
Locking discipline
inference and checking

Michael D. Ernst, Alberto Lovato, Damiano
Macedonio, Fausto Spoto, Javier Thaine

University of Washington, USA
Università di Verona, Italy

Julia Srl, Italy

ICSE 2016

Concurrency: essential but error-prone

+Essential for performance (exploit multiple cores)
+Design component of GUIs

- Data races: concurrent access to shared data
• easy mistake to make
• leads to corrupted data structures
• difficult to reproduce and diagnose

Thread-unsafe code
class BankAccount {

int balance;

void withdraw(int amount) {

int oldBal = this.balance;

int newBal = oldBal - amount;

this.balance = newBal;

}

...

Data race
example

Thread 1:
sharedAccount.withdraw(50)

int oldBal = this.balance;

int newBal = oldBal - amount;

this.balance = newBal;

Thread 2:
sharedAccount.withdraw(100)

int oldBal = this.balance;

int newBal = oldBal - amount;

this.balance = newBal;

Shared account
Initial balance = 500

500
500 50

500
500 100

450 400

Withdrawals = 150
Final balance = 450

Solution: locking
class BankAccount {

int balance;

void withdraw(int amount) {

int oldBal = this.balance;

int newBal = oldBal - amount;

this.balance = newBal;

}

synchronized (acctLock) {

Object acctLock;

@GuardedBy(“acctLock”) int balance;

}

int balance;
Locking:
• Only one thread

can aquire the lock
• No concurrent

access to data
• Which lock to hold?

Key issues:
• Names vs. values
• Aliasing

Locking discipline =
which locks to hold when accessing what data
@GuardedBy("lock1") int w;

@GuardedBy("lock2") int x;

@GuardedBy("lock2") int y;

int z;

• Write locking discipline as documentation and for use by tools
• @GuardedBy [Goetz 2006] is a de-facto standard

• On GitHub, 35,000 uses in 7,000 files

• Its semantics is informal, ambiguous, and incorrect (allows data races)
• Similar problems with other definitions

Contributions

• Formal semantics for locking disciplines
• value-based
• unambiguous
• prevents data races

• Two implementations:
• type-checker that validates use of locking
• inference tool that infers locking discipline

• Experiments: programmer-written @GuardedBy:
• are often inconsistent with informal semantics
• permit data races even when consistent

guard expression;
arbitrary, e.g. a.b().f

Concurrency background

Date d = new Date();

@GuardedBy("d") List lst = ...;

synchronized (d) {
lst.add(...)
lst.remove(...)
otherList = lst;

}

Each object is
associated with a
monitor or intrinsic lock

synchronized
statement or
method locks
the monitor.

Exiting the
statement or
method unlocks
the monitor.

guard expression;
arbitrary, e.g. a.b().f

specification
of locking
discipline

Our implementations
handle explicit locks too

Guard expression:
• Aliases?
• Reassignment?
• Scoping?

What is a use?
• Any occurrence of name?
• Dereferences of name?
• Dereferences of value?

What is a use?
• Occurrence of name?
• Dereference of name? (x.f)
• Dereference of value?

Element being guarded:
• Name or value?
• Aliases?
• Reassignments?
• Side effects?

Defining a locking discipline

Element being guarded:
• Name or value?
• Aliases?
• Reassignments?
• Side effects?

Guard expression:
• Aliases?
• Reassignment?
• Side effects?
• Scoping?

← current

← our def

Yes
No
Yes
Def site

Informally:
“If program element x is annotated by @GuardedBy(L),
a thread may only use x
while holding the lock L.”

MyObject lock;
@GuardedBy("lock.field") Pair shared;
@GuardedBy("lock.field") Pair alias;

synchronized (lock.field) {
shared.a = 22;
alias = shared;

}

Value
Yes
Yes
Yes

Name protection

synchronized (lock) {
alias = shared;

}
alias.a = ...

shared = alias;
synchronized (lock) {
shared.a = ...

}

MyObject lock;
@GuardedBy("lock") Pair shared;
Pair alias;

Value protection
… not value protection … not name protection

Suffers a data race No data race

Locking discipline semantics
providing value protection
Suppose expression x has type @GuardedBy(L)

When the program dereferences a value that has ever been bound to x,
the program holds the lock on the value of expression L.
The referent of L must not change while the thread holds the lock.

A use is a dereference May lock an alias

No reassignment of guard expression.
Side effects permitted (do not affect the monitor).

Formal semantics + proof of correctness [Ernst NFM 2016]

Static analysis of a locking discipline

• Goal is to determine facts about values
• Program is written in terms of facts about variables

• Analysis computes an approximation (an abstraction)
• of values each expression may evaluate to
• of locks currently held by the program

• Both abstractions are sound

Enforcement via type-checking

Type rule: If x : @GB(L) , then L
must be held when x is dereferenced

Type system also supports
• method pre/postconditions

(@Holding annotations)
• side effect annotations
• type qualifier polymorphism
• reflection
• flow-sensitive type inference

• No two @GuardedBy annotations
are related by subtyping

• Why not @GB(L1) <: @GB(L1, L2)?
• Side effects and aliasing

Inference via abstract interpretation

[Spoto TOPLAS 2003]

[Nikolic ICTAC 2012]

Expression e is
@GuardedBy(L) if
e’s fields are
accessed only when
L is held Acquired on entry to

sync(…) { … }.
Released on exit
or side effect.

Experimental evaluation

• 15 programs, 1.3 MLOC
• BitcoinJ, Daikon, Derby, Eclipse, Guava, Jetty, Velicity, Zookeeper, Tomcat, …
• 5 contain programmer-written @GuardedBy annotations

• 661 correct annotations
• Candidates: annotations written by the programmer or inferred by our tool
• Correct: program never suffers a data race on the element (manual analysis)

• Results:
• Inference: precision 100%, recall 83%
• Type-checking: precision 100%, recall 99%
• Programmers: precision 50%, recall 42%

Programmer mistakes

Errors in every program that programmers annotated
with respect to both value and name semantics
• Creating external aliases
• Lock writes but not reads
• Syntax errors
• Omitted annotations

Implementations

• Type checker:
• Lock Checker, distributed with the Checker Framework
• http://CheckerFramework.org/
• Live demo: http://eisop.uwaterloo.ca/live

• Inference:
• Julia abstract interpretation
• http://juliasoft.com/

http://checkerframework.org/
http://eisop.uwaterloo.ca/live
http://juliasoft.com/

Contributions

• Formal semantics for locking disciplines
• value-based
• unambiguous
• prevents data races

• Two implementations:
• type-checker that validates use of locking discipline (@GuardedBy)
• inference tool that infers locking discipline (@GuardedBy)

• Experiments: programmer-written @GuardedBy:
• are often inconsistent with informal semantics
• permit data races even when consistent with informal semantics

Related work

• Name-based semantics: JML, JCIP, many others
• Heuristic checking tools: Warlock, ESC/Modula-3, ESC/Java
• Unsound inference: [Naik PLDI 2006] uses may-alias, [Rose CSJP

2004] is dynamic
• Sound inference for part of Java [Flanagan SAS 2004]
• Type-and-effect type systems: heavier-weight, detect deadlocks too
• Ownership types

	Locking discipline�inference and checking��Michael D. Ernst, Alberto Lovato, Damiano Macedonio, Fausto Spoto, Javier Thaine
	Concurrency: essential but error-prone
	Thread-unsafe code
	Data race�example
	Solution: locking
	Locking discipline =�which locks to hold when accessing what data
	Contributions
	Concurrency background
	Defining a locking discipline
	Name protection
	Locking discipline semantics�providing value protection
	Static analysis of a locking discipline
	Enforcement via type-checking
	Inference via abstract interpretation
	Experimental evaluation
	Programmer mistakes
	Implementations
	Contributions
	Related work

