Bandsaw: Log-Powered Test Scenario Generation for Distributed Systems

Ivan Beschastnikh ~ Yuriy Brun

Michael D. Ernst

Arvind Krishnamurthy = Thomas E. Anderson

Computer Science & Engineering
University of Washington

1 Introduction

Software testing is a widely used technique to eliminate
defects and improve software quality. Testing is espe-
cially useful in the context of large distributed systems,
which are notoriously difficult to reason about formally
and remain out of reach for many existing analysis tools.
A key problem in formulating a test case is identifying
scenarios that can be (1) induced by a valid execution of
the system under test, and are (2) different from the sce-
narios exercised by the suite of existing test cases. Today,
this is done manually — a developer writes the code for
a test case after considering the system implementation
and the existing test suite. For a distributed system, this
mental effort can be overwhelming since test cases are
usually concurrent, involve multiple nodes and numer-
ous message interleavings. Moreover, when coming up
with a new test case, the developer usually focuses on the
code artifacts and rarely, if ever, thinks about the abstract
scenarios that the testing code represents.

The goal of our tool, Bandsaw, is to automate test
scenario generation for distributed systems by consider-
ing the log of system’s test suite executions. Bandsaw-
generated scenarios are intended to be converted into test
cases by the developer, which can then be run to test the
implementation. Bandsaw, therefore, saves the developer
the mental effort involved in coming up with a new test
case. Test scenarios are also more abstract and simpler
than the underlying testing code. These scenarios help
developers to more easily reason about their test suites.

Bandsaw takes as input a console log file generated by
the existing test suite, and outputs a new scenario. By
construction, this scenario is (1) different from the ones al-
ready encoded in the test suite and (2) plausible — likely
to be induced by a valid run of the system. Bandsaw
generates scenarios by exploring different interleavings
of concurrent events and stitching together previously ob-
served scenarios at those points when the system is likely
to be in a common state. The generated scenarios satisfy
a set of automatically-mined, key temporal properties that
are true of all the existing scenarios. The careful stitching
of scenarios and the preservation of the mined properties
make the resulting scenarios plausible.
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Figure 1: (a) A visualization of two input scenarios, extracted
from a log of the system during the execution of its test suite.
Each scenario is a Lamport space-time diagram in which time
flows down, and events at each host are shown in a single column.
(b) A test scenario output generated by Bandsaw based on the
scenario inputs in (a).

Next, we illustrate how Bandsaw can be used to gen-
erate a useful test scenario for an example system that
consists of a ticket selling server and clients who purchase
tickets.

2 Motivation

Figure la shows two Lamport space-time diagrams of
scenarios. These come from a testing log of a simple
web-based application, in which a server maintains a lim-
ited number of tickets that clients search for and purchase.
Each of the two tests that generated these scenarios in-
volves a single client. The top execution in Figure la
terminates in a successful sale, while the bottom one ter-
minates with sold-out.

Figure 1b shows the Bandsaw-generated test scenario.
This scenario features two clients and combines the two
scenarios from Figure 1a into a new, concurrent scenario.
This scenario is plausible and is not guaranteed to be
possible. While Bandsaw-generated scenarios may not
correspond to a valid system execution, the utility of
Bandsaw is in relieving the developer from generating
such scenarios by hand. The insight is that it is often
easier for a developer to tell if a given scenario is valid
than to come up with a new feasible scenario from scratch.




3 Bandsaw design

Bandsaw first parses the input console log generated by
the system’s test suite into input test scenario (e.g., Fig-
ure la). A test scenario is a partially ordered set of mes-
sages logged by the system. Next, Bandsaw mines a set of
invariants that capture certain kinds of ordering between
pairs of events generated by the system. These invariants
are true for all the input test scenarios, and Bandsaw uses
these as constraints on the kinds of test scenarios it can
generate. Finally, Bandsaw uses counter-example guided
refinement [3] to construct a model that (1) describes all
the input scenarios, and (2) generalizes to scenarios that
have not been observed. These predicted scenarios (e.g.,
Figure 1b) are then ranked according to the likelihood that
they can be generated by the system, and then displayed
to the user.

3.1 Temporal invariant mining

After extracting the scenarios from the input log, Band-
saw mines fives kinds of temporal invariants that describe
certain types of orderings between pairs of events gen-
erated by the system [1]. For example, one invariant in
the input log in Figure la is (search@client AlwaysFol-
lowedBy available @server). This invariant relates the
search event at the client with the available event at the
server and indicates that whenever the search event oc-
curs, the available event must also occur later in the same
scenario. In addition to AlwaysFollowedBy, Bandsaw
also mines the NeverFollowedBy, AlwaysPrecedes, Al-
waysConcurrentWith, and NeverConcurrentWith in-
variants.

3.2 Modeling the input scenarios

Bandsaw uses a hyper-graph to model the input scenar-
ios. This model is a generalization of the model used by
Synoptic [2] — a tool for modeling totally ordered event
sequences. Like Synoptic, Bandsaw uses a refinement
procedure, which eliminates counter-example scenarios
— scenarios from the hyper-graph model that violate at
least one of the mined invariants. Refinement improves
the model’s accuracy, but it also increases the size of the
model. Because of this, and because of the inherent com-
plexity in traversing a hyper-graph, the resulting Bandsaw
models are difficult to interpret. Therefore, unlike Synop-
tic, the goal of Bandsaw is not to display the final model
to the user, but rather to show the user scenarios predicted
by the model, which can then be used to generate test
cases.

4 Discussion and related work

Bandsaw presents the user with a test scenario and the de-
veloper must manually write the corresponding test case
invoking the scenario. This process could be automated

by integrating Bandsaw-generated scenarios with the sys-
tem’s source code, and by using ideas similar to those in
SherLog [11]. This is our future work.

Totally ordered sequences of events have been mined to
automatically generate test cases [5, 4] and create models
that help with, for example, object usage anomalies [9].
However, there is little work on mining executions of dis-
tributed systems. Kumar et al. [6] mine message sequence
graphs, which resemble Bandsaw’s scenarios. However,
they do not use them for predicting new scenarios, which
is the focus of Bandsaw.

More generally, logs from distributed systems have
been used to detect system problems [8, 10], structural
properties such as dependencies [7], and other features of
the system. However, there is little prior work on lever-
aging log analysis to support developers of distributed
systems during testing.
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