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Abstract—During software development, the sooner a developer learns how code changes affect program analysis results, the more 
helpful that analysis is. Manually invoking an analysis may interrupt the developer’s workflow or cause a delay before the developer 
learns the implications of the change. A better approach is continuous analysis tools that always provide up-to-date results. We present 
Codebase Replication, a technique that eases the implementation of continuous analysis tools by converting an existing offline analysis 
into an IDE-integrated, continuous tool with two desirable properties: isolation and currency. Codebase Replication creates and keeps 
in sync a copy of the developer’s codebase. The analysis runs on the copy codebase without disturbing the developer and without 
being disturbed by the developer’s changes. We developed Solstice, an open-source, publicly-available Eclipse plug-in that 
implements Codebase Replication. Solstice has less than 2.5 milliseconds overhead for most common developer actions. We used 
Solstice to implement four Eclipse-integrated continuous analysis tools based on the offline versions of FindBugs, PMD, data race 
detection, and unit testing. Each conversion required on average 710 LoC and 20 hours of implementation effort. Case studies indicate 
that Solstice-based continuous analysis tools are intuitive and easy-to-use.
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1 INTRODUCTION

WHEN a developer edits source code, the sooner the
developer learns the changes’ effects on program

analyses, the more helpful those analyses are. A delay can
lead to wasted effort or confusion [6], [53], [65]. Ideally, the
developer would learn the implications of a change as soon
as the change is made.

A few analysis tools already provide immediate feedback.
IDEs such as Eclipse andVisual Studio continuously compile
the code to inform developers about a compilation error as
soon as a code change causes one. Continuous testing
informs the developer as soon as possible after a change
breaks a test [65]. Speculative conflict detection informs the
developer of a conflict soon after the developer commits con-
flicting changes locally [11]. Speculative quick fix informs
the developer of the implications of making a compilation-
error-fixing change even before the change takes place [58].

Unfortunately, most analysis tools are not designed
to continuously provide up-to-date results. Instead, a devel-
oper may need to initiate the analysis manually.1 To ease
converting these offline analysis tools into continuous

analysis tools [16] that run automatically and always provide
up-to-date results, we introduce Codebase Replication.

After computing analysis results, a continuous analysis
tool may indicate that information is available, display the
analysis results, or prompt other relevant analyses or tools to
run. Some analyses benefit more than others from continuous
execution. For example, a fast continuous analysis provides
more frequent and earlier feedback than a slow continuous
analysis. Even for long-running analyses, continuous execu-
tion could provide results to the developer after an external
interruption, such as receiving a phone call. This is sooner
than the developer would otherwise learn the results, and,
again, without requiring the developer to initiate the analysis.

Our goal is not to make analyses run faster nor incremen-
tally, but to make it easy to run themmore frequently and to
simplify the developer’s workflow—all without requiring a
redesign of the analysis tool. Research that makes analyses
run faster, including partial and incremental computation,
is orthogonal to our work.

Making an analysis continuous is challenging. This
explains why few continuous analyses exist, despite their
benefits. Two major challenges are isolation and currency.
Isolation requires that (1) the analysis should not prevent
the developer from making new changes, and code changes
made by an impure (side-effecting) analysis should not alter
the code while the developer is working, and (2) developer
edits should not make results of an ongoing analysis poten-
tially stale. Currency requires that (1) analysis results are
made available as soon as possible, and (2) results that are
outdated by new developer edits are identified as stale.

Codebase Replication addresses these challenges by
employing four principles:

1) replication—keeping a separate, in-sync copy of the
developer’s codebase on which the analysis executes,

1. Only 17 percent of Eclipse plug-ins listed on GitHub that imple-
ment analyses are continuous and reactive to the developer’s latest
changes; see Section 3.1.
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2) buffer-level synchronization—ensuring that the analy-
sis has access to the latest developer edits,

3) exclusive ownership—allowing analyses to request
exclusive write access to the copy of the developer’s
codebase, and

4) staleness detection—identifying results made stale by
new developer changes.

The key idea underlying Codebase Replication is to cre-
ate and maintain an in-sync copy of the developer’s code-
base. This allows the underlying offline analysis to run on
the copy codebase without the developer’s changes affect-
ing analysis execution. Further, if the analysis needs to alter
the copy codebase, it can do so without affecting the devel-
oper’s codebase and without distracting the developer. The
offline analysis does not need to make a fresh copy of the
code before each execution (which would cause significant
delay) because the copy codebase is always in sync.

Existing analysis automation techniques fail to achieve
simultaneous isolation and memory-change currency. Build
tools such as Ant [1] and Maven [2] can be automated to
achieve file-change currency, but they do not achieve isola-
tion since the developer and the analysis work on the same
codebase. These build tools could create a separate copy of
the codebase and achieve isolation in the same way as inte-
gration servers, such as Hudson [44] and SonarQube [73],
but such an approach cannot achieve memory-change cur-
rency: build tools can only access the code saved to disk,
whereas integration servers can only access the latest ver-
sion control commit. Codebase Replication enables isolated
memory-change-triggered continuous analyses without
increasing implementation complexity.

If the developer edits the code while the analysis is
running, Codebase Replication can choose from a variety of
reactions: terminate and restart the offline analysis so that the
produced results are always accurate; defer propagating the
developer’s edits to the copy codebase until the analysis is fin-
ished so that the analysis can complete, in case the results are
useful even when a little stale; or complete the analysis and
use analysis-specific logic to mark parts of the results as stale.
Since computing analysis results early and often means that
more accurate results are available sooner after the developer
changes the code, the results could be shown to the developer
immediately to reduce wasted time [6], [53], [65], or less fre-
quently to avoid distracting and annoying the developer [7].
Codebase Replication supports both. An up-to-date analysis
result might become stale after an edit to the program. In
this case, a continuous analysis can either immediately
remove the stale results and indicate that the offline analysis
is re-executing on the updated program, or mark the results
stale, but keep them until the new results are computed, so
that the results are not removed from the developer’s context.
Codebase Replication supports both.

If a UI were poorly designed to interrupt the developer,
then the continuous analysis results could be distracting to
the developer. However, if the information is presented
unobtrusively and the developer is permitted to act on it
when he or she chooses, then developers find it useful. This
has been confirmed experimentally by Saff and Ernst [66]
and is reflected by the popularity of continuous analysis
tools such as continuous compilation. Codebase Replication
automatically updates the analysis results in a separate GUI

element without disturbing the developer. The developer
can make this GUI element (in)visible to ignore or have
access to the analysis results.

This paper extends our previous work [57] that proposed
Codebase Replication. First, by identifying the key continu-
ous analysis design dimensions and the interactions between
these dimensions and various offline analysis properties, this
paper further simplifies the creation of continuous analyses
(Section 3). Second, while the previous work considered
offline analyses to be black boxes, this paper improves
Codebase Replication’s currency guarantee by proposing
two designs that allow Codebase Replication to interrupt an
ongoing offline analysis (Section 4.3). Third, this paper
expands the earlier evaluation of the claim that Codebase
Replication eases the implementation of IDE-integrated con-
tinuous analyses by converting an offline analysis into a new
continuous race detection tool (Section 6.2.3); this conversion
required a programmer to write 545 LoC during 24 hours
of implementation work. Fourth, this paper evaluates the
usability of continuous analysis tools implemented with Sol-
stice in a case study on ten programmers (Section 6.3); this
case study shows that programmers like using Codebase-
Replication-based continuous analysis tools. Fifth, this paper
analyzes the publications and publicly available implemen-
tations of existing continuous analyses to further clarify how
they lack isolation, currency, or both (Fig. 13 in Section 7).

The main contributions of our work are:

� A discussion of the three major design dimensions of
continuous analysis implementations (Section 3).

� A Codebase Replication design that addresses cur-
rency and isolation (Section 4), including two alter-
natives for adding external interruption support to a
continuous analysis implementation to increase its
input currency without violating the analysis isola-
tion (Section 4.3).

� Solstice, an Eclipse-based realization of Codebase
Replication that brings isolation and currency to off-
line analyses for easily converting them into continu-
ous analysis Eclipse plug-ins (Section 5).

� An evaluation of Solstice’s performance, in terms of
overhead (isolation cost) and responsiveness to
changes (currency) (Section 6.1).

� Four publicly-available, continuous-analysis Eclipse
plug-ins with isolation and currency properties, and
an evaluation of the ease of building such plug-ins
with Solstice (Section 6.2).

� An evaluation of the Solstice continuous testing
plug-in in two case studies, demonstrating that
Solstice (and therefore Codebase Replication) contin-
uous analysis tools are intuitive and easy to use, and
are liked by the programmers (Section 6.3).

2 DEFINITIONS

In order to explain Codebase Replication, we first define
several concepts, including what it means for an analysis to
be continuous.

A snapshot is the state of the source code of a software
program at a point in time. An analysis is a computation on
a snapshot that produces a result. An offline analysis is an
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analysis that requires no developer input. A continuous anal-
ysis is one that automatically computes an up-to-date result
without the need for the developer to trigger it. Finally, a
pure analysis is one that does not modify the snapshot on
which it runs, while an impure analysismay. More formally:

Definition 1 (Snapshot). A snapshot is a single developer’s
view of a program at a point in time, including the current
contents of unsaved editor buffers. A unique snapshot is associ-
ated to each point in time.

Each of a developer’s changes creates a new snapshot.
In this paper, we limit ourselves to considering analyses

that run on a single developer’s codebase. Some analyses,
such as conflict detection [11], [12], may need multiple
developers’ codebases for the same program. Our work is
applicable to such analyses, although the definition of a
snapshot would need to be extended.

Definition 2 (Analysis). An analysis is a function A : S ! R
that maps a snapshot s 2 S to a result r 2 R: AðsÞ ¼ r.

Definition 3 (Offline analysis). An offline analysis is an
analysis that requires no human input during execution.

For example, a rename refactoring is not an offline analy-
sis because each execution requires specifying a program-
ming element (e.g., a variable) and a new name for this
element. An offline analysis may require human input for
one-time setup, such as setting configuration parameters or
the location of a resource.

Definition 4 (Analysis implementation). An offline analysis
implementation Ao for an analysis A is a computer program
that, on input snapshot s, produces r ¼ AðsÞ.
We denote as TAoðsÞ the time it takes an analysis imple-

mentation Ao to compute r ¼ AðsÞ on a snapshot s.
It is our goal to convert an offline analysis implementa-

tion Ao into a continuous analysis implementation Ac that
executes Ao internally.

Definition 5 ("-continuous analysis implementation). Let A
be an offline analysis, and let ts be the time at which snapshot s
comes into existence. An analysis implementation Ac that
uses Ao is "-continuous if 9 "a; "s � " such that for all snap-
shots s, both of the following are true:

1) Ac makes r ¼ AðsÞ available no later than ts þ TAoðsÞþ
"a if no new snapshot is created before this time. "a is the
result delay: the time it takes to interrupt an ongoing
analysis (Ao) execution, apply any pending edits to the
copy codebase, restart the analysis, and deliver the
results (e.g., to a UI or a downstream analysis). "a is
independent of the underlying offline analysis run time
since it does not include TAoðsÞ.

2) For all times after tsþ1 þ "s, Ac indicates that all
results for s are stale. "s is the staleness delay: the time
it takes to mark the displayed results as stale after the
moment they become stale.

We often refer to "-continuous analyses as simply contin-
uous, implying that an appropriately small " exists. For sim-
plicity of presentation, our definition of a continuous
analysis assumes the most eager policies for handling con-
current developer edits and displaying stale results. Sec-
tions 3.2 and 3.3 explore other policies.

It is particularly challenging to convert an impure offline
analysis to a continuous analysis. Our approach handles
both pure and impure analyses.

Definition 6 (Pure/impure analysis implementation). An
analysis implementation Ao is pure iff its computation on a
snapshot s does not alter s. An impure analysis implementa-
tion may alter s.

Running a test suite is an example of a pure analysis
because it does not alter the source code. Mutation analy-
sis—applying a mutation operation to the source code and
running tests on this mutant—is an impure analysis. An
analysis that performs source code instrumentation is a spe-
cial case of an impure analysis. An analysis that performs
run-time instrumentation of a loaded binary is pure. Note
that an impure analysis only alters the source code temporar-
ily, while computing the results. Once the results are com-
puted, the impure analysis or Codebase Replication must
revert the source code to its initial state.

3 KEY DESIGN DIMENSIONS FOR A CONTINUOUS

ANALYSIS TOOL

Our approach to implementing a continuous analysis
involves executing an offline analysis internally. This sec-
tion discusses three key design dimensions for continuous
analysis tools that are converted from their offline analyses.
Section 3.1 investigates what can trigger a continuous analy-
sis tool to internally run the offline analysis, Section 3.2
investigates when a continuous analysis tool can abort an
offline analysis execution, and Section 3.3 investigates how
stale results are displayed to the developer. For each dimen-
sion, we discuss the advantages and disadvantages and pro-
vide examples from existing analysis implementations.

3.1 Triggering Analysis Execution

A continuous analysis may use four categories of triggers to
start internal offline analysis executions: (1) whenever the
snapshot changes in memory, (2) whenever the snapshot
changes on disk, (3) periodically, and (4) other triggers.
Additionally, analyses from each of the categories may be
delayed and/or overlapping.

Memory-change triggers. The continuous analysis runs the
internal offline analysis each time the program snapshot
changes in memory, such as when the developer makes an
edit in the IDE. A memory-change-triggered analysis pro-
vides feedback without requiring the developer to save the
file. The Solstice Continuous Testing plug-in (described in
Section 6.2.4) and Eclipse reconciler compiler2 are examples
of this category of analysis.

File-change triggers. The continuous analysis runs the inter-
nal offline analysis each time the program snapshot changes
in the file system. A file-change-triggered analysis is moti-
vated by the hypothesis that changes a developer saves to
disk aremore likely to be permanent than thosemerelymade

2. Eclipse contains two different compilers. The reconciler compiler
operates on unsaved buffer content in order to give quick feedback;
Eclipse calls it the “Java reconciler”. The incremental compiler operates
on saved files and gives more complete and correct feedback about
compiler errors whenever the user saves the document; Eclipse calls it
the “incremental Java builder”.
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in memory. Finally, as file-system changes are less frequent
than memory changes, these triggers can result in less
resource use. However, waiting for changes to be saved to
disk can delay computing pertinent analysis information.
Eclipse provides a continuous analysis framework, called
Incremental Project Builders [23]. Incremental Project Build-
ers broadcasts the difference between two incremental builds
on the file system, so that other analyses can access this differ-
ence and incrementally update results. Any continuous anal-
ysis Eclipse plug-in built using Incremental Project Builders,
such as the FindBugs [35], Checkstyle [24], and Metrics [28]
plug-ins, is a file-change-triggered continuous analysis.

Periodic and non-stop. The continuous analysis runs the
offline analysis with a regular period. For example, the
Crystal tool [10], [12] executes its analysis every 10 minutes.
A variant of periodic analysis is a non-stop analysis, which
runs every time the previous execution finishes. A periodic
analysis is most suitable when it is difficult to determine
which actions may affect the analysis result.

Other triggers. Quality-control analyses often run before
or after each version control commit. Pre-commit analyses
prevent developers from committing code that breaks the
build or test suite. These quality-control analyses must be
fast since they would otherwise discourage the developer
from making frequent commits. Building components and
running unit tests that are directly affected by the changes
are examples of such quality-control analyses. Post-commit
analyses such as continuous integration notify the develop-
ers soon after a bad commit. Continuous-integration analy-
ses can be slower since they run separately from the
development, typically on a dedicated integration server.
Building the software completely and running all integra-
tion tests are examples of continuous-integration analyses.

Analyses from each of the above categories may be
delayed after the trigger before running the offline analysis.
Eclipse’s reconciler compiler is delayed until the developer
pauses typing to avoid running the analysis during a burst
of developer edits. The delay avoids executing the analysis
on intermediate snapshots for which the results are less
likely to be of interest to developers and are likely to become
stale quickly: the delay thus also reduces analysis overhead.
Delays are most appropriate for a memory-change-triggered
analysis. Although file-change- and other-triggered analyses
rarely use delays since actions such as saving a file or com-
mitting code already suggest good opportunities to run the
offline analysis, these analyses might introduce delays for
taking common developer patterns into consideration. For
example, developers commit in bursts and a delay may
avoid running the analysis on a snapshot that is about to be
overridden by a new commit. Jenkins [48] supports a “quite
period” in which the builds are delayed after a commit to
prevent an incomplete commit trigger a build failure.

Additionally, analyses from each of the above categories
may be overlapping. Whenever a trigger fires while a previ-
ous offline analysis is still running, the continuous analysis
has to decide whether to start a second, concurrent copy of
the offline analysis. If the analyses are non-overlapping, the
new offline analysis execution can be skipped, delayed until
the current execution finishes, or started instead of finishing
the previous execution (Section 3.2).

Surveying triggering in existing analyses. To determine how
existing analysis tools, we surveyed Eclipse plug-ins on

GitHub. We performed manual inspection of the documen-
tation, automated analysis of the source code to find design
patterns that indicate a continuous analysis, and manual
inspection of the source code when necessary.

Of the 159 projects that match “Eclipse plug-in”, 47
implemented analysis tools. Of those 47, 21 (45 percent)
were continuous: one (2 percent) was triggered by VCS
commands, 12 (26 percent) were file-change-triggered and
only eight (17 percent) were memory-change-triggered.
This suggests that despite the significant benefits of mem-
ory-change-triggered continuous analyses, they are difficult
to implement, which motivates and justifies our work.

Of the 21 continuous analyses, 16 (8 file-change-triggered
and 8memory-change-triggered) extended Eclipse to handle
languages other than Java, made possible in part by the rela-
tive simplicity of using the Incremental Project Builder [23],
Xtext [80], and Reconciler [25] patterns. Similarly, we antici-
pate that our work will ease the creation and increase the
number of memory-change-triggered continuous analysis
tools for arbitrary analyses.

3.2 Abandoning the Ongoing Offline Analysis

When the developer edits the program while a continuous
analysis is running the offline analysis, the continuous anal-
ysis can either (1) immediately interrupt the offline analysis
execution without getting any results, potentially rerunning
it on the latest snapshot, or (2) never interrupt the offline
analysis, and finish running it on the snapshot, which is no
longer the up-to-date development snapshot.

Immediately interrupt. The continuous analysis abandons
the ongoing offline analysis immediately when a developer
makes an edit. Such a continuous analysis is most suitable
when the results of the analysis on an outdated snapshot
have little or no value. An immediately-interrupting con-
tinuous analysis wastes no time executing on outdated
snapshots. Quick Fix Scout [58] is an example of an imme-
diately-interrupting continuous analysis.

Section 4.3 presents two designs for implementing imme-
diately-interrupting continuous analyses by forcibly termi-
nating the ongoing offline analysis.

Never interrupt. The continuous analysis continues to exe-
cute the offline analysis despite concurrent developer edits.
To ignore the developer edits, the never-interrupting con-
tinuous analysis runs on a copy of a recent snapshot. An
example is an analysis that runs after commits or nightly
builds. A never-interrupting analysis is most suitable when
the offline analysis takes a long time to run and when the
results on a slightly outdated snapshot still has value to the
developer. For example, a continuous integration server
may complete running tests, while allowing the developers
to continue editing the program and make new commits.
The test results are useful for localizing bugs. The alterna-
tive of interrupting the test suite execution every time the
developer makes a change could mean the test suite rarely
finishes and the developer rarely sees any analysis results.

Codebase Replication enables never-interrupting continu-
ous analyses by providing an isolated copy of the snapshot.
More sophisticated interruption policies are possible. For
example,when a conflicting developer edit takes place, an off-
line analysis could be permitted to complete its execution if
that execution is estimated to be at least 50 percent done.
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3.3 Handling Stale Results

A continuous analysis that does not interrupt its offline anal-
ysis may generate stale results. Furthermore, as the devel-
oper edits the code, displayed results may become stale.

We group continuous analyses by how they handle stale
results into two categories: (1) immediately remove stale
results, and (2) wait to remove stale results until new results
are available. Analyses in either category can use cues to
indicate that results are potentially stale and/or a new anal-
ysis is being run. It would also be possible to delay remov-
ing the analysis results or to create a separate (perhaps fast)
analysis to check if stale results no longer apply, and
remove them based on that analysis.

Immediately remove. The continuous analysis immediately
removes the stale results and, potentially, indicates that the
offline analysis is being rerun. This approach is appropriate
if displaying stale results may lead to developer confusion.
For example, showing a compilation error for code that the
developer has already fixed may cause the developer to
waste time re-examining the code. Examples include Quick
Fix Scout [58] and most Eclipse analyses based on Incremen-
tal Project Builders, such as the Eclipse FindBugs and Check-
style plug-ins. A never-interrupting, immediately-removing
analysis may be a poor choice because if the developer edits
the code while the analysis is running, the continuous analy-
sis completes the offline analysis but never shows its results
to the developer.

Display stale. The continuous analysis waits to remove the
stale results until new results are available. Removing the
old results may hinder a developer using them. For exam-
ple, when fixing multiple compilation errors, the first key-
stroke makes all the results stale, but nonetheless the
developer wants to see the error while fixing it and may
want to move on to another error while the code is being
recompiled. If the developer edits one part of the code, then
all the analysis results technically become stale, but the
developer may know that analysis about unaffected parts of
the code remain correct. The Crystal tool [10], [12] is an
example of a display-stale analysis, because it visually iden-
tifies results as potentially stale.

Unless otherwise noted, when we describe an "-continu-
ous analysis implementation, we mean a memory-change-
triggered, non-overlapping, immediately-interrupting, imm-
ediately-removing analysis.

4 CODEBASE REPLICATION

This section describes our Codebase Replication design, and
how it addresses the challenges of isolation and currency.

4.1 Codebase Replication Architecture

Codebase Replication converts an offline analysis Ao into a
continuous analysis Ac while addressing the two major
challenges to creating continuous analysis tools: isolation
and currency.

Isolation ensures that the developer’s code changes and
the execution of the offline analysis happen simultaneously
without affecting each other. The developer should be iso-
lated from Ac: Ac should neither block the developer nor
change the code as the developer is editing it (even though

an impure Ao may need to change the code). Additionally,
Ac should be isolated from the developer: developer edits
should not alter the snapshot in the middle of an Ao execu-
tion, potentially affecting the results.

Despite isolation between the developer and Ac, currency
requires Ac to react quickly to developer edits and to Ao

results. Whenever the developer makes an edit,Ac should be
notified so that it can mark old results as stale, terminate and
restart Ao, or take other actions. Ac should react to fine-
grained changes in the developer’s editor’s buffer, without
waiting until the developer saves the changes to the file
systemnor commits them to a repository.Ac should also react
quickly to Ao results, making them promptly but unobtru-
sively available to the developer or to downstream analyses.

Eclipse provides the Jobs API [29], which allows the UI
thread to spawn an asynchronous task, execute it in the
background, and eventually join back to the UI thread.
Eclipse’s incremental compiler and continuous analysis
plug-ins implemented on Incremental Project Builders use
the Jobs API. Codebase Replication does not follow this
approach because the Jobs API does not support the goals
of isolation and currency. The Jobs API does not maintain a
separate copy of the program, so any code changes by an
impure analysis would interfere with the developer, thus
failing to provide isolation. The Jobs API does not have
direct access to an editor-buffer-level representation of the
program, so to provide currency, the continuous analysis
would have to combine active editor buffers with the file
representation of the program.

Codebase Replication addresses the isolation challenge
by creating and maintaining an in-sync copy of the devel-
oper’s codebase. Codebase Replication addresses the cur-
rency challenge by providing notifications for events that
occur in the developer’s IDE and in Ac; these events can
trigger terminating and restarting Ao and updating the UI.

Fig. 1 shows the architecture of Codebase Replication.
The IDE API generates events for all developer actions,
including changes to the code. Codebase Replication keeps
a queue of these events, and applies them to the copy code-
base. Meanwhile, Ac can pause the queue, run Ao on the
copy snapshot, collect Ao results, resume the queue, and
update the results shown to the developer. Codebase Repli-
cation also notifies Ac about new developer actions, so that
Ac may decide to interrupt, alter, or continue Ao’s execution.

Codebase Replication supports multiple Ac using the
same copy codebase, via the readers-writers lock protocol.
Codebase Replication runs one impure Ac or multiple pure
Ac in parallel. For example, a developer might run continu-
ous testing and FindBugs in parallel to obtain both dynamic
information—test results—and static information—Find-
Bugs warnings. Running multiple pure Ac in parallel amor-
tizes the already-low overhead (see Section 6.1). Codebase
Replication guarantees that, even with multiple Ac, at any
given time, the copy codebase can be modified by at most
one analysis, and the copy codebase never changes during a
pure analysis execution.

For exposition purposes, this paper introduces the
Codebase Replication design with one copy codebase. A
Codebase Replication implementation can maintain multi-
ple copy codebases and run multiple impure Ac in parallel
by running each impure Ac on a separate copy codebase.
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4.2 Ensuring Isolation and Currency

Codebase Replication employs four principles to overcome
the challenges of isolation and currency: replication, buffer-
level synchronization, exclusive ownership, and staleness
detection.

Replication. Codebase Replication runs Ao on the copy
codebase to ensure that the developer’s codebase is never
affected by Ao. Replication is unidirectional: Codebase Repli-
cation copies the developer’s changes on the developer’s
codebase to the copy codebase, not the other way around.
Similar to sandboxing, if Ao modifies the copy codebase or
crashes in themiddle of the execution, the effects are confined
to the copy, and the developer may continue to edit unaf-
fected by these modifications and crashes. Further, this
approach separates theUI logic from the analysis logic, which
is a good design principle that improvesmaintainability.

Buffer-level synchronization. Ac aims to provide feedback
on the developer’s view of the code, which often resides in
the IDE buffer rather than on disk. However, most existing
Ao execute on files or even on binaries. Codebase Replica-
tion synchronizes the on-disk copy snapshot with the IDE’s
unsaved buffers.

Exclusive ownership. Changing the snapshot in the middle
of an execution may cause Ao to produce incorrect results or
to crash. The situation also arises if multiple Ao run on the
same code at once, and at least one of them is impure. Code-
base Replication allows one impure Ac at a time to claim
exclusive access to a copy snapshot while its Ao executes,
excluding all other analyses and pausing synchronization
updates with the developer’s buffer.

Staleness detection. Ao results from an old snapshot might
become stale as a result of developer’s changes. If a change
occurs while Ao executes, the result may already become
stale by the time Ao completes. When a change occurs,
Codebase Replication notifies Ac and allows it to choose to
finish executing or to terminate Ao.

Section 6 will revisit how well our design and implemen-
tation satisfy these requirements.

4.3 Improving Currency with Analysis Termination

To improve analysis input currency, when there is an edit
that conflicts with an ongoing analysis execution, Codebase

Replication has the ability to terminate the ongoing analysis
execution, apply the conflicting edits to the copy codebase,
and rerun the analysis on the updated codebase. Proper ter-
mination of an ongoing analysis requires additional support
from either Ao or Ac. This section discusses two designs: one
in which the support is provided by Ao and one in which
the support is provided by Ac.

Ao-provided termination support. The first way to provide
external support for termination is to require external inter-
ruption support from the offline analysis Ao. When Code-
base Replication interrupts an ongoing analysis execution,
Ao is expected to abandon its execution and do any cleanup
that is needed in a timely manner, such as reverting modifi-
cations to the source code, databases, file pointers, and class
loaders. If Ao provides external interruption support, Ac

requires no changes. It just interrupts Ao when a conflicting
developer edit is detected.

Ac-provided termination support. The second way to pro-
vide external support for termination is to design Ac to
never interrupt the offline analysis Ao, instead executing Ao

multiple times on different chunks of the codebase (e.g., one
execution per file). Ac then needs to compose the individual
results into a single analysis result for the whole program.
Each time Ao finishes executing on a chunk, Ac checks for
interrupts. If there is an interrupt, Ac abandons computing
the result for the whole program, cleans up, and returns
ownership to Codebase Replication. This approach does not
require any modifications to Ao. However, it is only applica-
ble when Ao is modular (can be split up to work on program
chunks) and executing it on individual chunks is much
faster than on the whole program.

To enable Ac-provided termination support, Codebase
Replication supports a step-based execution model that han-
dles interruption and termination, making it easy to write
an interruptible Ac for a modular Ao. The continuous analy-
sis Ac creates a sequence of steps, each one an atomic unit of
work that executes in a reasonable amount of time, such as
several seconds. There are two kinds of steps: (1) RUN steps
that represent normal analysis execution, and (2) CLEANUP

steps that clean up side effects. Codebase Replication main-
tains a worklist of steps, executes them in order, and checks
for interruptions after each step execution. When it detects
an interruption, such as a developer edit, Codebase Replica-
tion ignores the remaining RUN steps and executes the
remaining CLEANUP steps.

Consider a continuous testing analysis tool (Section 6.2.4)
that runs all tests in the project and displays the results
to the developer. The tool would not be responsive to the
developer’s changes if it finishes executing the entire test
suite before checking for new developer changes. The step-
based execution model improves the tool’s responsiveness
by checking for changes more often, for example, after each
class’s tests finish.

For a modular offline analysis, executing it on a chunk of
code corresponds to adding one RUN step to the worklist.
For example, continuous testing adds the following steps to
the worklist: one RUN step that creates a new class loader
and identifies the test classes that JUnit can run (concrete
classes with at least one test), one RUN step per test class that
runs JUnit on that class, and one CLEANUP step, which
releases the resources used by the new class loader. For the

Fig. 1. Codebase Replication architecture. Codebase Replication (blue)
facilitates communication between Ac (light blue) and a developer’s IDE
(dark purple) via asynchronous events.

6 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 41, NO. X, XXXXX 2015



above-mentioned continuous testing implementation, Code-
base Replication checks for conflicting edits after each step.
If there is an interruption, Codebase Replication ignores
remaining RUN steps, but executes the CLEANUP step, which
ensures that the new class loader does not leak memory.

Assuming that executing each step is bounded by t time,
the step-based analysis execution approach guarantees that
the offline analysis execution can be terminated safely in
ðcþ 1Þ � t time, where c is the number of CLEANUP steps
added to the worklist before the analysis is interrupted. We
anticipate that for most analyses, cwill be small.

Our Eclipse-based Codebase Replication prototype
Solstice, which we describe next in Section 5, supports the
step-based execution model, and all the Solstice-based plug-
in analyses from Section 6.2 use it. Support for the step-based
executionmodel required, on average, only an extra 100 LoC.

5 SOLSTICE: CODEBASE REPLICATION FOR THE

ECLIPSE IDE

To evaluate Codebase Replication, we built Solstice, an
Eclipse-based, open-source Codebase Replication prototype.
Solstice is publicly available at https://bitbucket.org/
kivancmuslu/solstice/. This section describes Solstice
(Section 5.1), explains how to implement continuous analysis
tools using Solstice (Section 5.2), and describes one such
implementation (Section 5.3). Later, Section 6.2 describes our
experience using Solstice to develop four continuous analy-
sis tools.

To the best of our knowledge; Solstice is the first frame-
work that aids implementingmemory-change-triggered anal-
ysis tools for arbitrary source and binary code analyses,which
would otherwise be considerablymore difficult to build.

5.1 Solstice Implementation

This section explains the Solstice implementation and
refines Codebase Replication with Eclipse-specific concerns.

Fig. 2 illustrates Solstice’s architecture. Solstice consists of
two parts. Solstice server runs on the developer’s
Eclipse and is responsible for listening to the developer’s
actions. Solstice client runs on a background Eclipse
(which we describe next) and is responsible for keeping the
copy codebase in sync and managing the ownership of the
copy codebase. Solstice-based continuous analysis tools
use Solstice client for their computation logic and
Solstice server for their visualization logic and to inter-
act with the developer.

The Eclipse API allows each Eclipse process to be associ-
ated with (and have access to) only one workspace. Solstice
interacts with two Eclipse processes running at once: the
developer’s normal Eclipse, which manages the developer’s
workspace, and a second, background Eclipse, which runs
Solstice client and maintains the copy workspace (and
with it, the copy codebase). The background Eclipse is head-
less—it has no UI elements and the developer never sees it.
The copy workspace resides in a hidden folder on disk. The
Solstice implementation maintains one copy codebase. It
runs all pureAc in parallel, and each impureAc in isolation.

Each time the developer starts Eclipse, Solstice executes
an initialization synchronization protocol that briefly blocks
the developer and ensures that the copy workspace is in
sync with the developer’s workspace. The first time the
developer uses Solstice, the initialization synchronization
protocol acts as a full synchronization and creates a com-
plete copy of the developer’s workspace on disk. Future
executions verify the integrity of the files in the copy work-
space through checksum and update the files that were
added, removed, or changed in the developer’s workspace
outside of the IDE.

After the initialization synchronization protocol,
Solstice server attaches listeners to the developer’s
Eclipse. The listeners track edits to the source code, changes
to the current cursor location, changes to the currently
selected file, changes to the currently selected Eclipse

Fig. 2. Solstice architecture as an instantiation of the Codebase Replication architecture (Fig. 1) for Eclipse. Solstice observes the workspace in the
developer’s Eclipse and creates a new Eclipse process to manage the copy workspace. Solstice and the continuous analysis (Ac) each consist of
two components, a server (Solstice server for Solstice and analysis server for Ac) that interacts with the developer’s Eclipse, and a client
(Solstice client for Solstice and analysis client forAc) that interacts with the copy Eclipse. The developer’s Eclipse (dark purple) generates
events for developer actions, including edits. Solstice server (blue) sends these events to Solstice client (blue) and notifies Ac (light blue)
of the actions. Solstice client stores these actions temporarily in the event queue, applies the edits to the copy workspace, notifies Ac of these
actions, and provides a pause-resume API for managing exclusive ownership of the copy workspace. Ac (light blue) interacts with the developer’s
editor, Solstice, and the copy Eclipse. Analysis client runs Ao on the copy workspace and sends the results to analysis server. Analysis
servermodifies the developer’s editor accordingly and implements staleness logic.
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project, invocations of Quick Fix, proposals offered for a
Quick Fix invocation, and selections, completions, and can-
cellations of Quick Fix proposals. Developer actions that
alter the code generate both a developer action event (e.g.,
to say that the developer clicked on a menu item) and an
edit event that encodes the code changes. Solstice

server sends the developer’s events to the Solstice

client, which makes the incoming events available to the
continuous analysis tool through the observer pattern and
applies all edits on the developer’s workspace to the copy
workspace.

5.2 Building Solstice-Based Tools

This section explains how to use Solstice to build a continu-
ous analysis tool Ac based on an offline analysis implemen-
tation Ao. We refer to the author as the person developing
Ac, and to the developer as the person later using Ac.

To implement Ac, the author specifies: (1) how Ac com-
putes the results, (2) how Ac interacts with the developer,
(3) the information that needs to be communicated between
the server and the client components of Ac, and (4) how Ac

handles stale results.
1) The author specifies Ac computation logic—how Ao

runs and produces results. The computation logic is imple-
mented as an Eclipse plug-in that interacts with Solstice

client, represented as analysis client in Fig. 2. The
computation logic always runs on the background Eclipse
using the contents of the copy workspace.

Most analyses must verify some pre-conditions before
running on a codebase. Solstice API contains analysis
steps that simplify this verification process for common
pre-conditions. For example, the author can use
ProjectCompilesStep to ensure that the codebase has
no compilation errors or ResourceExistsStep to ensure
that a particular resource (e.g., test folder) exists. If a step’s
pre-conditions fails, Solstice abandons the analysis and
shows a descriptive warning message to the developer.

As an additional contingency mechanism for infinite
loops due to bugs in the analysis or dynamic execution of
unknown code, Solstice lets the author specify a timeout for
each step. If a step takes longer than its timeout, Solstice
assumes that the analysis went into an infinite loop and ter-
minates the analysis, including the remaining steps.

2) The author specifies the interaction logic—how Ac

shows results and interacts with the developer. The interac-
tion logic is implemented as an Eclipse plug-in that interacts
with Solstice server, represented as analysis

server in Fig. 2. The interaction logic runs on the devel-
oper’s Eclipse using the developer’s editor.

The same way Eclipse manages the life-cycle of its plug-
ins, Solstice manages the life-cycle of Ac: each Ac starts after
Solstice starts (when the developer opens Eclipse) and ter-
minates before Solstice terminates (when the developer
closes Eclipse). The author does not need to create and man-
age a thread for Ac, as Solstice takes care of these details.

For the rest of the section, we assume that Ac interacts
with the developer. Continuous analysis tools that do not
interact with the developer (e.g., an observational Ac that
only logs developer actions) do not need an analysis

client component: Solstice client duplicates all

developer edits and Ac (analysis client) can access
those events directly from Solstice client via listeners.

3) The author specifies the communication between
analysis client and analysis server. The analysis
results generated by analysis client need to be sent to
analysis server to be displayed to the developer, as
shown in Fig. 2. The communication does not have to be
one-directional (although the example communication
shown in Fig. 2 is). For example, the analysis server

can allow the developer to modify Ac settings, which it
would then send to the analysis client.

The Solstice API trivializes the inter-process communica-
tion between the analysis client and the analysis

server. The author can invoke sendMessage(. . .) to com-
municate a Serializable Java object from the analysis
client to the analysis server or vice versa. Solstice
takes care of all low-level networking details, deserializes
the object on the receiver, and executes a method that pro-
cesses the object.

4) The author writes the logic for handling potentially-
stale Ao results. Solstice timestamps every developer action
and edit, Ao start, and Ao finish, to ensure that no event is
lost and that Solstice knows to which snapshot an Ao result
applies. Solstice supports all the policies discussed for
abandoning Ao (Section 3.2) and handling stale results
(Section 3.3). Solstice provides APIs for common scenarios,
such as removing Ao results with each developer edit. To
specify the staleness behavior of Ac, the author needs to
set the value of one boolean argument. Solstice takes care
of all low-level details, such as attaching multiple listeners
to Eclipse to detect resource changes and updating the
analysis visualization while handling potentially stale
results.

5.3 AnExample SolsticeContinuousAnalysis Plug-In

Suppose an author wants to use Solstice to build an Ac using
an Ao. The author decides that Ac will be never-interrupting
(Section 3.2) and display-stale (Section 3.3): when the devel-
oper makes a change while Ao executes, Ao might as well
finish, and Ac will display potentially stale results to the
developer, with an indicator.

The author would have to write the following interaction
logic for Ac (analysis server):
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Server passes true to the Analysis Server con-
structor, which makes Solstice display potentially stale
results with a special indicator. Solstice calls resultTo-

Text(...) and resultToMarkers(...)with Ao results
(Result) received from the analysis client. The author
needs to implement at least one of these methods to trans-
form Result into a human-readable text or Eclipse
markers, which Solstice uses to automatically update the
contents of the corresponding Eclipse view.

The author would also have to write the following com-
putation logic for Ac (analysis client):

Analysis extends ResourceBasedAnalysis, which
makes Solstice rerun Ao each time Solstice applies all devel-
oper edits to the copy workspace and the copy workspace
is up to date. Under the step-based semantics, Solstice
executes the analysis steps returned from getSteps().
Each step can invoke generateResult(Result), which
makes Solstice automatically send this Result to the
analysis server.

6 EVALUATION

To evaluate Solstice, we empirically measured its perfor-
mance overhead (Section 6.1), determined the ease of
using Solstice by implementing four proof-of-concept con-
tinuous analysis tools (Section 6.2), observed developers’
interaction with continuous analysis tools in two case
studies (Section 6.3), and compared Solstice to other meth-
ods of implementing IDE-integrated continuous analyses
(Section 6.4).

6.1 Solstice Performance Evaluation

An effective continuous analysis should meet the following
requirements:

Low initialization overhead. The developer should not be
blocked too long during startup (Section 6.1.1).
Low synchronization overhead.While using the IDE, the devel-
oper should experience negligible overhead (Section 6.1.2).
High analysis input currency. The delay after an edit before an
analysis can access an up-to-date program in the copy code-
base should be small (Section 6.1.3).

This section presents the results of performance experi-
ments addressing these three requirements. The experi-
ments were executed on a MacBook Pro laptop (Mac OS X
10.9, i7 2.3 GHz quad core, 16 GB RAM, SSD hard drive).

Solstice ran with a 512 MB RAM limitation for each of the
server and client components.

6.1.1 Initial Synchronization Protocol Cost

Every time the developer runs Eclipse, Solstice executes a
blocking initial synchronization protocol (recall Section 5) to
ensure that the copy workspace is in sync with the devel-
oper’s workspace. This is required because Solstice does not
track changes to the developer’s workspace when Eclipse is
not running.

We have tested Solstice’s initial synchronization protocol
using four different workspace contents (Fig. 3). For each
setting, we created a workspace with one program and
invoked the initial synchronization protocol for two extreme
cases: full synchronization and no synchronization. In the
full case, the copy workspace is empty, which requires
Solstice to copy the entire workspace. In the none case, the
copy workspace is already in sync, which requires Solstice
to only verify that the copies are in sync using checksums.
Since developers make most of their code changes within
an IDE, we expect most invocations of Solstice after the first
one to resemble the none case.

Fig. 3 shows that Solstice has low synchronization over-
head. This could be further reduced by a lazy initial synchro-
nization protocol that only processes the active Eclipse
project and its dependencies, not all projects in the program
(for example, JDT consists of 29 Eclipse projects from eclipse.
jdt, eclipse.jdt.core, eclipse.jdt.debug, and eclipe.jdt.ui).

Solstice would have been easier to implement if it always
built a brand new copy of the workspace on Eclipse startup.
There would be two main sources of overhead:

1) Copying the files. For the JDT workspace, containing
16,408 files, this takes 30 seconds (s ¼ 1:1 sec.).

2) Creating an Eclipse project and importing it into the
workspace. Eclipse creates metadata for the project
and indexes project files. For the JDT workspace, this
takes 74 seconds (s ¼ 2:5 sec.).

This is 12 times slower than Solstice’s incremental syn-
chronization, which takes only 8.6 seconds for the JDT
workspace.

6.1.2 IDE Synchronization Overhead

Solstice tracks all developer changes at the editor buffer
level. The “IDE overhead” column of Fig. 4 shows, for the
most common developer actions, the IDE overhead that Sol-
stice introduces when the action is initiated programmati-
cally. The overhead is independent of the edit size and is no
more than 2.5 milliseconds.

Even adding or removing 1,000 files incurs modest over-
head that is similar to the 1.085 seconds that Eclipse takes to
import similar-sized project (org.eclipse.jdt.core, 1,205 files).

Fig. 3. Solstice initial synchronization protocol performance. Each cell is
the mean of 20 executions.
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6.1.3 Copy Codebase Synchronization Delay

To allow Ac to access the up-to-date version of the devel-
oper’s code, Solstice must quickly synchronize the copy
workspace. The “Sync delay” column of Fig. 4 shows the
delay Solstice incurs during synchronization for the most
common developer operations. Synchronizing text edits
takes no more than 2.5 milliseconds. Thus, Solstice provides
Ac access to the developer’s code that is no more than

2.5 milliseconds old. Importing and deleting a 1,000-file
project takes longer, up to 2.5 seconds, but since these oper-
ations are rare and already take several seconds for Eclipse
to execute, the Solstice delay should be acceptable.

6.1.4 Summary

Our performance analysis demonstrates that Solstice intro-
duces negligible overhead to the IDE, does not interrupt the
development process (except during startup) and provides
access to an up-to-date copy codebase with negligible delay.

6.2 Solstice Usability Evaluation

We have used Solstice to build four continuous analysis
Eclipse plug-ins, each using an existing offline analysis
implementation. This section describes these implementa-
tions and reports on the building experience.

Fig. 5 summarizes the continuous analysis tools built on
Solstice. The epsilon values in Fig. 5 are computed by
instrumenting Solstice to timestamp the moments when:

te: the developer makes an edit,
tas: Solstice starts running Ao,
tae: Solstice finishes running Ao,
td: Solstice displays analysis results to the developer,
te0 : the developer makes a new edit,
ts: Solsticemarks analysis results as stale (after the new edit)
After an analysis computed its initial results, we made

10 small edits in Eclipse (ranging a few lines to adding/
removing one method) that produce different analysis
results. For each analysis execution, we computed
"i ¼ ts � te0 and "a ¼ ðtas � teÞ þ ðtd � taeÞ and Fig. 5 displays
their maximum.

This section presents each continuous analysis as a sepa-
rate Eclipse plug-in. Solstice supports running multiple
pure Ac in parallel.

6.2.1 Continuous FindBugs

FindBugs is a static analysis tool that finds common devel-
oper mistakes and bad practices in Java code, such as incor-
rect bitwise operator handling and incorrect casts. FindBugs
has found bugs in open-source software, is useful to devel-
opers, and is extensible with new bug patterns [43]. It is
available as a command-line and a GUI tool, an Ant task
extension, and an Eclipse plug-in [35].

The FindBugs Ant task extension and Eclipse plug-in can
automate FindBugs invocations, but both fall short of being

Fig. 4. The Solstice-induced overhead on developer edits for keeping the
copy workspace in sync. Text operations of size 1 are single keystrokes,
and larger text operations add, replace, or remove 100 consecutive char-
acters at once to represent cut, paste, and tool applications, such as
applying a refactoring or an auto-complete. File operations of size 1 are
manual file generation, copy, and removal, and larger file operations rep-
resent copying, removing, or importing a directory or an entire Eclipse
project. “IDE Overhead” measures the overhead imposed on the respon-
siveness of the IDE, and “Sync Delay” measures the delay before the
copy workspace is up to date. For each text operation experiment, we
executed the operation 100 times and took the average to reduce exter-
nal bias, such as JVM warmup.

Fig. 5. Summary of four Solstice-based continuous analysis tools. Each tool consists of “UI” code for basic configuration and result visualization,
“IPC” code for serialization, “Core” code for setting up and running the offline analysis Ao, and “Other” code for extension points. Code sizes are
larger than reported in [57] because of new UI functionality and support for the step-based execution model. The continuous PMD analysis took little
development time due to similarities to FindBugs, which was developed before it. Each tool is "-continuous and the table reports the maximum
observed " values. The experiments used PMD’s java-basic ruleset and all of Commons CLI’s 361 tests. The Check Synchronization evaluation
considers 11 (out of 31) of the Java Grande benchmark programs (main classes). 14 programs could not be executed by Check Synchronization
and six programs took longer than 5 minutes and were excluded due to time considerations.
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"-continuous according to Definition 5 in Section 2. The Ant
task extension executes only with each Ant build. The
Eclipse plug-in has two FindBugs implementations. The
developer has to manually invoke the complete FindBugs
that analyzes the whole project. There is also a lighter
Eclipse-Incremental-Project-Builders version that is dis-
abled by default. This lightweight version automatically
recomputes the FindBugs warning for the current editor file
whenever the developer saves outstanding changes on the
editor file. Both tools require the developer to perform
an action to run, and neither reacts to changes made to the
editor buffer. Further, since changes to one file may affect
the analysis results of another, the lightweight mode of
FindBugs plug-in may miss warnings.

We have used Solstice to build a proof-of-concept, open-
source continuous FindBugs Eclipse plug-in, available at
https://bitbucket.org/kivancmuslu/solstice-continuous-
findbugs/. The plug-in uses the command-line FindBugs to
analyze the .class files for all the classes in the currently
active Eclipse project and all their dependent libraries. The
plug-in’s simple visualization displays the FindBugs warn-
ings in an Eclipse view [30], which is a configurable window
similar to the Eclipse Console. The plug-in immediately
removes potentially stale warnings and recomputes warn-
ings for the up-to-date codebase. Fig. 6 shows two continu-
ous FindBugs plug-in screenshots.

6.2.2 Continuous PMD

PMD [63] is a static Java source code analysis that finds code
smells and bad coding practices, such as unused variables

and empty catch blocks. It is available for download as a
standalone executable and as plug-ins for several IDEs,
including Eclipse. Like FindBugs, it is popular and well-
maintained. Unlike FindBugs, PMD works on source code.
The existing Eclipse plug-in is not continuous; the devel-
oper must right-click on a project and run PMDmanually.

We have used Solstice to build a proof-of-concept, open-
source continuous PMD Eclipse plug-in, available at
https://bitbucket.org/kivancmuslu/solstice-continuous-
pmd/. The plug-in uses the command-line PMD to analyze
the .java files for the currently active Eclipse project. The
plug-in’s visualization displays the PMD results in an
Eclipse view. The plug-in immediately removes potentially
stale results and recomputes results for the up-to-date code-
base. Fig. 7 shows two continuous PMDplug-in screenshots.

6.2.3 Continuous Check Synchronization

The race detection tool Check Synchronization [15], based
on technology first introduced in Eraser [68], detects poten-
tially incorrect synchronization using dynamic checks. The
tool has not yet been integrated into any IDEs.

We have used Solstice to build a proof-of-concept, open-
source continuous Check Synchronization Eclipse plug-in,
available at https://bitbucket.org/kivancmuslu/solstice-
continuous-check-synchronization/. The plug-in searches
for all classes with main methods inside the current project
and runs the Check Synchronization tool on these classes. For
each class with a main method, the plug-in shows the results
to the developer through an Eclipse view. The plug-in imme-
diately removes potentially stale results and recomputes new

Fig. 6. Continuous FindBugs running on Voldemort. Both images show the top four warnings. The left screenshot shows the original Voldemort imple-
mentation; its first FindBugs warning suggests that the first use of .equals(...) is too restrictive. The developer changes .equals(...) to
instanceof (right screenshot) and the top warning disappears without the developer saving the file or invoking FindBugs.

Fig. 7. Continuous PMD running on Voldemort. Both images show the top four warnings. The left screenshot shows the original Voldemort implemen-
tation; its first PMD warning suggests that the parentheses around new are unnecessary. The developer removes these parentheses (right screen-
shot) and the first warning disappears, without the developer saving the file or invoking PMD.
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results for up-to-date codebase. Fig. 8 shows two continuous
Check Synchronization plug-in screenshots.

6.2.4 Continuous Testing

Continuous testing [67] uses otherwise idle CPU cycles to
run tests to let the developer know as soon as possible
when a change breaks a test. Continuous testing can reduce
development time by up to 15 percent [65]. There are
Eclipse [45], [67], Visual Studio [17], and Emacs [66] plug-
ins for continuous testing. The original Eclipse plug-in [67]
is "-continuous, however it modifies Eclipse core plug-ins,
making it difficult to update the implementation for new
Eclipse releases; in fact, the plug-in does not support recent
versions of Eclipse. By contrast, Solstice requires no modifi-
cations to the Eclipse core plug-ins and would apply across
many Eclipse versions.

We have used Solstice to build a proof-of-concept, open-
source continuous testing Eclipse plug-in, available at
https://bitbucket.org/kivancmuslu/solstice-continuous-
testing/. The plug-in runs the tests of the currently active
Eclipse project. The plug-in immediately removes poten-
tially stale test results and recomputes the test results for
up-to-date codebase. The plug-in’s simple visualization dis-
plays the test results in an Eclipse view. Fig. 9 shows two
continuous testing plug-in screenshots.

6.3 Solstice Continuous Testing Usability
Evaluation

We evaluated how continuous tools built with Solstice affect
developer behavior in two ways. One of the authors used
the Solstice continuous testing plug-in (Section 6.2.4) during
routine debugging (Section 6.3.1), and we ran a case study
(Section 6.3.2).

6.3.1 Debugging with Solstice Continuous Testing

The first author used the Solstice continuous testing plug-in
(CTSolstice) while debugging a BibTeX management project,

consisting of 7 Java KLoC. The project was exhibiting Run-

timeException crashes on a specific input. The author
used CTSolstice while writing tests and fixing the bug. This
took three days, and required an extension to the project’s
architecture and writing more than 100 LoC.

At the start of the debugging process, the subject pro-
gram had no tests. The author wrote two tests: a regression
test to validate that nothing was broken while fixing the
bug, and another test for the failing input to observe the
presence of the bug. The tests were 60 LoC on average and
implemented the following algorithm: parse a bibliography
from a hard-coded file, programmatically construct a bibli-
ography that is expected to be equivalent to the parsed one,
and assert that two bibliography representations are equiva-
lent. The case study led to the following three observations:

CTSolstice can speed up discovering unknown bugs. When an
input file did not exist, the program crashed with a File-

NotFoundException. The author discovered this bug
early, right after starting implementing the regression test:
CTSolstice ran an incomplete test with an invalid path. The

Fig. 8. Continuous data race detection running on Pool. Both images show the top warning. The left screenshot shows the original, buggy Pool imple-
mentation; its first warning suggests that the SleepingObjectFactory.counter field might have a data race. The developer adds synchro-

nized to the method signature (right screenshot) and the top warning disappears without the developer saving the file or invoking data race
detection.

Fig. 9. Continuous testing running on Apache commons.cli. The left
screenshot shows the original commons.cli implementation, for which all
tests pass. The developer defines the id of an option to be its second
character (right screenshot) and immediately sees that this change
causes an existing test to fail, without saving the file or invoking JUnit.
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author would not have thought to run this incomplete test
and would have discovered the bug later, if at all.

CTSolstice makes debugging information available sooner.
CTSolstice enables live programming [8], [13], [40], [78]. While
debugging, developers often use print statements to view
intermediate program state and assist in understanding
behavior. CTSolstice makes the continuous testing console
output and error streams available to the developer. With
each edit, CTSolstice recomputed and redisplayed these logs,
giving near-instant feedback on how changes to the code
affected the print statements, even if the changes did not
affect the test result. The author felt this information signifi-
cantly simplified the debugging task.

CTSolstice is unobtrusive.During this debugging process, the
author never experienced a noticeable slowdown in Eclipse’s
operation and never observed a stale or wrong test result.

6.3.2 Solstice Continuous Testing Case Study

To further investigate how developers interact with Solstice
continuous analysis tools, we conducted a case study using
the Solstice continuous testing plug-in. This case study
investigates the following research questions:

RQ1: What is the perceived overhead for Solstice contin-
uous analysis tools?

RQ2: Do developers like using Solstice continuous analy-
sis tools?

The remainder of the section explains our case studymethod-
ology, presents the results, and discusses threats to validity.

Methodology. Each subject implemented a graph library
using test-driven development (TDD). The subject was given
skeleton .java files for the library, containing a complete
Javadoc specification and a comprehensive test suite of
93 tests. The method bodies were all empty, other than
throwing a RuntimeException to indicate that they have
not been implemented. Accordingly, all tests failed initially.
The subject’s task was to implement the library according to
the specification and to make all tests pass. The subjects were
asked not to change the specification and not to change, add,
or remove tests, but they could configure Eclipse as they
wished and could use the Internet throughout the task.

For the case study, we recruited 10 graduate students at
the University of Washington who were unfamiliar with our
research.3 Half of these subjects were randomly assigned to
use JUnit (base treatment) and the remaining half were
assigned to use the Solstice Continuous Testing plug-in. Sub-
jects had varying Java (1 to 12 years), JUnit (0 to 4 years), and
TDD (0 to 4 years) experience.

All sessionswere conducted in a computer lab4 at the Uni-
versity of Washington. After a 5-minute introduction that
explained the purpose of the study, each subject completed a
tutorial to learn the tool they would be using during the ses-
sion. Then, each subject implemented as much of the graph
library as possible within 60 minutes. We recorded the com-
puter screen and snapshotted the subject’s codebase each
time it was compiled. Finally, we conducted a written exit
survey, asking the subjects about their experience.

Results. The test suite executed in under one second
(unless the subject implemented methods that took unrea-
sonably long). This short test suite execution time is
appropriate for a small library and allowed us to answer
RQ1; a long-running test suite would have masked the
tool’s overhead. All subjects agreed that the continuous
testing results were always up to date (Fig. 10). In addi-
tion to the Likert-scale questions in Fig. 10, the exit survey
also had a free-from question that asked the subjects to
comment on their experience with the Solstice continuous
testing plug-in. For example, one subject commented: “I
really liked the fast feedback [from continuous testing].”
Although the computers were running screen-recording
software, two Eclipse instances, and a web browser, when
asked during the exit survey if test results had been up to
date, all five of the subjects agreed the results were up to
date and none complained about lag nor any other evi-
dence of overhead.

During the case study, we observed how developers
interacted with Solstice continuous testing. After the tuto-
rial, three developers (out of five) started using the tool as
we expected, by repeating the following steps:

1) select a failure from the Test Failures view,
2) investigate the corresponding trace in the Trace-

view and navigate to the code locations using
hyperlinks,

3) make the required code changes, and
4) verify that the failure is fixed (or discover that it is

not) by looking at the updated results in the Test

Failures view.
One subject had issues with using the two different views:

she switched from the Trace view to the Javadoc view,
forgot to switch back, and was confused by not being able to
see the trace for the selected test failure. The last subject sim-
ply ignored the whole workflow as he was not used to using
tools that provide continuous feedback. Fig. 10 shows that
all but one of the subjects liked using Solstice continuous
testing. One subject commented: “I really enjoyed [using
Solstice continuous testing]! ...[Getting continuous feedback]
in a real language like Java was pretty cool.”

In addition to our qualitative results, we analyzed the
recorded development history of each subject. 84 test fail-
ures were fixed by at least one developer from each treat-
ment group. The Solstice continuous testing group fixed 52
of these failures faster, whereas the JUnit group fixed 38
faster. On average, JUnit subjects fixed 62 whereas Solstice
continuous testing subjects fixed 49 test failures. As the
size of our study was small, none of these results is statisti-
cally significant (all p > 0:05) according to the Mann-Whit-
ney U test.

In answering RQ2, we conclude that Solstice continuous
analyses tools are easy to use, intuitive, and unobtrusive.
While our small-scale study has not shown directly the

Fig. 10. Exit survey summary for the user study subjects who used
Solstice continuous testing.

3. Subjects were recruited through a standard IRB-approved pro-
cess. Participation in the study was compensated with a $20 gift card.

4. Computer specs: Intel i5-750: 2.67 GHz quad core CPU, network
drive, 4 GB memory, connected to a 30-inch display.
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benefits of continuous analysis tools, previous research has
done so [37], [40], [52], [65], and reverifying this claim is out-
side the scope of this work.

Availability of results for long-running analyses. Our case
study used a fast analysis: the time to execute the test suite
was under a second. However, executing continuously is
beneficial for all analyses, even long-running ones. Execut-
ing continuously reduces the cognitive load, since the devel-
oper neither has to decide when to run the analysis nor
predict when there will be a long enough break in activity
to complete the analysis. The continuous analysis eliminates
or reduces wait time when the developer desires the analy-
sis results. As discussed in Section 3.3, even potentially-stale
analysis results have value. Thus, every analysis should
be run continuously, under reasonable assumptions: the
analysis process is run at low priority to avoid slowing
down the developer’s IDE, electrical power is less costly
than the developer’s time, and the UI that presents the
results is non-obtrusive.

Given that any amount of increased availability of analy-
sis results is beneficial, we ask how often would those anal-
ysis results be available. This section investigates our case
study data in a quantitative experiment to estimate the
availability of results from long-running Solstice continuous
analyses. We focus on the following research question:

RQ3: How does the run time of an Ao affect the availabil-
ity of its results to the corresponding Ac?

Using the development history (snapshots) of case study
participants, we computed the percent availability and the
average staleness of each of the four Solstice analyses of
Section 6.2. Percent availability is the ratio of the total time
the analysis results are up to date to the the total develop-
ment time. Average staleness is the average value for how
stale the currently-displayed results are (how long it has
been since they were up to date), where up-to-date results
are treated as 0 seconds stale.

We assume immediately-interrupting and display-stale
(recall Section 3) implementations. The number of develop-
ment snapshots is equal to the number of edits that yielded
a compilable project. The analysis results become up to date
if the developer pauses longer than "a þ TAo , where:

"a : the continuous analysis result delay (Definition 5).
TAo : underlying Ao run time.
"a and TAo values are taken from Fig. 5. The analysis

results become stale immediately at the beginning of the
next snapshot.

Fig. 11 shows the developer edits and the availability of
each analysis as a timeline, for one of the case study partici-
pants. We did this computation for each case study partici-
pant. We provide similar figures for the other participants,
and the raw data at https://bitbucket.org/kivancmuslu/
solstice/downloads/analysis_availability.zip.

Fig. 12 shows percent availability and average staleness
of each Solstice analysis, averaged over all case study partic-
ipants. Although the run time of an Ao has a negative effect
on the availability of the corresponding Ac, long-running
Solstice analyses would still be beneficial during develop-
ment. Data race detection results are up to date 5 percent of
the time.

Threats to Validity. We assess our evaluation activities in
terms of simple characterizations of internal and external
validity. Internal validity refers to the completeness and the
correctness of the data collected through the case studies.
External validity refers to the generalizability of our results
to other settings.

As in other research, the possibility of a bug in the tools is
a threat to internal validity. Seeing incorrect information
could confuse and slow down the developers. However, we
received no negative feedback about correctness.

The selection of the subject program, a simple graph
library, poses a threat to external validity. Case study results
for this data structure may not generalize to other software.

The selection of the offline analysis, testing, poses another
threat to external validity. Case study results on how devel-
opers interact with continuous testing may not generalize to
other continuous analysis tools. However, we believe the
specific internal offline analysis does not affect the devel-
oper’s interaction with the continuous analysis tool.

Finally, the fact that all our subjects were PhD students
poses another threat to external validity. Case study results
for a particular developer population may not generalize

Fig. 11. Availability of Solstice analyses for one of the case study participants. The x-axis represents the development time in seconds. The vertical
lines represent developer edits that yielded compilable code. Solid lines on analyses rows represent the times that the corresponding analysis would
have shown up-to-date results during development. (Fig. 12 summarizes this data across all participants.)

Fig. 12. Ao run time, percent availability, and average staleness of each
Solstice continuous analysis, averaged over all case study participant
data. The results suggest that even a continuous long-running analysis
can provide value during development. (Fig. 11 shows an in-depth look
at a single participant.)
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to other developer populations. However, none of the sub-
jects knew Solstice continuous testing before the case study
and their experiences with JUnit, Eclipse, and Java varied.
Most subjects had professional experience through intern-
ships in industry.

6.4 Alternate Implementation Strategies

There are ways other than maintaining a copy codebase
to convert offline analyses into continuous ones. Very fast
offline analyses can run in the IDE’s UI thread. While tech-
nically such an analysis would block the developer, the
developer would never notice the blocking because of its
speed. Most analyses are not fast enough for this approach
to be feasible.

It is possible to reduce the running time of an offline
analysis by making it incremental [64]. An incremental code
analysis takes as input the analysis result on an earlier snap-
shot of the code and the edits made since that snapshot.
Examples include differential static analyses [54], differen-
tial symbolic execution [62], and incremental checking of
data structure invariants [71]. When the differences are
small, incremental analyses can be significantly faster. With
this speed increase, incremental analyses may be used con-
tinuously by blocking the developer whenever the analysis
runs. Incremental code compilation [53] is one popular
incremental, continuous analysis integrated into many
IDEs. However, many analyses cannot be made incremental
efficiently because small code changes may force these anal-
yses to explore large, distant parts of the code. Further,
making an analysis incremental can be challenging, requir-
ing a complete analysis redesign. The process is similar to
asking someone to write an efficient, greedy algorithm that
solves a problem for which only an inefficient algorithm
that requires global information is known.

While many analyses cannot be made incremental or
efficient enough to run continuously while blocking the
developer, those that can still benefit from being built
using Codebase Replication. An impure analysis is freed
from the burden of maintaining a copy codebase, as Code-
base Replication maintains the copy codebase and lets the
analyses own it exclusively. Codebase Replication allows
long-running analyses to execute on a recent snapshot and
produce results that may be slightly stale, whereas other
approaches would not.

Codebase Replication uses a step-based execution model
to execute Ao on the copy codebase. Codebase Replication
could instead use a build tool, such as Apache Maven or
Ant, letting an analysis author declare howAo runs via build
files. Although using a build tool might further simplify the
Ac implementation, it would also limit Ac to the capabilities
of the build tool. Step-based execution permits the analysis
author to implement Ac using arbitrary Java code or to
defineAc as a one-step analysis that executes a build tool.

It is possible to implement memory-change-triggered
continuous analysis tools by combining a file-change contin-
uous analysis framework such as Incremental Project Build-
ers with tools that automatically save changes periodically
such as the Smart Save plug-in [72]. However, running an
analysis on a separate codebase has additional benefits. First,
the developer never experiences any unwanted side-effects,
such as crashes or code modifications due to impurity, of the

analysis. Second, for longer-running analyses, when there is
a conflicting developer edit, Codebase Replication can let
the analysis finish its execution on the copy codebase and
produce correct—albeit potentially stale—results.

7 RELATED WORK

This section places our work in the context of related
research. Section 7.1 discusses other approaches to building
continuous analysis tools and Section 7.2 discusses existing
continuous analysis tools and their benefits.

7.1 Building Continuous Analysis Tools

As we have described, an "-continuous analysis exhibits
both currency and isolation. Codebase Replication simpli-
fies building such analyses. Alternatively, developers can
build such tools by using IDEs’ APIs to listen to source
code edits. For example, Eclipse’s IResourceChange-

Listener [22] and IDocumentListener [21] APIs
broadcast file-level and memory-level changes, respec-
tively. Eclipse’s Java incremental compiler [27] and recon-
ciler compiler [26] use these APIs; however, these analyses
are written by the IDE developers, and building "-continu-
ous analyses using these primitive APIs is prohibitively dif-
ficult for third-party developers.

Some specialized development domains make building a
limited set of continuous analyses simple. For example, a
spreadsheet can be thought of as an IDE for data-intensive
programs that reruns these programs on every code or data
update. VisiProg [40], [52] proposed to extend this para-
digm to general programming languages, but Codebase
Replication is the first implementation that provides isola-
tion and currency. As another example, live programming
[8], [13], [78], which eases development by executing a fast-
running program on a specific input as that program is
being developed, is a special case of continuous analysis.

The rest of this section discusses alternate ways of creat-
ing continuous analysis tools and compares them to Code-
base Replication. None of the existing approaches provides
both isolation and currency, although some provide one or
the other.

7.1.1 Methods that Yield Limited Currency but Lack

Isolation

IDEs provide higher-level frameworks than the primitive lis-
teners described earlier. For example, to simplify implement-
ing build-triggered continuous analyses, Eclipse provides
Incremental Project Builders [23]. This mechanism can be
used to execute an analysis on the on-disk version of the pro-
gram every time the incremental compiler runs. (Note that
when auto-build is enabled in Eclipse, the code builds every
time it is saved to disk, so build-trigger becomes equivalent
to file-change-trigger.) This mechanism enables building
analyses that have some currency, although Codebase Repli-
cation’s memory-change access provides better currency by
enabling the analyses to run on a more recent version of the
program than one that has been saved to disk. Further, unlike
Codebase Replication, this mechanism does not allow
for analysis isolation. The analyses run on the developer’s
on-disk copy, meaning that an impure analysis’s changes

MUŞLU ET AL.: REDUCING FEEDBACK DELAY OF SOFTWARE DEVELOPMENT TOOLS VIA CONTINUOUS ANALYSIS 15



directly alter the developer’s code, and a developer’s concur-
rent changesmay affect the analysis.

IDEs also provide frameworks that simplify building a
limited set of continuous analyses with memory-change
currency. For example, Eclipse’s Xtext [80] simplifies
extending Eclipse to handle new languages. Xtext provides
parsing, compilation, auto-complete, quick fix, and refactor-
ing support, but is limited to building language extensions.
Meanwhile Codebase Replication provides memory-change
currency for arbitrary source or binary code analyses. Simi-
larly to Incremental Project Builders, and unlike Codebase
Replication, Xtext does not allow for analysis isolation as a
developer’s concurrent changes may affect the analysis.
Further, Xtext does not support impure analyses.

7.1.2 Methods that Yield Limited Isolation but Lack

Currency

Integration servers, such as Jenkins [48], can enable certain
kinds of continuous analyses. An integration servermaintains
an isolated copy of the program under development and
automatically fetches new changes, builds the program, runs
static and dynamic analyses, and generates summaries for
developers and project managers. However, integration serv-
ers lack currency, as they cannot be memory-change- or file-
change-triggered; typically they are triggered periodically or
by events such as a commit. Modern collaboration portals,
such as github.com, bitbucket.org, and googlecode.com, inte-
grate awareness analyses and create interfaces for developers
to get feedback on the state of their programs. This is also a
step toward making analyses continuous, as the portals can
automate the running of analyses and can analyze multiple
developers’ codebases and notify the developers of analysis
results. However, this mechanism also lacks currency as
the analyses cannot be triggered by memory changes, file
changes, or evenmost version control operations.

IDEs provide APIs that serialize accesses to the codebase,
which can ensure partial isolation. For example, Eclipse pro-
vides a Jobs API [29] that enables third-party developers to
schedule jobs that access the codebase. There is no isolation:
these jobs either block each other and the developer edits,
or they occur concurrently on the same codebase. In con-
trast, Codebase Replication can run an analysis on the copy
codebase while letting the developer work, achieving true
isolation, and providing native support for impure continu-
ous analyses.

7.2 Existing Continuous Analysis Tools

Continuous analysis tools help developers by reducing the
notification delay of code changes’ effects on analysis
results. For example, continuous testing [65], [66], [67]
executes a program’s test suite as the program is being
developed. In a study, continuous testing made developers
three times as likely to finish programming tasks by a
deadline [66] and reduced the time needed to finish a task
by 10-15 percent [65]. Similarly, continuous data testing
greatly reduced data entry errors [59], and continuous com-
pilation made developers twice as likely to finish program-
ming tasks by a deadline [66]. Some continuous analyses
[11], [12], [39], [58] can be speculative [9] by predicting
developers’ likely future actions and executing them in the

background to inform the developers’ decision making.
Such tools have the potential to further increase the benefits
of continuous analyses.

Fig. 13 lists previous continuous analysis tools of which
we are aware. Although IDEs provide frameworks and
APIs to simplify the creation of continuous analyses, Fig. 13
shows that most existing third-party IDE-integrated contin-
uous analysis tools are not "-continuous, lacking either in
isolation or currency. From the 16 file-change-triggered and
build-triggered tools in Fig. 13, we selected the 7 with evi-
dence of development or maintenance within the last year
and contacted their developers to ask if they had considered
making their analyses run whenever the in-memory code
changes or compiles. We received responses from the
developers of 4 of the 7 tools, GoClipse, InPlace Activator,
TSLint, and TypeScript (TSLint and TypeScript are devel-
oped by an overlapping set of developers). All the develop-
ers thought making analyses continuous was a good idea,
with one remarking that this would be hard to do, another
that he didn’t have enough time to implement this feature,
and the third pointing out that part of the tool already has
this continuous behavior, although not all of the tool’s anal-
yses are continuous. We conclude that developers prefer to
build "-continuous tools for at least some analyses, but that
the effort required to build such tools prevents their
development.

Building an "-continuous analysis without Codebase
Replication is prohibitively difficult and results in poor
designs. As an example, an earlier Eclipse continuous test-
ing plug-in [67] is "-continuous, but making it "-continuous
required hacking into the core Eclipse plug-ins, so it does
not work with subsequent versions of Eclipse. As another
example, to achieve isolation, Quick Fix Scout [58] embeds
and maintains its own copy codebase in the developer’s
workspace, significantly complicating its design and imple-
mentation. Further, embedding replication logic inside the
analysis makes it difficult to debug the replication logic, as
bugs that break the synchronization between the copy code-
base and the developer’s codebase are difficult to isolate. In
contrast, as Section 6.2 has argued, Solstice makes it easier
to write Eclipse-integrated analyses that maintain isolation
and currency.

8 CONTRIBUTIONS

While useful to developers, continuous analyses are rare
because building them is difficult. We classified the major
design decisions in building continuous analysis tools, and
identified the major challenges of building continuous anal-
yses as isolation and currency. We designed Codebase Repli-
cation, which solves these challenges by maintaining an in-
sync copy of the developer’s code and giving continuous
analyses exclusive access to this copy codebase. We further
introduced a step-based execution model that improves
Codebase Replication’s currency. We have built Solstice, a
Codebase Replication prototype for Eclipse, and used it to
build four open-source, publicly-available continuous anal-
ysis Eclipse plug-ins. We have used these plug-ins to evalu-
ate Codebase Replication’s effectiveness and usability.

We have evaluated Codebase Replication (1) on perfor-
mance benchmarks, showing that Solstice-based tools have
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negligible overhead and have access to the up-to-date code
with less than 2.5 milliseconds delay, (2) by building contin-
uous analysis tools, demonstrating that Codebase Replica-
tion and Solstice can be used for a variety of continuous
tools including testing, heuristic bug finding, and data race
detection and that the effort necessary to build new continu-
ous analysis tools is low (each tool required on average 710
LoC and 20 hours of implementation effort), and (3) with
case studies with developers that show that Solstice-based
tools are intuitive and easy-to-use.

Codebase Replication provides a simple alternative to
redesigning offline analysis logic to work continuously.
Overall, the cost of converting an offline analysis to a contin-
uous one with Codebase Replication is low. Further, the ben-
efits of continuous analysis tools greatly outweigh the cost of
building them with Codebase Replication. We believe that
Codebase Replication, and our implementation, will enable

developers to quickly and easily build continuous tools, and
will greatly increase the availability of such tools to develop-
ers. These tools will reduce the interruptions developers face
and the delay before developers learn the effects of their
changes, and consequently will positively impact software
quality and the developer experience.
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Fig. 13. Previous continuous analysis tools, categorized according to the design dimensions of Section 3. The first six tools are "-continuous. The
continuous IDE plug-ins for language extensions provide parsing, compilation, auto-complete, quick fix, and/or refactoring support. “Developer” isola-
tion means that the developer is isolated from the changes made by an impure analysis, but the analysis is not isolated from the developer’s
changes; this is adequate for building only pure "-continuous analysis tools. For IDEs that support auto-build, build-triggered analyses are equivalent
to file-change-triggered analyses.
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