
Finding latent code errors via machine learning over program executions

Yuriy Brun
Laboratory for Molecular Science
University of Southern California

Los Angeles, CA 90089 USA
brun@alum.mit.edu

Michael D. Ernst
Computer Science & Artificial Intelligence Lab

Massachusetts Institute of Technology
Cambridge, MA 02139 USA

mernst@csail.mit.edu

Abstract

This paper proposes a technique for identifying program
properties that indicate errors. The technique generates ma-
chine learning models of program properties known to re-
sult from errors, and applies these models to program prop-
erties of user-written code to classify and rank properties
that may lead the user to errors. Given a set of properties
produced by the program analysis, the technique selects a
subset of properties that are most likely to reveal an error.

An implementation, the Fault Invariant Classifier,
demonstrates the efficacy of the technique. The implemen-
tation uses dynamic invariant detection to generate program
properties. It uses support vector machine and decision tree
learning tools to classify those properties. In our exper-
imental evaluation, the technique increases the relevance
(the concentration of fault-revealing properties) by a factor
of 50 on average for the C programs, and 4.8 for the Java
programs. Preliminary experience suggests that most of the
fault-revealing properties do lead a programmer to an error.

1 Introduction

Programmers typically use test suites to detect faults in
program executions, and thereby to discover errors in pro-
gram source code. Once a program passes all the tests in
its test suite, testing no longer leads programmers to errors.
However, the program is still likely to contain latent errors,
and it may be difficult or expensive to generate new test
cases that reveal additional faults. Even if new tests can be
generated, it may be expensive to compute and verify an
oracle that represents the desired behavior of the program.

The technique presented in this paper can lead program-
mers to latent code errors. The technique does not require
a test suite for the target program that separates succeeding
from failing runs, so it is particularly applicable to programs
whose executions are expensive to verify. The expense may
result from difficulty in generating tests, from difficulty in
verifying intermediate results, or from difficulty in verify-

ing visible behavior (as is often the case for interactive or
graphical user interface programs).

The new technique takes as input a set of program prop-
erties for a given program, and outputs a subset of those
properties that are more likely than average to indicate er-
rors in the program. The program properties may be gener-
ated by an arbitrary program analysis; the experiments re-
ported in this paper use a dynamic analysis, but the tech-
nique is equally applicable to static analyses.

Figure 1 gives a simple example to motivate the tech-
nique. It shows some erroneous code, the properties that a
dynamic analysis would produce for that code, the order in
which the technique would rank those properties, and which
of the properties truly are fault-revealing.

The intuition underlying the error finding technique is
that many errors fall into a few categories, that similar er-
rors share similar characteristics, and that those characteris-
tics can be generalized and identified. For example, three
common error categories are off-by-one errors (incorrect
use of the first or last element of a data structure), use of
uninitialized or partially initialized values, and exposure of
representation details to a client.

The technique consists of two steps: training and clas-
sification. In the training step, the technique uses machine
learning to train a model on properties of erroneous pro-
grams and fixed versions of them; it creates a machine
learning model of fault-revealing properties, which are true
of incorrect code but not true of correct code. (The exper-
iments evaluate two different machine learning algorithms:
support vector machines and decision trees.) In the classi-
fication step, the user supplies the precomputed model with
properties of his or her code, and the model selects those
properties that are most likely to be fault-revealing. A pro-
grammer searching for latent errors or trying to increase
confidence in a program can focus on those properties.

This technique may be most useful when important er-
rors in a program are hard to find. It is applicable even
when a developer is already aware of (low-priority) er-
rors. For example, the machine learning models could be

480



// Return a sorted copy of the argument.
double[] bubble_sort(double[] in) {

double[] out = array_copy(in);
for (int x = out.length - 1; x >= 1; x--)

// lower bound should be 0, not 1
for (int y = 1; y < x; y++)

if (out[y] > out[y+1])
swap(out[y], out[y+1]);

return out;
}

Fault-
Ranked properties revealing?
out[1] ≤ in[1] Yes
∀ i : in[i] ≤ 100 No
in[0] = out[0] Yes
size(out ) = size(in ) No
in ⊆ out No
out ⊆ in No
in 6= null No
out 6= null No

Figure 1. A simple example illustrating our technique. The tech-
nique ranks code properties and outputs the highest-ranked ones
for user examination. The goal is to identify fault-revealing prop-
erties, which are true of erroneous code but not true of correct
code. Figure 5 shows how the ranking might be determined.

trained on properties of past projects’ most critical errors,
such as those that required updates in the field, those that
caused problems that were escalated to upper management,
or those that were hardest to discover or reproduce (such
as concurrency-related problems). Use of such models may
reveal similar problems in the program being analyzed.

We have implemented the technique in a fully automated
tool called the Fault Invariant Classifier. It automatically
determines the properties via dynamic analysis, so the user
only needs to provide a program and some inputs. The ex-
periments demonstrate that the implementation is able to
recognize fault-revealing properties of code — that is, prop-
erties of the erroneous code that are not true of a fixed ver-
sion. For C programs, the output of the machine learning
technique’s implementation has average relevance 50 times
that of the complete set of properties; for Java programs,
the improvement is a factor of 4.8. (The relevance, or preci-
sion, of a set of properties is the fraction of those properties
with a given desirable quality.) Without use of the tool, the
programmer would have to examine program properties at
random or based on intuition.

The experiments indicate that a machine learner can
identify fault-revealing program properties, which result
from erroneous code. To determine whether these proper-
ties lead users to the errors, we conducted a study in which
a programmer evaluated 410 of the reported properties and

judged that 65% as many of them would have led him to the
error as the relevance measurements indicated. If our exper-
iments are characteristic of other situations, then program-
mers only need to examine (on average) 3 of the reported
properties to locate an error.

The remainder of this paper is organized as follows. Sec-
tion 2 surveys related work. Section 3 presents the Fault
Invariant Classifier technique. Section 4 describes the com-
ponents that comprise our prototype implementation. Sec-
tion 5 describes the experimental evaluation, and Section 6
presents and analyzes the experimental results. Finally, Sec-
tion 7 lays out future work, and Section 8 concludes.

2 Related Work
Our research aims to indicate to the user specific pro-

gram properties that are likely to result from code errors.
Several other researchers have taken a similar tack to locat-
ing errors.

Xie and Engler [26] demonstrate that program errors are
correlated with redundancy in source code: files containing
idempotent operations, redundant assignments, dead code,
or redundant conditionals are more likely to contain an er-
ror. That research is complementary to ours in four respects.
First, they use a statically computed metric, whereas we use
a dynamic analysis. Second, they increase relevance for C
programs by 45%–100%, whereas our technique increases
relevance by an average of 4860% (a factor of 49.6). Third,
their experimental analysis is at the level of an entire source
file. By contrast, our technique operates on individual pro-
gram properties. Rather than demonstrating that a file is
more likely to contain an error at some unspecified loca-
tion, our experiments measure whether the specific run-time
properties identified by our technique (each of which in-
volves two or three variables at a single program point) are
more likely to arise as the result of an error. Fourth, they did
not consider the use of their reports by humans, whereas we
performed a preliminary investigation of this issue.

Like our research, Dickinson et al. [4] use machine learn-
ing over program executions, with the assumption that it is
cheap to execute a program but expensive to verify the cor-
rectness of each execution. Their goal is to indicate which
runs are most likely to be faulty. They use clustering to par-
tition test cases, similar to what is done for partition test-
ing, but without a guarantee of internal homogeneity. Ex-
ecutions are clustered based on “function call profile”, or
the number of times each procedure is invoked. Verifying
the correctness of one randomly-chosen execution per clus-
ter outperforms random sampling; if the execution is erro-
neous, then it is advantageous to test other executions in
the same cluster. Their experimental evaluation measures
the number of faulty executions detected rather than num-
ber of underlying faults detected. Our research identifies
suspicious properties rather than suspicious executions, but

481



code with

known errors

program

analysis

properties

code with

errors removed

program

analysis

properties

machine learner

model

Figure 2. Creating a program property model. Rectangles repre-
sent tools, and ovals represent tool inputs and outputs. The model
is used as an input in Figure 4. The program analysis is described
in Section 4.1, and the machine learner is described in Section 4.3.

relies on a similar assumption regarding machine learning
being able to make clusters that are dominantly faulty or
dominantly correct.

Subsequent work by Podgurski et al. [15] uses clustering
over function call profiles to determine which failure reports
are likely to be manifestations of the same underlying er-
ror. A training step determines which features are of interest
by evaluating which features enable a model to distinguish
failures from non-failures, but the technique itself does not
consider non-erroneous runs. In their experiments, for most
clusters, the cluster contains failures resulting mostly from
a single error. By contrast, we aim to identify errors.

Hangal and Lam [10] use dynamic invariant detection to
find program errors. They detect a set of likely invariants
over part of a test suite, then look for violations of those
properties over the remainder of the test suite. Violations
often indicated erroneous behavior. Our research differs in
that it uses a richer set of properties; Hangal and Lam’s set
was very small in order to permit a simple yet fast imple-
mentation. Additionally, our technique can find latent er-
rors that are present in most or all executions, rather than
applying only to anomalies.

Groce and Visser [9] use dynamic invariant detection
to determine the essence of counterexamples: given a set
of counterexamples, they report the properties that are true
over all of them. (The same approach could be applied to
the successful runs.) These properties abstract away from
the specific details of individual counterexamples or suc-
cesses, freeing users from those tasks. Our research also
generalizes over successes and failures, but applies the re-
sulting models to future runs.

3 Technique

This section describes the technique of the Fault Invari-
ant Classifier. The technique consists of two steps: train-
ing and classification. Training is a preprocessing step

properties of

code with errors

properties of code with

errors removed

fault-revealing

properties

non-fault-revealing

properties

Figure 3. Fault-revealing program properties are those that appear
in code with errors, but not in code without errors. Properties that
appear only in non-faulty code are ignored by the machine learning
step.

(Section 3.1) that extracts properties of programs contain-
ing known errors, converts these into a form amenable to
machine learning, and applies machine learning to form a
model of fault-revealing properties. During classification
(Section 3.2), the tool applies the model to properties of
new code and selects the fault-revealing properties, then the
programmer uses those properties to locate latent errors in
the new code.

3.1 Creating Models

Figure 2 shows how to produce a model of error-
correlated properties. This preprocessing step is run once,
offline. The model is automatically created from a set of
programs with known errors and corrected versions of those
programs. First, program analysis generates properties of
programs with errors and of programs with those errors re-
moved. Second, a machine learning algorithm produces a
model from these properties. Figure 4 shows how the tech-
nique uses the model to classify properties.

The training step requires pairs〈P, P ′〉whereP is a pro-
gram containing at least one error andP ′ is a version ofP
with at least one error removed. The programP ′ need not
be error-free, and the ones used in our experimental evalua-
tion did contain additional errors [11]. The unknown errors
do not hinder the technique; however, the model only cap-
tures the errors that are removed between the versions.

Before being inputted to the machine learning algo-
rithm, each property is converted to a characteristic vec-
tor, as described in Section 4.2. Additionally, properties
that are present only in faulty programs are labeled as fault-
revealing, properties that appear in both faulty and non-
faulty code are labeled as non-fault-revealing, and proper-
ties that appear only in non-faulty code are not used during
training (Figure 3).

In order to avoid biasing the machine learning algo-
rithms, the Fault Invariant Classifier normalizes the train-
ing set to contain equal numbers of fault-revealing and non-
fault-revealing properties. This normalization is necessary
because some machine learners interpret non-equal class

482



properties

user code

program analysis

model

machine classifier

fault-revealing

properties

Figure 4. Finding likely fault-revealing program properties using a
model. Rectangles represent tools, and ovals represent tool inputs
and outputs. The model is produced by the technique of Figure 2.

sizes as indicating that some misclassifications are more un-
desirable than others.

3.2 Detecting Fault-Revealing Properties

Figure 4 shows how the Fault Invariant Classifier iden-
tifies fault-revealing properties of code. First, a program
analysis tool produces properties of the target program.
Second, a classifier ranks each property by its likelihood
of being fault-revealing. A user who is interested in finding
latent errors can start by examining the properties classified
as most likely to be fault-revealing. Since machine learners
are not guaranteed to produce perfect models, this ranking
is not guaranteed to be perfect, but examining the properties
labeled as fault-revealing is more likely to lead the user to
an error than examining randomly selected properties.

The user only needs one fault-revealing property to de-
tect an error, so the user should examine the properties ac-
cording to their rank, until an error is discovered, and rerun
the tool after fixing the program code.

4 Tools

This section describes the tools used in our Fault Invari-
ant Classifier implementation. The three main tasks are to
extract properties from programs (Section 4.1), convert pro-
gram properties into a form acceptable to machine learners
(Section 4.2), and create and apply machine learning mod-
els (Section 4.3).

4.1 Program Property Detector: Daikon

Our technique uses a program analysis in both the train-
ing and the classification steps (Figures 2 and 4). Both
steps should use the same program analysis (or at least ones
whose outputs are compatible), but the technique may use
any program analysis, static or dynamic.

The prototype implementation, the Fault Invariant Clas-
sifier, uses a dynamic (runtime) analysis to extract semantic

properties of the program’s computation. (This choice is
arbitrary; alternatives that do not require use of a test suite
or execution of the program include using a static analy-
sis (such as abstract interpretation [3]) to obtain semantic
properties, or searching for syntactic properties such as du-
plicated code [26].) The dynamic approach is attractive be-
cause semantic properties reflect program behavior rather
than details of its syntax, and because runtime properties
can differentiate between correct and incorrect behavior of
a single program.

We use the Daikon dynamic invariant detector to gen-
erate runtime properties [5]. Its outputs are likely pro-
gram properties, each a mathematical description of ob-
served relationships among values that the program com-
putes. Together, these properties form anoperational ab-
stractionthat, like a formal specification, contains precon-
ditions, postconditions, and object invariants.

Daikon detects properties at specific program points such
as procedure entries and exits; each program point is treated
independently. The invariant detector is provided with a
trace that contains, for each execution of a program point,
the values of all variables in scope at that point.

For scalar variablesx, y, andz, and computed constants
a, b, andc, some examples of checked properties are: equal-
ity with a constant (x = a) or a small set of constants (x
∈ {a,b,c}), lying in a range (a ≤ x ≤ b), non-zero, modu-
lus (x ≡ a (mod b)), linear relationships (z = ax + by + c),
ordering (x ≤ y), and functions (y = fn(x)). Properties in-
volving a sequence variable (such as an array or linked
list) include minimum and maximum sequence values, lex-
icographical ordering, element ordering, properties holding
for all elements in the sequence, and membership (x ∈ y).
Given two sequences, some example checked properties are
elementwise linear relationship, lexicographic comparison,
and subsequence relationship. Finally, Daikon can detect
implications such as “if p 6=null then p.value > x” and dis-
junctions such as “p.value > limit or p.left ∈ mytree”.

The properties are sound over the observed executions
but are not guaranteed to be true in general. In particu-
lar, different properties are true over faulty and non-faulty
runs. The Daikon invariant detector uses a generate-and-
check algorithm to postulate properties over program vari-
ables and other quantities, to check these properties against
runtime values, and then to report those that are never falsi-
fied. Daikon uses additional static and dynamic analysis to
further improve the output [6].

4.2 Property to Characteristic Vector Converter

Machine learning algorithms take characteristic vectors
as input, so the Fault Invariant Classifier converts the prop-
erties reported by the Daikon invariant detector into this
form. (This step is not shown in Figures 2 and 4.)

A characteristic vector is a sequence of boolean, integral,

483



Equation Variable type #
Property ≤ = 6= ⊆ int double array vars Score
out[1] ≤ in[1] 1 0 0 0 0 1 0 2 19
∀ i : in[i] ≤ 100 1 0 0 0 0 1 0 1 16
in[0] = out[0] 0 1 0 0 0 1 0 2 15
size(out ) = size(in ) 0 1 0 0 1 0 0 2 13
in ⊆ out 0 0 0 1 0 0 1 2 12
out ⊆ in 0 0 0 1 0 0 1 2 12
in 6= null 0 0 1 0 0 0 1 1 10
out 6= null 0 0 1 0 0 0 1 1 10

Model weights 7 3 2 1 4 6 5 3

Figure 5. The properties of Figure 1, their characteristic vectors
(each characteristic vector consists of 8 numbers that appear in a
row), and the scores assigned by a hypothetical weighting model.

and floating point values. It can be thought of as a point in
multidimensional space. Each dimension (each value in the
sequence) is called a slot.

As an example, suppose there were four slots to indicate
the equation, three slots to indicate the type of the variables
involved, and one slot to indicate the number of variables.
Then Figure 5 shows the characteristic vectors for the prop-
erties of Figure 1. For example, the characteristic vector
of out[1] ≤ in[1] is 〈1, 0, 0, 0, 1, 0, 0, 2〉 (where 0 and 1
stand for false and true).

Figure 5 also gives a sample model that applies weights
to the vectors’ slots to rank the properties. (The actual
models produced by our implementation are more sophis-
ticated.) This model identifiesout[1] ≤ in[1] as most
likely to be fault-revealing. A programmer who examined
that property would notice the off-by-one error in Figure 1.

A characteristic vector is intended to capture as much
of the information in the property as possible. The ma-
chine learning algorithms of Section 4.3 can ignore irrele-
vant slots. Thus, it is advantageous to include as many slots
as possible. In our experience, the specific choice of slots
does not appear to be critical, so long as there are enough of
them. We did not expend any special effort in selecting the
slots.

In our implementation, the characteristic vectors contain
388 slots. A complete listing of the 388 slots appears else-
where [1], and the code that extracts them is distributed with
the Daikon tool. Here we briefly describe how they are ob-
tained and give some examples. The Daikon invariant de-
tector represents properties as Java objects. The converter
uses reflection to extract all possible boolean, integral, and
floating point fields and zero-argument method results for
each property. Each such field and method fills exactly one
slot. For instance, some slots of the characteristic vector
indicate the number of variables in the property; whether a
property involves static variables (as opposed to instance
variables or method parameters); and the (floating-point)
result of the null hypothesis test of the property’s statisti-

cal validity [6]. 111 of the slots represent the equation of a
property (e.g., equality such asx = y, or containment such
asx ∈ val array). Each property’s characteristic vector
had 46 of its slots filled on average, and every slot was filled
in at least one vector.

During the training step only, each characteristic vector
is labeled as fault-revealing, labeled as non-fault-revealing,
or ignored, as indicated in Figure 3. The machine learner
builds models that refer to slots, not directly to properties.
This is a crucial choice that lets the models generalize to
other properties and programs than were used in the training
step.

4.3 Machine Learning Algorithms

Machine learners generate models during the training
step, and provide a mechanism for applying those models
to new points in the classification step. Machine learn-
ers treat each characteristic vector as a point in multi-
dimensional space. The learning algorithm accepts labeled
points (in these experiments there are exactly two labels:
fault-revealing and non-fault-revealing). The goal of a ma-
chine learner is to generate a function (known as a model)
that best maps the input set of points to those points’ labels.

Our experiments use two different machine learning al-
gorithms: support vector machines and decision trees.

4.3.1 Support Vector Machine Algorithm

A support vector machine (SVM) [2] tries to separate the la-
beled points via mathematical functions called kernel func-
tions. The support vector machine transforms the point
space by using kernel functions and then chooses the hy-
perplane that best separates the labeled points; for example,
in the case of a linear kernel function, the SVM selects a
hyperplane in the canonical point space. Once a model is
trained, new points can be classified according to the side
of the model function on which they reside.

Support vector machines are attractive in theory because
they can deal with data of very high dimensionality and
they are able to ignore irrelevant dimensions while includ-
ing many weakly relevant dimensions. In practice, sup-
port vector machines were good at ranking the properties
by their likelihood of being fault-revealing, so examining
the top few properties often produced at least one fault-
revealing property. The two implementations that we tried,
SVMlight [13] and SVMfu [19], dealt poorly with model-
ing multiple separate clusters of fault-revealing properties
in multi-dimensional space. That is, if the fault-revealing
properties appeared in many clusters, these support vector
machines were not able to capture all the clusters in a single
model. The models did, however, represent some clusters,
so the top ranking properties were often fault-revealing.

484



The results reported in this paper use the SVMfu imple-
mentation [19].

4.3.2 Decision Tree Algorithm

A decision tree [17] (or identification tree [25]) machine
learner separates the labeled points of the training data us-
ing hyperplanes that are perpendicular to one axis and par-
allel to all the other axes. The decision tree machine learner
follows a greedy algorithm that iteratively selects a partition
whose entropy (randomness) is greater than a given thresh-
old, then splits the partition to minimize entropy by adding a
hyperplane through it. (By contrast, SVMs choose one sep-
arating function, but it need not be parallel to all the axes or
even be a plane.) Some implementations of decision trees,
called oblique, apply hyperplanes that are not parallel to the
axis, but the implementation used in this paper does not use
oblique decision trees.

A decision tree is equivalent to a set of if-then rules (see
Section 6.3 for an example). Decision trees usually are not
used to rank points, but only to classify them. (Decision
trees can rank using boosting [7] or class probabilities at
the leaves [16], but the decision tree implementation used
in this paper does not rank points.) The decision tree tech-
nique is more likely to isolate clusters of like properties than
SVMs, because each cluster can be separated by its own set
of hyperplanes.

The experiments use the C5.0 decision tree implementa-
tion [18].

5 Experiments

This section describes our experimental evaluation of the
Fault Invariant Classifier.

5.1 Subject Programs

Our experimental evaluation of the Fault Invariant Clas-
sifier uses twelve subject programs. Eight of these are writ-
ten in C, and four are written in Java. There are 373 faulty
versions of the twelve programs. Figure 6 gives statistics
about the programs.

Seven of the C programs were created by Siemens Re-
search [12], and subsequently modified by Rothermel and
Harrold [20]. Each program comes with a single non-
erroneous version and several erroneous versions that each
have one error that causes a slight variation in behavior.
The Siemens researchers created faulty versions by intro-
ducing errors they considered realistic. The 132 faulty ver-
sions were generated by 10 people, mostly without knowl-
edge of each others’ work. Their goal was to introduce re-
alistic errors that reflected their experience with real pro-
grams. The researchers then discarded faulty versions that
failed fewer than 3 or more than 350 of their automatically

Average Faulty
Program Funs NCNB LOC versions

print tokens 18 452 539 7
print tokens2 19 379 489 10
replace 21 456 507 32
schedule 18 276 397 9
schedule2 16 280 299 10
space 137 9568 9826 34
tcas 9 136 174 41
tot info 7 334 398 23
C Total 245 11881 12629 166

Geo 49 825 1923 95
Pathfinder 18 430 910 41
Streets 19 1720 4459 60
FDAnalysis 277 5770 8864 11
Java Total 363 7145 16156 207

Figure 6. Programs used in the experimental evaluation. “NCNB”
is the number of non-comment non-blank lines of code; “LOC”
is the total number of lines with comments and blanks. The
print tokens and printtokens2 programs are unrelated, as are the
schedule and schedule2 programs.

generated white-box tests. Each faulty version differs from
the canonical version by one to five lines of code. Though
some of these programs have similar names (printtokens
and printtokens2, and schedule and schedule2), they are
independent implementations of distinct specifications.

The eighth C program, space, is an industrial program
that interprets Array Definition Language inputs. It con-
tains versions with errors made as part of the development
process. The test suite for this program was generated by
Vokolos and Frankl [24] and Graves et al. [8].

The FDAnalysis Java program calculates the times at
which regression errors were generated and fixed [21]. The
FDAnalysis program was written by a single graduate stu-
dent at MIT, who made and discovered eleven regression er-
rors of his own over the course of 9 weeks of work. He took
snapshots of the program at small time intervals throughout
his coding process, and thus has available the versions of
programs immediately after (unintentionally) inserting each
regression error, and immediately after removing it.

The other three Java programs were written by students
in MIT’s 6.170 Laboratory in Software Engineeringclass.
Each student submitted a solution, and then, after receiving
feedback, got a chance to correct errors and resubmit. We
used all solutions such that the initial submission contained
errors and the final submission did not. The three programs
do not share any common code. Whereas the versions of
other programs are related (for instance, by having the same
corrected version, in the case of the Siemens programs, or
by being snapshots in a single development effort, in the
case of the space and FDAnalysis programs), the versions
of the 6.170 programs are independent code (albeit written

485



to the same specification), written by a total of 120 authors.
For each program, we used the test suite that was pro-

vided with it. Our dynamic analysis (Daikon) tends to be
little affected by changes in test suite [11]. Had we used a
static rather than a dynamic program analysis, then no ex-
ecution of the programs would have been required during
any part of our experiments.

5.2 Methodology

Our evaluation of the Fault Invariant Classifier imple-
mentation uses two experiments regarding automatic recog-
nition of fault-revealing properties, plus a third experiment
regarding whether fault-revealing properties help users find
errors.

The first experiment uses support vector machines as the
machine learner, and the second experiment uses decision
trees. Each experiment is performed twice: once on the
eight C programs, and once on the four Java programs.
The goal of these experiments is to determine whether a
model of fault-revealing properties of some programs can
correctly identify the fault-revealing properties of another
program. Two machine learning techniques — support vec-
tor machines and decision trees — train models on the fault-
revealing and non-fault-revealing properties of all but one
of the programs. The classifiers use each of these models to
classify the properties of each faulty version of the last pro-
gram. We measure the accuracy of the classification against
the known correct labeling, determined by comparing the
properties of the erroneous version and the version with the
error removed (Figure 3).

The third experiment uses human examination of the
properties reported by the Fault Invariant Classifier. A fault-
revealing property is a side effect of erroneous code, but a
user presented with such a property may not be able to use it
to locate the error. To assess this issue, we examined a sub-
set of the reported properties; for each one, we used our best
judgment to determine whether the property would have led
us to the error.

5.3 Measurements

Our experiments measure two quantities: relevance and
brevity. These quantities are measured over the entire set
of properties, over the set of properties classified as fault-
revealing by the technique, and over a fixed-size set.

Relevance [22, 23] is a measure of usefulness of the out-
put. It is defined as the ratio of the number of correctly
identified fault-revealing properties to the total number of
properties identified as fault-revealing:

relevance=
correctly identified fault-revealing properties

all properties identified as fault-revealing
.

The relevance of a set of properties represents the likelihood
of a property in that set being fault-revealing.Overall rele-

classified as

fault-revealing

classified as

non-fault-revealing

Overall Classification Fixed-size (2)

Relevance 5
20

= 0.25 3
10

= 0.3 1
2

= 0.5

Brevity 20
5

= 4 10
3

= 3.3 2
1

= 2

Figure 7. Example of the relevance and brevity measures. Fault-
revealing properties are labeled with crosses, non-fault-revealing
properties are labeled with circles. The large circle is a 2-
dimensional projection of a multidimensional space. The prop-
erties in the shaded region are the ones classified by the machine
learner as fault-revealing, and the ranking of the properties is pro-
portional to their height (i.e., the property at the top of the shaded
region is the highest ranked property).

vanceis the relevance of the entire set of all program prop-
erties for a given program.Classification relevanceis the
relevance of the set of properties reported as fault-revealing.
Fixed-size relevanceis the relevance of a set of preselected
size; we selected 80 because it is the size that maximized
average relevance for the C programs.

The brevity of a set of properties is the inverse of the
relevance, or the average number of properties a user must
examine to find a fault-revealing one. The best achievable
brevity is 1, which happens when all properties are fault-
revealing. Like relevance, brevity is measured over the
overall set of properties, classification set, and fixed-size
set.

A related measure isrecall [22, 23]: the percentage of
all fault-revealing properties that are reported to the user.
This measure is not relevant in our domain, because it is
only necessary to find a single property that indicates an
error, not all properties that indicate an error. After fixing
the error, a user can rerun the Fault Invariant Classifier to
find additional errors.

Figure 7 gives an example of the relevance and brevity
measures. In the example, the original relevance is 0.25 and
the fixed-size relevance, for a fixed size of 2, is 0.5. The
improvement in relevance is a factor of 2.

6 Results and Discussion

Our experimental evaluation shows that the Fault In-
variant Classifier effectively classifies properties as fault-
revealing. Ranking and selecting the top properties is more
advantageous than selecting all properties considered fault-
revealing by the machine learner. For C programs, on

486



Relevance
SVMfu C5.0

Class- Fixed- Class-
Program Overall ification size ification

print tokens 0.013 0.177 0.267 0.015
print tokens2 0.012 0.222 0.050 0.012
replace 0.011 0.038 0.140 0.149
schedule 0.003 0.002 0.193 0.003
schedule2 0.011 0.095 0.327 0.520
space 0.008 0.006 0.891 0.043
tcas 0.021 0.074 0.233 0.769
tot info 0.027 0.013 0.339 0.190
C Average 0.009 0.010 0.446 0.047

C Brevity 111 100 2.2 21.3
C Improvement — 1.1 49.6 5.2

Geo 0.120 0.194 0.548 0.333
Pathfinder 0.223 0.648 0.557 0.307
Streets 0.094 0.322 0.690 0.258
FDAnalysis 0.131 0.227 0.300 0.422
Java Average 0.122 0.332 0.586 0.336

Java Brevity 8.2 3.0 1.7 3.0
Java Improvement — 2.7 4.8 2.7

Figure 8. Relevance results for the Fault Invariant Classifier. The
data from each program corresponds to the classifier’s output using
a model built on the other programs written in the same language.
The fixed size is 80 properties. Brevity of a set is the size of an
average subset with at least one fault-revealing property, or the
inverse of relevance.

average 45% of the top 80 properties are fault-revealing.
For Java programs, 59% of the top 80 properties are fault-
revealing. Not all fault-revealing properties necessarily di-
rectly lead a programmer to the error, but in a preliminary
study, most did. Therefore, on average the user only has
to examine 3 of the properties (for programs in either lan-
guage) to be led to an error.

This section is organized as follows. Section 6.1 presents
the results of the experimental evaluation. Section 6.2
presents data on user experience with the tool. Section 6.3
compares support vector machine and decision tree machine
learning algorithms. Section 6.4 explores what makes some
properties fault-revealing.

6.1 Results

Figure 8 shows the data for the recognition experiments.
For C programs, the SVMfu classification relevance

(0.010) differed little from overall relevance (0.009). How-
ever, the SVM was very effective at ranking: the fixed-size
relevance is0.446

0.009 = 49.6 times as great as the overall rel-
evance for C programs and0.586

0.122 = 4.8 times as great for
the Java programs. The C5.0 classification relevance was
0.047
0.009 = 5.2 times as great as the relevance of all the pro-
gram properties. For Java programs the improvement was

0.336
0.122 = 2.7 times. Since decision trees can classify but
not rank results, fixed-size relevance is not meaningful for
decision trees.

While some of the C programs are small, the technique
performs best on the largest program, space, suggesting that
the technique may scale to large programs. The Java pro-
gram improvements are smaller than for C programs be-
cause there is less room for improvement for the Java pro-
grams. The C programs averaged 0.009 relevance before
application of the technique, while Java programs averaged
0.122 relevance. Because the student Java programs often
contain multiple errors, a larger fraction of their properties
are fault-revealing than for the other programs.

Figure 8 reports results for each program, given a model
that was trained on the other programs written in the same
language. We repeated the experiment using all 11 other
programs to train each model. The results were marginally
worse than those of Figure 8, suggesting that training on
similar programs results in a slightly better model.

The SVMfu machine learner classifies properties in clus-
ters. That is, when ordered by rank, properties are likely to
appear in small groups of several similar fault-revealing or
non-fault-revealing properties in a row, as opposed to a ran-
dom distribution of fault-revealing and non-fault-revealing
properties. We believe that these clusters form because
some fact about the code is captured by more than one prop-
erty, and if one such property exposes a fault, then all those
properties are fault-revealing. The clusters suggest that it
may be possible to filter properties by selecting those that
lie in clusters.

The clusters indicate that in the absence of such filtering,
it is not advantageous for a user to investigate the proper-
ties in order of their rank: for each program version, the
first few program properties are either all fault-revealing, or
all non-fault-revealing. Instead, a user should select proper-
ties to examine at random from among a set of the highest-
ranked properties. (This is why we report fixed-size rele-
vance rather than the rank of the first fault-revealing prop-
erty.) The average fixed-size relevance, over all programs,
is maximal for a set of size 80 properties. We computed
this number by measuring the relevance of each C program
version and computing the average for each fixed-size set.
Leaving out one program (that under test) did not signifi-
cantly affect the results, and the Java data is similar.

6.2 User Experience

The recognition experiments indicate that machine learn-
ing can identify properties that are fault-revealing. Intu-
ition, and the related work in Section 2, indicate that fault-
revealing properties should help users find errors in pro-
grams. We have performed a preliminary study to inves-
tigate this claim.

We considered all 32 versions of the replace program,

487



Procedure Program Description of error Fault-revealing property Non-fault-revealing property
addstr replace maxStringis initialized to maxPattern≥ 50 lin 6= null

100 butmaxPatternis 50
upgradeprocessprio schedule prio is incorrectly (prio ≥ 2) ⇒ return ≤ 0 prio queuecontains no duplicates

set to 2 instead of 1

Figure 9. Sample fault-revealing and non-fault-revealing properties. The fault-revealing properties provide information such as the methods
and variables that are related to the error. All four properties were classified correctly by the Fault Invariant Classifier.

and all 9 versions of the schedule program. For each of
these independent erroneous versions, we chose at random
10 of the properties reported in the fixed-size set. For each
of the 410 properties, we examined it and the erroneous ver-
sion and judged whether the property would lead a program-
mer to the error. Such a process is inherently subjective; we
tried to be scrupulously fair, but it is possible that we under-
or over-estimated a typical programmer’s debugging ability,
or that the properties would have other benefits in addition
to indicating errors.

For the replace program, the Fault Invariant Classifier
has a fixed-size relevance of .14, but only .094 of the re-
ported properties would lead a programmer to the relevant
error (in our judgment). For the schedule program, the cor-
responding numbers are respectively .19 and .11. In other
words, over all 41 versions, the reported properties are only
65% as effective at leading programmers to errors as is in-
dicated by measuring fault-revealing properties. This sug-
gests that, for our subject programs, a user must examine on
average 3, not 2, of the reported properties before locating
the error — still a very positive result.

To give the reader an intuition of how fault-revealing
properties can lead users to errors, Figure 9 provides ex-
amples, from our experiments, of fault-revealing and non-
fault-revealing properties for two faulty versions.

One version of the regular expression search-and-replace
program replace limited the maximum input string to length
100 but the maximum allowed pattern to only 50. For pat-
terns longer than 50 characters, this version never reported a
match. The single difference in the properties of this version
and a version with a correctly initialized pattern is that pro-
cedure addstr in the faulty version was always called when
maxPatternwas greater than or equal to 50.

As another example, one version of the job scheduling
program schedule incorrectly processes a command to in-
crease the priority of a job to 1: instead, the faulty version
sets the priority to 2. The fault-revealing property for this
program version is that a function returned a non-positive
number every time the priority was 2 or greater.

In these examples, the fault-revealing properties refer to
the variables that are involved in the error and even the spe-
cific constants involved, while the non-fault-revealing prop-
erties do not. Thus if a programmer were to examine the
fault-revealing properties, that programmer would likely be

led to the errors in the code.

6.3 Machine Learning Algorithm Comparison

While decision trees and support vector machines try to
solve the same problem, their approaches are quite different.
This section compares the advantages of each and discusses
boosting.

Support vector machines are capable of ranking prop-
erties. Ranking proved more useful than classification.
Whereas the classification relevance for SVMfu was only
marginally better than the overall relevance, SVMfu was
effective at ranking. In particular, for the C programs, se-
lecting the top-ranked properties was 45 times as effective
as classification alone; for the Java programs, the improve-
ment was a factor of 1.8.

Decision tree models were able to improve the classifi-
cation relevance slightly more than the support vector ma-
chine models, but because decision trees do not support
ranking, it was not possible to optimize the set size using
decision trees. However, unlike SVM models, the rule sets
produced by decision trees are human-readable if-then rules
that may provide insights into the reasons why some prop-
erties are classified as fault-revealing (see Section 6.4). For
example, one rule produced by a decision tree read “If a
property has 3 or more variables, and at least one of the
variables is a boolean, and the property does not contain a
sequence variable (such as an array), then classify the prop-
erty as non-fault-revealing.”

We attempted to improve the performance of decision
trees via boosting [7]. Boosting trains an initial model, and
then trains more models on the same training data, where
subsequent models emphasize the points that are incorrectly
classified by the previous models. During the classification
stage, the models vote on each point, and the points’ classi-
fications are determined by the majority of the models. In
our experiments, boosting had no significant effect on rele-
vance: the resulting models classified more fault-revealing
properties correctly, but also misclassified more outliers.
We suspect that a nontrivial subset of the training properties
misclassified by the original model were outliers, and the
overall models were neither hurt nor improved by training
additional models while paying special attention to those
outliers.

488



6.4 Important Property Slots

Our technique does not learn specific properties, such as
“x = y”. Rather, it learns about attributes (slots, described
in Section 4.2) of those properties, such as being an equal-
ity property or involving formal parameters. This permits
models generated from one set of programs to be applied to
completely different programs.

Some machine learning algorithms, such as neural net-
works and support vector machines, have predictive but not
explicative power. The models perform well but do not
yield insight into the (possibly quite complicated) aspects
of the problem domain that they successfully capture. This
makes it hard to explain exactly why our technique works so
well in our experiments. An additional complication is that
the models may be capturing a manifestation of some other,
harder-to-quantify, quality of the code, such as programmer
confusion or inexperience.

As a first step toward understanding the models that our
technique produces, we examined decision trees produced
by comparing all faulty and non-faulty versions of each sin-
gle program. While decision trees substantially underper-
formed support vector machines (for SVMs using ranking
and a fixed-size output set), they are human-readable and
permit a preliminary examination of what slots appear to be
most important.

The following are some if-then rules that appeared most
often in the decision trees. (Each decision tree referred to
multiple slots; no one slot was sufficient on its own, nor did
any of the properties map to specific errors such as use of
an uninitialized variable.)

If a property was based on a large number of samples
during test suite execution and these properties did not state
equality between two integers or try to relate three variables
by fitting them to a plane, then that property was consid-
ered fault-revealing. In other words, equality and plane-
fit properties tended not to be fault-revealing in frequently-
executed code.

If a property states that a sequence does not contain any
duplicates, or that a sequence always contains an element,
then it is likely fault-revealing. If the property does not in-
volve field accesses, then the property is even more likely
to be fault-revealing.

If a property is over variables deep in the object struc-
ture (e.g., obj.left.down.x), then the property is most likely
non-fault-revealing. Also, if a property is over a sequence
that contained fewer than two elements, then that property
is non-fault-revealing.

7 Future Work

In the experiments, the Fault Invariant Classifier tech-
nique accurately classified and ranked properties as fault-
revealing and non-fault-revealing. Our preliminary study

indicates that fault-revealing properties can help a program-
mer to locate errors. Validation of both points from larger
experiments is necessary. (It is encouraging that we did not
need to tune or specially select the programs, properties, or
features in order to obtain our results.) It would also be in-
teresting to compare our technique to other techniques such
as anomaly detection; we do not know in which circum-
stances each of the techniques is preferable to the other.

This paper has demonstrated the application of the prop-
erty selection and ranking technique to aid error location by
humans. It may be possible to apply the technique to select
properties that are helpful in other tasks. As one example
(still related to bug fixing), our technique ignores proper-
ties that occur only in the fixed version of a program, but
associating those with the fault-revealing properties would
provide a before-and-after picture of a fix. When the fix
pre-properties apply, the system could suggest the appro-
priate post-property [14].

Further examination of the models produced, as begun
in Section 6.4, may provide additional insight into the rea-
sons properties reveal faults, explain why the Fault Invariant
Classifier technique works, and indicate how to improve the
grammar of the properties and slots.

The machine learning aspect of this work could be aug-
mented by first detecting clusters of fault-revealing proper-
ties in the training data, and then training separate models,
one on each cluster. A property would be considered fault-
revealing if any of the models classified it as such. This is
similar to boosting, which was not effective, but it differs in
eliminating outliers from each model rather than adjusting
their weight. Another approach is to boost using decision
stubs, rather than decision trees.

8 Contributions
This paper presents the design, implementation, and

evaluation of a novel program analysis technique that uses
machine learning to select program properties. The tech-
nique could be summarized as “learning from fixes”: the
machine learner is trained on pairs of programs where one
has an error and the other is a fixed version that corrects the
error. (The machine learner operates not directly on the pro-
grams, but on an encoding of run-time properties of the pro-
grams.) The goal of the technique is to assist users in locat-
ing errors in code by automatically presenting the users with
properties of code that are likely to be fault-revealing (true
of erroneous code but not of correct code). It is a promising
result that a machine learner trained on faults in some pro-
grams can successfully identify different faults in unrelated
programs.

The experimental evaluation of the technique uses a fully
automated implementation called the Fault Invariant Clas-
sifier. The experimental subjects are twelve programs with
373 errors — 132 seeded and 241 real — introduced by at

489



least 132 different programmers. In the experiments, the
80 top-ranked properties for each program were on average
45% fault-revealing for C programs and 59% for Java pro-
grams. This represents a 50-fold and 4.8-fold improvement,
respectively, over the fraction of fault-revealing properties
in the input set of properties. (The Java improvement is less
because the baseline results were better, due to the Java pro-
grams containing more errors on average.)

We began an analysis of machine learning models that
reflect the important aspects of fault-revealing properties,
that may help programmers better understand errors. We
also provide some preliminary evidence that links fault-
revealing properties to errors in code. A programmer judged
which of the reported properties would lead him to an error.
The bottom line is that, on average, examining just 3 proper-
ties for the subject programs is expected to lead a program-
mer to an error.

Acknowledgments
We are grateful to Pedro Domingos, Stephen McCamant,

and the anonymous referees for their helpful comments.

References
[1] Y. Brun. Software fault identification via dynamic analysis

and machine learning. Master’s thesis, MIT Dept. of EECS,
Aug. 16, 2003.

[2] N. Christianini and J. Shawe-Taylor.An Introduction To
Support Vector Machines (and other kernel-based learning
methods). Cambridge University Press, 2000.

[3] P. Cousot and R. Cousot. Abstract interpretation: a unified
lattice model for static analysis of programs by construction
or approximation of fixpoints. InPOPL, pages 238–252,
1977.

[4] W. Dickinson, D. Leon, and A. Podgurski. Finding failures
by cluster analysis of execution profiles. InICSE, pages 339–
348, May 2001.

[5] M. D. Ernst, J. Cockrell, W. G. Griswold, and D. Notkin.
Dynamically discovering likely program invariants to sup-
port program evolution.IEEE TSE, 27(2):1–25, Feb. 2001.

[6] M. D. Ernst, A. Czeisler, W. G. Griswold, and D. Notkin.
Quickly detecting relevant program invariants. InICSE,
pages 449–458, June 2000.

[7] Y. Freund and R. E. Schapire. Experiments with a new boost-
ing algorithm. InICML, pages 148–156, July 1996.

[8] T. L. Graves, M. J. Harrold, J.-M. Kim, A. Porter, and
G. Rothermel. An empirical study of regression test selection
techniques.ACM TOSEM, 10(2):184–208, Apr. 2001.

[9] A. Groce and W. Visser. What went wrong: Explaining coun-
terexamples. InSPIN 2003, pages 121–135, May 2003.

[10] S. Hangal and M. S. Lam. Tracking down software bugs
using automatic anomaly detection. InICSE, pages 291–301,
May 2002.

[11] M. Harder, J. Mellen, and M. D. Ernst. Improving test suites
via operational abstraction. InICSE, pages 60–71, May
2003.

[12] M. Hutchins, H. Foster, T. Goradia, and T. Ostrand. Ex-
periments on the effectiveness of dataflow- and controlflow-
based test adequacy criteria. InICSE, pages 191–200, May
1994.

[13] T. Joachims. Making large-scale SVM learning practical.
In B. Scḧolkopf, C. J. C. Burges, and A. Smola, editors,Ad-
vances in Kernel Methods — Support Vector Learning, chap-
ter 11. MIT Press, Cambridge, MA, 1998.

[14] Y. Kataoka, M. D. Ernst, W. G. Griswold, and D. Notkin.
Automated support for program refactoring using invariants.
In ICSM, pages 736–743, Nov. 2001.

[15] A. Podgurski, D. Leon, P. Francis, W. Masri, M. Minch,
J. Sun, and B. Wang. Automated support for classifying soft-
ware failure reports. InICSE, pages 465–475, May 2003.

[16] F. Provost and P. Domingos. Tree induction for probability-
based ranking. Machine Learning, 52(3):199–216, Sept.
2003.

[17] J. R. Quinlan.C4.5: Programs for Machine Learning. Mor-
gan Kaufmann, 1993.

[18] J. R. Quinlan. Information on See5 and C5.0.http://
www.rulequest.com/see5-info.html , Aug. 2003.

[19] R. M. Rifkin. Everything Old Is New Again: A Fresh Look
at Historical Approaches in Machine Learning. PhD thesis,
MIT Sloan School of Management, Sept. 2002.

[20] G. Rothermel and M. J. Harrold. Empirical studies of a safe
regression test selection technique.IEEE TSE, 24(6):401–
419, June 1998.

[21] D. Saff and M. D. Ernst. Reducing wasted development time
via continuous testing. InISSRE, pages 281–292, Nov. 2003.

[22] G. Salton. Automatic Information Organization and Re-
trieval. McGraw-Hill, 1968.

[23] C. J. van Rijsbergen.Information Retrieval. Butterworths,
London, second edition, 1979.

[24] F. I. Vokolos and P. G. Frankl. Empirical evaluation of the
textual differencing regression testing technique. InICSM,
pages 44–53, Nov. 1998.

[25] P. H. Winston.Artificial Intelligence. Addison-Wesley, third
edition, 1992.

[26] Y. Xie and D. Engler. Using redundancies to find errors. In
FSE, pages 51–60, Nov. 2002.

490


