used manual operations as placeholders for the real
operations. When the specific device type was incorporated into
the system, the Experiment Designer replaced the manual state-
ment with the appropriate automatic command.
2This was not real a modification in Implementation 2, as it was
part of its initial design. However, this modification was a user-
requested change to Implementation 1, which resulted in many
cross-cutting modifications, and partly triggered the use of predi-
cate fields.



Predicate fields support fine-grained control over objects. As an
example, consider the case where developers were asked to help the
users detect power failures in the facility. The request was simple:
each read-results statement sent to scope #3 needed to be marked by
a unique number set by the Experiment Designer. The solution was
equally simple: the developers added a predicate for the specified
device (device = scope #3) and a temporary field which appeared
only when this predicate is satisfied (scope #3 is chosen). Avoiding
setting a default value for this field forces the Experiment Designer
to set a value in this field when it is part of the object.

7. EXPERIENCE
In this section, we discuss the experience gained by using pred-

icate fields in our implementation. We offer insight into the tech-
nique’s strengths and weaknesses as well as the process the devel-
opers and (affected) users went through from resentment to accep-
tance.

Section 7.1 discusses the effects of the library on developers us-
ing the dynamic objects. In Section 7.2 we observe the initial neg-
ative reaction of the developers to the library, and speculate on its
origin. Section 7.3 demonstrates the acceptance of the library by
the developers. Finally, Section 7.4 summarizes the limitations of
our library and the disadvantages of using it.

7.1 Developers using the library
User interface developers had to interact with the dynamic ob-

jects. A dynamic object provides a simple interface to query the
values of its fields. In addition, it exposed events for some of the
fields. Those events are fired when the corresponding field’s value
is changed. The developer only had to instantiate the object (with
the appropriate dynamic type), and possibly choose a storage loca-
tion. Finally, the developer can pass the dynamic object to a wrap-
per object that can be used for reflection (for example passing it
to PropertyGrid gadget for editing). Those developers reported that
due to its simple interface the dynamic objects were easily used and
the result was a significant decrease in development time. Some of
the developers were even surprised by the ease and quickness of the
development process.

7.2 Modifying the knowledge level
Developers adding support for new requirements and features

had to modify the dynamic types (rarely), fields, field types, and
predicates (more frequently). These modifications demanded un-
derstanding the interaction between the different data structures.
Adding new predicates and fields and modifying existing ones was
initially difficult for most of the developers. This initial difficulty
can be attributed to five factors.

1. Using a declarative approach. Since using predicate fields
in our library implies using a declarative approach rather
than the usual procedural approach, developers had to change
their way of thinking. Combining object-oriented develop-
ment with the predicate-oriented approach is somewhat simi-
lar to switching from procedural languages to object-oriented
ones. In addition, the declarative approach can make it harder
to understand the behavior of specific components.

2. Far-reaching effects. Knowledge level modifications have
far-reaching effects. This combined with the intrinsic type
un-safety (objects changing their type dynamically) of the
dynamic objects, occasionally caused unexpected system be-
havior following changes to the predicate fields. As exam-
ples, the developers observed that certain fields failed to ap-

pear where they should, or the system would report3 many
instances of the “field not found” run-time exception. The
common practice was to put the blame on the predicate fields
library until the actual problem was found.

3. Modifications done directly in the database. Until proper
tools had been developed, knowledge level modifications were
done directly into the database. A developer making the
modifications had to visualize in his head the connections be-
tween the different fields, field types, and predicates. Most
developers found it to be very annoying.

4. Predicate fields are implemented as a library, rather than as
a language extension. Defining fields and predicates is more
cumbersome, compared to regular classes. The software was
more verbose and thus less readable. Finally, performance
was affected by calculating predicates and accessing fields.

5. Type safety problems. Objects appear to change their type
dynamically. Combined with the library implementation, static
type checking is very hard. Consider the following exam-
ple for type unsafety. Observe Figure 11. In our system
the name field of o is accessed with the s["name"] com-
mand. The underlying assumption is that o has a field named
name. Since this assumption can’t be verified until run time,
static type checking cannot be done. We propose switching
to the Smalltalk solution of dynamic type safety verification
by writing many tests cases. We could create a framework to
allow the developer to specify assumptions about the system
and objects’ interaction. For example, as long as a statement
has a device type field, it should also have a command field.

7.3 Developer reactions
Whereas the developers initially disliked the predicate fields li-

brary, all of them reported that once they became familiar with
defining predicates and fields (usually after the first two or three
predicates they defined), they were able to proceed with ease. They
also found out that their perspective toward designing the user in-
terface has changed and noted that one result of using the predicate
fields was that almost no custom forms had to be built.

For example, the development team had to support a require-
ment for changing objects’ visibility and modifiability in the differ-
ent contexts — for example, prohibiting the user from making com-
mand changes when running an experiment while allowing him to
make setup changes. We added contexts and information about nor-
mal and unusual field behavior in the different contexts. Using this
solution it took only a couple of days to support the requirement.

Another developer had a task to design a client for the knowl-
edge level modifications done by the Knowledge Level Editor. This
client is used to add new device types into the system, and other
amendments in the system’s physical world knowledge. The de-
veloper suggested that using custom-made wizards would be easily
implemented and the resulting user interface would be clearer. Af-
ter some bitter arguments, the development team decided to imple-
ment the wizards using the predicate fields library with a slightly
different version of the PropertyGrid gadget. Some developers
found it to be an unexpected use of the predicate fields library.
However, the implementing developer, who had initially opposed
the proposal, reported that in retrospect it was much easier and
more general to implement it with the library.

3The system contained most thrown exceptions, allowing the users
to recover and continue their work in the face of certain types of
errors.



Since our development methodology is incremental, we post-
poned the signals package development to late in the development
process. Signals is a rather large package that took extensive ef-
forts to implement in Implementation 1. A signal is the output
of a measurement device and constitutes the basis for the gath-
ering, presentation, and analysis of the results. The complexity
of signals lies in automatic switching (the system should deduce
switching from the user’s chosen hardware) and results processing
(measurement-devices results should be separated into the signals
granularity, stored, analyzed, and retrieved in this level). The sig-
nals package was inserted in a relatively small effort (compared to
the previous implementation) using predicate fields to control the
amount of signals each measurement device supports in addition to
being an integral part of the result analyzer.

7.4 Limitations
While using predicate fields, we have observed some limitations

and pitfalls. Most problems result from the library syntax and
would have had less impact had predicate fields been implemented
as a language extension.

First, since system behavior heavily depends on meta data, changes
to the meta data can have far-reaching affects. It was often the
case that a careless developer made a seemingly simple change to
the predicate fields definitions, only to discover that the system
had become unusable. This requires careful modification, well-
documented knowledge level structure, and unit testing.

Secondly, part of the resulting software can be harder to under-
stand. Since we are using declarative definitions, it is very hard
to grasp a component’s full structure (even if we did not take into
account dynamic structure modifications).

Thirdly, implementing predicate fields as a library rather than as
a language extension (as is the case with all previously predicate-
oriented programming proposals) can cause the software to be less
readable. It can also incur some performance overhead when modi-
fying the object structure and accessing fields within the object, but
this overhead is negligible since dynamic objects are used primarily
in the user interface.

Lastly, since types are changed dynamically, type safety cannot
be guaranteed. However, developers can use the proposed testing
scheme to transform their beliefs about the correlation between the
object’s state and its set of fields, into tests.

8. LIBRARY LOW-LEVEL
IMPLEMENTATION

We now summarize the key capabilities that are provided by the
predicate fields library. The dynamic object abstract class is Dy-
namicObject. Its interface allows adding and removing fields as
well as registering for the field’s value change event. The extending
classes include DatabaseDynamicObject, MemoryDynamicObject,
and XMLDynamicObject, each loading and storing the information
from a different location. The FieldsAdapter class is responsible for
adding and removing fields in the dynamic object as the predicates
become satisfied or unsatisfied. ObjectPresenter is a wrapper class
that serves as the mediator between the dynamic object and the
PropertyGrid (a .NET user interface gadget that uses reflection to
provide a user interface for browsing the properties of an object).
The ObjectPresenter appears to the PropertyGrid to be an object
corresponding to the current contents of the relevant dynamic ob-
ject. The ObjectsBinder allows the user to simultaneously edit the
similar structure of a group of objects.

8.1 Library code sample
Figure 10 contains a part of the dynamic object interface. A dy-

namic object has the C# type DynamicObject. The DynamicOb-
ject constructor takes as an argument the dynamic type, and sets
the dynamic object’s type to its argument. The DatabaseDynamic-
Object implements a dynamic object that is loaded from and saved
to the database. Its constructor has an additional argument, the
ID of the object. This ID may be an ID of an existing object
(which will be loaded from the database) or a fresh ID created by
the system (indicating where to store the object). The dynamic
object interface IDynamicObject contains a notification mecha-
nism, which allows a using container to be notified when a field
value is changed.

Figure 11 demonstrates using a dynamic object in a tree of state-
ments. The statements are statements in the MML programming
language (Mission Modeling Language, see Section 4.1), and the
tree is the user interface to that programming language (see Sec-
tion 4.3).

Since the MML statements are persistent in a database, the state-
ment ID (either an existing statement to be loaded, or a new ID
created by the system) is passed to the constructor of DatabaseDy-
namicObject. When the new dynamic object is created the predi-
cate (PStatement) is satisfied, causing the name field to be added
to the object. Also, when the user selects a node (in the state-
ments tree), the tree OnSelect method wraps the contained dy-
namic object with an object of type ObjectsPresenter. The
OnSelect method then passes the ObjectsPresented to a Prop-
ertyGrid gadget that uses reflection to present the object’s fields to
the user.

8.2 Field storage location
This section summarizes how our library determines the storage

location for fields in a dynamic object. The dynamic objects can be
loaded from and saved to persistent storage. For an object stored in
the database, the table used to store it is found in the dynamic type
definition. When a field is stored to or loaded from the database, the
object’s ID is used to find the appropriate row, and the field’s col-
umn is used to find the correct column for the field’s value. How-
ever, some fields have to be saved in tables other than the object’s
table. For example, the Knowledge Level Editor (Section 4.3) can
define commands on groups of devices. Since the correlation be-
tween devices and groups is many-to-many, this correlation is saved
in its own table. Therefore, when a dynamic object’s device-group
field needs to be loaded, the previous suggested method fails.

We solved this problem by adding information to determine stor-
age in a table connected (by a foreign key relation) to the object
table. (This seems to be enough for our purposes. In the future, it
may be valuable to allow storing and loading object’s fields from a
table connected with a path of arbitrary length to the object table.)
This information consists of two column names and a table name
added to the field’s definition. As shown in Figure 12, the library
locates the additional row (the row in the second table, which con-
tains the object’s data) by searching the second table (found in the
field’s definition) for a value found in the object row (a row con-
taining the object data in the object’s main table, taken from the
dynamic type).

9. RELATED WORK
Our work is the first, to our knowledge, to evaluate predicate

fields or other predicate-oriented programming techniques in a sub-
stantial real-world application. However, the concepts are not new
and have been developed by previous researchers.



// This delegate define the
// signature of an event which
// is thrown will a dynamic field
// changes its value.
public delegate void FieldChangedEventHandler

(object sender, string fieldName,
object oldValue, object newValue);

// The root of the Dynamic Objects inheritance tree.
// Instances of IDynamicObject may contain
// predicate fields.
public interface IDynamicObject
{

event FieldChangedEventHandler
FieldValueChanged;

void AddField(string fieldName,
object defaultValue);

void RemoveField(string fieldName);
bool FieldExists(string fieldName);

object this[string fieldName] {
get; // use default getter
set; // use default setter

}
DynamicType dynamicType {

get;
}

}

// Provides implementation for common methods
// for the DynamicObjects Hierarchy
public class DynamicObject: IDynamicObject
{

public DynamicObject(DynamicType dynamicType) {
this.dynamicTypeId = dynamicType

}
}

// A persistent dynamic object that is loaded
// from and saved to a database.
public class DatabaseDynamicObject : DynamicObject
{

public DatabaseDynamicObject(int id,
DynamicType dynamicType): base(dynamicType) {
this.id = id;

}
...

}

Figure 10: C# code for the dynamic object interface of the pred-
icate fields library.

Most work on enhancing object-oriented languages with predi-
cates has focused on the dispatch mechanism, which gives a way
for different objects to respond differently to a particular method
invocation; examples include predicate dispatching and predicate
classes. By contrast, predicate fields give a way for different ob-
jects to have different fields at run time: the structure, not the be-
havior, of objects is dictated by run-time values. Predicate fields
can be used to simulate aspects of predicate classes and predicate
dispatch, and that has been a common use for them (including in
our case study).

Predicate classes [8] support a form of automatic, dynamic clas-
sification of objects. They provide the functionality of predicate
fields; additionally, they permit methods to specialize on the iden-
tity or state of an argument, in addition to the receiver’s type. An
object has the type of a predicate class if the object’s state satis-
fies the class’s predicate. A predicate is an arbitrary boolean ex-
pression, including subtype checks that permit emulating single or
multiple dynamic dispatch. As in our implementation, objects re-

// A tree of MML programming language statements
// is displayed in the MML user interface.
Class StatementsTreeView : TreeView
{

// Create a dynamic object for a statement
// and connect it to the appropriate node.
public newStatement(TreeNode node,

int statementId){
// In the stylized syntax of figures 1-6, as
// would be used in a language-based
// implementation of predicate fields, the
// body of this method would be:
// IDynamicObject o =
// new Statement(statementId);
// node.tag = o;
// o.name = "new statement";
// o.FieldValueChanged +=
// new FieldChangedEventHandler(Refresh);
IDynamicObject o =
new DatabaseDynamicObject(statementId,

Statement);
// Connect the object to its node in the UI.
node.tag = o;
o["name"] = "new statement";
o.FieldValueChanged +=
new FieldChangedEventHandler(Refresh);

}
public event Refresh(object sender,

string fieldName,
object oldValue,
object newValue){

... // Refresh the tree view in the UI.
}
// This method is called when the
// user selects one of the tree nodes.
public OnSelect(TreeNode n){

// Present the selected statement to the user.
propertyGrid.selected =
new ObjectsPresenter(n.tag);

}
PropertyGrid properyGrid;

}

Figure 11: Using a dynamic object in the user interface devel-
opment. This code demonstrate the creation of the statements
dynamic objects in a tree of statements.

serve space for any fields that might be inherited from a predicate
object, and the value in such a field persists even when the control-
ling predicate evaluates to false and the field is inaccessible.

Classifiers in Kea [17, 19, 23] are a previous, more limited mech-
anism. Kea classifiers automatically determine the effective type of
an object, which can affect dispatching. However, Kea is a func-
tional language, so no dynamic reclassification ever occurs. (The
same is true of Views [32], which offer different observer methods
on a single unchanging object.) Furthermore, Kea classifiers are de-
termined by the value of a single enumerated-type attribute, or by
explicit instantiation of a particular subclass. Our implementation
is similar, but permits classification based on the value of a field of
arbitrary primitive or string type. CLOS [2] and Dylan [1] are even
more limited: dispatching can depend on the identity of an argu-
ment, but cannot easily depend on a more general condition of an
argument. Objects in the Self language [31] have an explicit parent
pointer that can be reassigned at run time, permitting the effective
superclass of an object to change.

Other research focuses on making dispatching more efficient with-
out affecting the object’s representation. Multiple dispatch (also
called multi-method dispatch) [3, 7, 12, 11] permits dispatching to
depend on the run-time classes of multiple arguments, not just the



Figure 12: Finding a field’s database location, using the table
information from the dynamic type and the ID of the object, in
addition to the foreign keys and the column name in the field’s
definition.

receiver. Predicate dispatching [13, 9, 30, 26, 22] permits arbitrary
boolean predicates to control dynamic dispatch; logical implication
between predicates is the overriding relationship. Predicate dis-
patching generalizes object-oriented single and multiple dispatch,
ML-style pattern matching, predicate classes, and classifiers; how-
ever, it does not directly support predicate fields. Millstein [22]
gives the most extensive previous evaluation of predicate-oriented
programming, showing that predicate dispatching can reduce an
800-line program to 700 lines. The work of Millstein et al. [11,
22] also gives a modular static type system for an expressive lan-
guage; other approaches, including our own, rely on dynamic type
checking, which has the disadvantage of revealing errors too late.

10. CONCLUSIONS
We have presented an implementation of predicate fields as a li-

brary, and a case study in which the predicate fields where used
pervasively in a 100,000-line system. Developers found predicate
fields useful in practice. The library is used successfully and in-
tensively in a project with very tight deadlines. This case study
provides concrete evidence that other practitioners should try pred-
icate fields, and that researchers should continue to refine designs
and implementations.

In the case study, developers used predicate fields to support
greater software flexibility, both for themselves and for power users
(Knowledge Level Editors). Predicate fields gave developers greater
control over objects, allowed fined-grained modifications to spe-
cific fields, and provided a declarative approach to defining object
structure, which permitted changes to be easily reflected through-
out the system.

Predicate fields were particularly useful in providing a uniform
interface to an arbitrary (and dynamically changing) number of
possible object structures, which was achieved through a combi-
nation of reflection and treating dynamic objects (created by the
library) as real C# objects. Our experience suggests that predi-
cate fields may be particularly useful in projects with an extensive
user interface which contains many objects organized hierarchi-
cally. Furthermore, predicate fields are a good match for projects
in which requirements (and persistent objects) change frequently,
because they permit both the code and the objects themselves to be
easily adapted to new circumstances.

Using predicate fields, developers were able to model real-world
objects (which appear to have different attributes in different cir-
cumstances, or whose structure changes over time) in a simple and
natural fashion. The alternative — employing complex design pat-
terns to capture this information — is less attractive.

Our predicate fields implementation has a number of limitations:
it is implemented as a library rather than integrated with the pro-
gramming language; it does not support predicate dispatching or

predicate classes; the syntax for predicates is very limited; and
it uses dynamic type-checking, giving the possibility of run-time
type errors. Despite these limitations, the implementation was suf-
ficiently powerful to solve the problems encountered in building
the industrial control system, and the developers did not feel that
(for example) lack of support for dynamic behavior modification of
objects (predicate dispatch) was a significant hindrance. This result
is suggestive regarding how much linguistic power and complexity
is desirable in practice.

The case study also revealed some potential downsides of using
predicate fields, some of which are consequences of the implemen-
tation and some of which are inherent to the use of predicate fields.
Language and tools support are important in reaping the potential
benefits of predicate fields. For instance, it would have been bet-
ter to generate most of the user interface automatically, and better
syntax checking would have been welcome. The declarative nature
of the predicates was useful in propagating changes throughout the
system, but the same characteristic (non-local control) could make
component behavior difficult to understand. The biggest remaining
problem is lack of static type safety. In the absence of integration
into a widely accepted programming language implementation (a
distant prospect), we have proposed a testing mechanism that may
mitigate this problem.

Acknowledgments
Our research would not have been possible without the assistance
of Shoshana Avraham who contributed many design ideas for the
industrial control system. We also thank Galia Shlezinger, Carmit
Zadok, Meister Lior, and Dafna Folkman for the development of
Implementation 2. We used Tony Allowatt’s “Bending the .NET
PropertyGrid to Your Will” (http://www.codeproject.com/
cs/miscctrl/bending_property.asp) when creating wrapper
objects.

11. REFERENCES
[1] Apple Computer. Dylan, an Object-Oriented Dynamic

Language, 1992.
[2] D. G. Bobrow, L. G. DeMichiel, R. P. Gabriel, S. E. Keene,

G. Kiczales, and D. A. Moon. Common Lisp Object System
specification. ACM SIGPLAN Notices, 23(SI):1–145, 1988.
Special issue: X3J13 Document 88-002R.

[3] D. G. Bobrow, K. Kahn, G. Kiczales, L. Masinter, M. Stefik,
and F. Zdybel. CommonLoops: Merging Lisp and
object-oriented programming. In Conference on
Object-Oriented Programming Systems, Languages and
Applications, pages 17–29, Portland, OR, USA, June 1986.

[4] D. Box. Essential COM. Addison-Wesley Professional,
Boston, MA, 1997.

[5] E. Brown. Windows Forms Programming in C#. Manning
Publications, Greenwich, CT, 2002.

[6] K. Brown, T. Ewald, C. Sells, and D. Box. Effective COM:
50 Ways to Improve Your COM and MTS-based Applications.
Addison-Wesley Professional, Boston, MA, 1999.

[7] C. Chambers. Object-oriented multi-methods in Cecil. In
ECOOP ’92, the 6th European Conference on
Object-Oriented Programming, Utrecht, The Netherlands,
June 29–July 3, 1992.

[8] C. Chambers. Predicate classes. In ECOOP ’93, the 7th
European Conference on Object-Oriented Programming,
pages 268–296, Kaiserslautern, Germany, July 28–30, 1993.

[9] C. Chambers and W. Chen. Efficient multiple and predicated
dispatching. In Object-Oriented Programming Systems,



Languages, and Applications (OOPSLA ’99), pages
238–255, Denver, Colorado, Nov. 3–5, 1999.

[10] D. Chappell. Understanding ActiveX and OLE. Microsoft
Press, Seattle, WA, 1996.

[11] C. Clifton, G. T. Leavens, C. Chambers, and T. Millstein.
MultiJava: Modular open classes and symmetric multiple
dispatch for Java. In Object-Oriented Programming Systems,
Languages, and Applications (OOPSLA 2000), pages
130–145, Minneapolis, MN, USA, Oct. 15–19, 2000.

[12] E. Dujardin, E. Amiel, and E. Simon. Fast algorithms for
compressed multimethod dispatch table generation. ACM
Transactions on Programming Languages and Systems,
20(1):116–165, Jan. 1998.

[13] M. D. Ernst, C. S. Kaplan, and C. Chambers. Predicate
dispatching: A unified theory of dispatch. In ECOOP ’98,
the 12th European Conference on Object-Oriented
Programming, pages 186–211, Brussels, Belgium,
July 20-24, 1998.

[14] E. Gamma, R. Helm, R. E. Johnson, and J. Vlissides. Design
Patterns. Addison-Wesley, Reading, MA, 1995.

[15] Geotest – Marvin Test Systems, Inc, CA. ATEasy 3.0
Reference Manual, 2000.

[16] J. Glynn, C. Torok, R. Conway, W. Choudhury, Z. Greenvoss,
S. Kulkarniq, and N. Whitlow. Professional Windows GUI
Programming Using C#. Apress, Berkeley, CA, 2002.

[17] J. Hamer, J. Hosking, and W. Mugridge. A method for
integrating classification within an object-oriented
environment. Technical Report 48, Department of Computer
Science, University of Auckland, Oct. 1990.

[18] E. Harmon. Delphi COM Programming. New Riders
Publishing, Indianapolis, IN, 2000.

[19] J. Hosking, J. Hamer, and W. Mugridge. Integrating
functional and object-oriented programming. In Technology
of Object-Oriented Languages and Systems TOOLS 3, pages
345–355, Sydney, 1990.

[20] M. MacDonald. User Interfaces in C#: Windows Forms and
Custom Controls. Apress, Berkeley, CA, 2002.

[21] M. MacDonald. Microsoft .NET Distributed Applications:
Integrating XML Web Services and .NET Remoting.
Microsoft Press, Seattle, WA, 2003.

[22] T. Millstein. Practical predicate dispatch. In Object-Oriented
Programming Systems, Languages, and Applications
(OOPSLA 2004), pages 345–364, Vancouver, BC, Canada,
Oct. 26–28, 2004.

[23] W. B. Mugridge, J. Hamer, and J. G. Hosking.
Multi-methods in a statically-typed programming language.
In ECOOP ’91, the 5th European Conference on
Object-Oriented Programming, pages 307–324, Geneva,
Switzerland, July 17–193, 1991.

[24] B. A. Myers and M. B. Rosson. Survey on user interface
programming. In CHI ’92: Proceedings of the SIGCHI
conference on Human factors in computing systems, pages
195–202. ACM Press, 1992.

[25] C. Nock. Data Access Patterns: Database Interactions in
Object-Oriented Applications. Addison-Wesley Professional,
Boston, MA, 2003.

[26] D. Orleans. Incremental programming with extensible
decisions. In Proceedings of the First International
Conference on Aspect-Oriented Software Development,
pages 56–64, Enschede, The Netherlands, Apr. 24-26, 2002.

[27] I. Rammer. Advanced .NET Remoting (C# Edition). Apress,
Berkeley, CA, 2002.

[28] A. Taivalsaari. Object-oriented programming with modes.
Journal of Object-Oriented Programming, pages 25–32,
June 1993.

[29] S. Teixeira and X. Pacheco. Delphi 5 Developer’s Guide.
Sams, Scotts Valley, CA, 1999.

[30] A. Ucko. Predicate dispatching in the Common Lisp Object
System. Technical Report 2001-006, MIT Artificial
Intelligence Laboratory, Cambridge, MA, June 2001.

[31] D. Ungar and R. B. Smith. Self: The power of simplicity. In
Conference on Object-Oriented Programming Systems,
Languages and Applications, pages 227–242, Orlando, FL,
USA, Oct. 1987.

[32] P. Wadler. Views: A way for pattern matching to cohabit
with data abstraction. In Proceedings of the Fourteenth
Annual ACM Symposium on Principles of Programming
Languages, pages 307–313, Munich, Germany, Jan. 1987.


