
Static Lock Capabilities for Deadlock-Freedom

Colin S. Gordon
csgordon@cs.washington.edu

University of Washington

TLDI, January 28, 2012
Joint work with Michael D. Ernst and Dan Grossman

Colin S. Gordon (University of Washington) Lock Capabilities for Deadlock Freedom TLDI’12 1 / 16

Verifying Deadlock Freedom

Deadlock

A cycle of threads, each blocked waiting for a resource held by the next
thread in the cycle.

T1 → T2 → . . .→ Tn, T1 = Tn

Goal

Statically verify deadlock freedom for fine-grained locking

Balanced binary trees

Resizable hash tables

Array elements

Circular lists

Approach

A static (capability) type system

Colin S. Gordon (University of Washington) Lock Capabilities for Deadlock Freedom TLDI’12 2 / 16

Deadlock-Free Code

Assuming n2 == n1.left and n3 == n1.right:
Thread1 : sync n2 {}
Thread2 : sync n3 {}
Thread3 : sync n1 {sync n1.left {sync n1.right {}}}
Thread4 : sync n1 {sync n1.right {sync n1.left {}}}

n1
↙ ↘

n2 n3

Prior static approaches require either:

A total ordering on n1’s children (rejects T3 or T4), or

Disallow interior pointers (n2, n3, rejecting T1 and T2)

Lock capabilities impose neither restriction.

Colin S. Gordon (University of Washington) Lock Capabilities for Deadlock Freedom TLDI’12 3 / 16

Deadlock-Free Code

Assuming n2 == n1.left and n3 == n1.right:
Thread1 : sync n2 {}
Thread2 : sync n3 {}
Thread3 : sync n1 {sync n1.left {sync n1.right {}}}
Thread4 : sync n1 {sync n1.right {sync n1.left {}}}

n1
↙ ↘

n2 n3

Prior static approaches require either:

A total ordering on n1’s children (rejects T3 or T4), or

Disallow interior pointers (n2, n3, rejecting T1 and T2)

Lock capabilities impose neither restriction.

Colin S. Gordon (University of Washington) Lock Capabilities for Deadlock Freedom TLDI’12 3 / 16

Lock Capabilities

Lock Capability

A static capability that permits acquiring additional locks

Baked into a type-and-effect system

Proved sound (they prevent deadlock)

Straightforward extensions

Scale to handle a set of diverse structures
I with the help of some extensions to plumb singleton types

Colin S. Gordon (University of Washington) Lock Capabilities for Deadlock Freedom TLDI’12 4 / 16

Intuition: Tree-Based Ordering

Fine-grained locking in a binary tree:

Acquiring one lock while holding
none avoids deadlock;
“First lock is free”

Following tree order deeply
through the tree avoids
deadlock.

Assuming children are acquired
only while holding the parent
lock, locking siblings avoids
deadlock.

Colin S. Gordon (University of Washington) Lock Capabilities for Deadlock Freedom TLDI’12 5 / 16

Intuition: Tree-Based Ordering

Fine-grained locking in a binary tree:

Acquiring one lock while holding
none avoids deadlock;
“First lock is free”

Following tree order deeply
through the tree avoids
deadlock.

Assuming children are acquired
only while holding the parent
lock, locking siblings avoids
deadlock.

Colin S. Gordon (University of Washington) Lock Capabilities for Deadlock Freedom TLDI’12 5 / 16

Intuition: Tree-Based Ordering

Fine-grained locking in a binary tree:

Acquiring one lock while holding
none avoids deadlock;
“First lock is free”

Following tree order deeply
through the tree avoids
deadlock.

Assuming children are acquired
only while holding the parent
lock, locking siblings avoids
deadlock.

Colin S. Gordon (University of Washington) Lock Capabilities for Deadlock Freedom TLDI’12 5 / 16

Intuition: Tree-Based Ordering

Fine-grained locking in a binary tree:

Acquiring one lock while holding
none avoids deadlock;
“First lock is free”

Following tree order deeply
through the tree avoids
deadlock.

Assuming children are acquired
only while holding the parent
lock, locking siblings avoids
deadlock.

Colin S. Gordon (University of Washington) Lock Capabilities for Deadlock Freedom TLDI’12 5 / 16

Intuition: Tree-Based Ordering

Fine-grained locking in a binary tree:

Acquiring one lock while holding
none avoids deadlock;
“First lock is free”

Following tree order deeply
through the tree avoids
deadlock.

Assuming children are acquired
only while holding the parent
lock, locking siblings avoids
deadlock.

Colin S. Gordon (University of Washington) Lock Capabilities for Deadlock Freedom TLDI’12 5 / 16

Generalizing Beyond Trees

Trees → Tree-shaped Partial Orders

In an immutable tree-shaped partial ordering, a thread may acquire a lock
l when:

It holds no other locks, or

It holds a lock l ′ and l is a child of l ′

Notice:

No ordering imposed between siblings

No restriction on aliases

Harder:

Early lock releases

Modifying the partial order

Colin S. Gordon (University of Washington) Lock Capabilities for Deadlock Freedom TLDI’12 6 / 16

Generalizing Beyond Trees

Trees → Tree-shaped Partial Orders

In an immutable tree-shaped partial ordering, a thread may acquire a lock
l when:

It holds no other locks, or

It holds a lock l ′ and l is a child of l ′

Notice:

No ordering imposed between siblings

No restriction on aliases

Harder:

Early lock releases

Modifying the partial order

Colin S. Gordon (University of Washington) Lock Capabilities for Deadlock Freedom TLDI’12 6 / 16

Generalizing Beyond Trees

Trees → Tree-shaped Partial Orders

In an immutable tree-shaped partial ordering, a thread may acquire a lock
l when:

It holds no other locks, or

It holds a lock l ′ and l is a child of l ′

Notice:

No ordering imposed between siblings

No restriction on aliases

Harder:

Early lock releases

Modifying the partial order

Colin S. Gordon (University of Washington) Lock Capabilities for Deadlock Freedom TLDI’12 6 / 16

Lock Capabilities

c l a s s TreeNode {
guardedBy〈this〉 TreeNode left ;
guardedBy〈this〉 TreeNode right ;

}

←− Parent lock x grants capability 〈x〉

←− Child type includes the guarding capability:
x .right : guardedBy〈x〉 TreeNode

lock (x) in lock (x .right) in . . .

May only acquire lock of type guardedBy〈x〉
when holding lock x (or no locks at all).

Deadlock freedom follows from the
capability granting relation being a forest

Colin S. Gordon (University of Washington) Lock Capabilities for Deadlock Freedom TLDI’12 7 / 16

Lock Capabilities

c l a s s TreeNode {
guardedBy〈this〉 TreeNode left ;
guardedBy〈this〉 TreeNode right ;

}

←− Parent lock x grants capability 〈x〉

←− Child type includes the guarding capability:
x .right : guardedBy〈x〉 TreeNode

lock (x) in lock (x .right) in . . .

May only acquire lock of type guardedBy〈x〉
when holding lock x (or no locks at all).

Deadlock freedom follows from the
capability granting relation being a forest

Colin S. Gordon (University of Washington) Lock Capabilities for Deadlock Freedom TLDI’12 7 / 16

Lock Capabilities

c l a s s TreeNode {
guardedBy〈this〉 TreeNode left ;
guardedBy〈this〉 TreeNode right ;

}

←− Parent lock x grants capability 〈x〉

←− Child type includes the guarding capability:
x .right : guardedBy〈x〉 TreeNode

lock (x) in lock (x .right) in . . .

May only acquire lock of type guardedBy〈x〉
when holding lock x (or no locks at all).

Deadlock freedom follows from the
capability granting relation being a forest

Colin S. Gordon (University of Washington) Lock Capabilities for Deadlock Freedom TLDI’12 7 / 16

Lock Capabilities

c l a s s TreeNode {
guardedBy〈this〉 TreeNode left ;
guardedBy〈this〉 TreeNode right ;

}

←− Parent lock x grants capability 〈x〉

←− Child type includes the guarding capability:
x .right : guardedBy〈x〉 TreeNode

lock (x) in lock (x .right) in . . .

May only acquire lock of type guardedBy〈x〉
when holding lock x (or no locks at all).

Deadlock freedom follows from the
capability granting relation being a forest

Colin S. Gordon (University of Washington) Lock Capabilities for Deadlock Freedom TLDI’12 7 / 16

Lock Capabilities

c l a s s TreeNode {
guardedBy〈this〉 TreeNode left ;
guardedBy〈this〉 TreeNode right ;

}

←− Parent lock x grants capability 〈x〉

←− Child type includes the guarding capability:
x .right : guardedBy〈x〉 TreeNode

lock (x) in lock (x .right) in . . .

May only acquire lock of type guardedBy〈x〉
when holding lock x (or no locks at all).

Deadlock freedom follows from the
capability granting relation being a forest

Colin S. Gordon (University of Washington) Lock Capabilities for Deadlock Freedom TLDI’12 7 / 16

Structures with Cycles

A forest-shaped capability granting relation doesn’t require forest-shaped
data structures. For example, here is a circular list:

This circular list has cycles in the heap, but a tree-shaped capability
granting relation.

Colin S. Gordon (University of Washington) Lock Capabilities for Deadlock Freedom TLDI’12 8 / 16

Structures with Cycles

A forest-shaped capability granting relation doesn’t require forest-shaped
data structures. For example, here is a circular list:

This circular list has cycles in the heap, but a tree-shaped capability
granting relation.

Colin S. Gordon (University of Washington) Lock Capabilities for Deadlock Freedom TLDI’12 8 / 16

Supporting Mutable Structures

Lock relationships can change dynamically, so we need:

Strong Updates
=⇒ weakened form of uniqueness

Preserving Acyclicity
=⇒ track shape of capability-granting relation

Releasing Out-Of-Order
=⇒ restrictions on lock acquisition

I No time to discuss out-of-order releases

Colin S. Gordon (University of Washington) Lock Capabilities for Deadlock Freedom TLDI’12 9 / 16

Supporting Mutable Structures

Lock relationships can change dynamically, so we need:

Strong Updates
=⇒ weakened form of uniqueness

Preserving Acyclicity
=⇒ track shape of capability-granting relation

Releasing Out-Of-Order
=⇒ restrictions on lock acquisition

I No time to discuss out-of-order releases

Colin S. Gordon (University of Washington) Lock Capabilities for Deadlock Freedom TLDI’12 9 / 16

Supporting Mutable Structures

Lock relationships can change dynamically, so we need:

Strong Updates
=⇒ weakened form of uniqueness

Preserving Acyclicity
=⇒ track shape of capability-granting relation

Releasing Out-Of-Order
=⇒ restrictions on lock acquisition

I No time to discuss out-of-order releases

Colin S. Gordon (University of Washington) Lock Capabilities for Deadlock Freedom TLDI’12 9 / 16

Supporting Mutable Structures

Lock relationships can change dynamically, so we need:

Strong Updates
=⇒ weakened form of uniqueness

Preserving Acyclicity
=⇒ track shape of capability-granting relation

Releasing Out-Of-Order
=⇒ restrictions on lock acquisition

I No time to discuss out-of-order releases

Colin S. Gordon (University of Washington) Lock Capabilities for Deadlock Freedom TLDI’12 9 / 16

Supporting Mutable Structures

Lock relationships can change dynamically, so we need:

Strong Updates
=⇒ weakened form of uniqueness

Preserving Acyclicity
=⇒ track shape of capability-granting relation

Releasing Out-Of-Order
=⇒ restrictions on lock acquisition

I No time to discuss out-of-order releases

Colin S. Gordon (University of Washington) Lock Capabilities for Deadlock Freedom TLDI’12 9 / 16

Changing Capability Grants

The capability granting relation that determines each lock’s guard must
allow changes.

Partial Uniqueness

A single reference carries the guard information for an object

1 u guardedBy〈x〉 TreeNode “Unique” with guard information
∞ guardless TreeNode Duplicable, no guard information

Partial Strong Updates

Guard information is isolated, enabling strong updates to the guard

x : u guardedBy〈y〉 TreeNode −→ x : u guardedBy〈z〉 TreeNode

Goal: Type system infers strong updates without explicit guidance

Colin S. Gordon (University of Washington) Lock Capabilities for Deadlock Freedom TLDI’12 10 / 16

Changing Capability Grants

The capability granting relation that determines each lock’s guard must
allow changes.

Partial Uniqueness

A single reference carries the guard information for an object

1 u guardedBy〈x〉 TreeNode “Unique” with guard information
∞ guardless TreeNode Duplicable, no guard information

Partial Strong Updates

Guard information is isolated, enabling strong updates to the guard

x : u guardedBy〈y〉 TreeNode −→ x : u guardedBy〈z〉 TreeNode

Goal: Type system infers strong updates without explicit guidance

Colin S. Gordon (University of Washington) Lock Capabilities for Deadlock Freedom TLDI’12 10 / 16

Changing Tree Structure

public TreeNode {

public u_guardedBy〈this〉 TreeNode left;

public u_guardedBy〈this〉 TreeNode right;

}

...

guardless TreeNode a;

...

lock(a) {

lock(a.left) {

lock(a.left.left) {

let b = dread(a.left) in

let c = dread(b.left) in

c.left := dread(b);

a.left := dread(c);

} } }

Destructive Reads
dread(p) atomically assigns null to path p and returns
the old value, preventing duplication.

Colin S. Gordon (University of Washington) Lock Capabilities for Deadlock Freedom TLDI’12 11 / 16

Preserving Acyclicity

Changes to the capability-granting relation must not create cycles.

We track disjointness of capability-granting trees in a flow-sensitive
manner.

Removing an edge produces two mutually disjoint trees

Adding an edge between two mutually disjoint trees produces one tree

Colin S. Gordon (University of Washington) Lock Capabilities for Deadlock Freedom TLDI’12 12 / 16

The Core Type System

Core typing judgement:

Υ; Γ; L ` e : τ ;Υ′

Two theorems proven for basic lock capabilities with reordering:
1 Type Preservation

I Long, straightforward

2 Deadlock Freedom Preservation
I Extended semantics with capability-use log in graph form, modeling

thread dependencies

Colin S. Gordon (University of Washington) Lock Capabilities for Deadlock Freedom TLDI’12 13 / 16

The Core Type System

Core typing judgement:
tree disjointness

Υ; Γ; L ` e : τ ;Υ′

Two theorems proven for basic lock capabilities with reordering:
1 Type Preservation

I Long, straightforward

2 Deadlock Freedom Preservation
I Extended semantics with capability-use log in graph form, modeling

thread dependencies

Colin S. Gordon (University of Washington) Lock Capabilities for Deadlock Freedom TLDI’12 13 / 16

The Core Type System

Core typing judgement:
tree disjointness

Υ; Γ; L ` e : τ ;Υ′

local variable typing

Two theorems proven for basic lock capabilities with reordering:
1 Type Preservation

I Long, straightforward

2 Deadlock Freedom Preservation
I Extended semantics with capability-use log in graph form, modeling

thread dependencies

Colin S. Gordon (University of Washington) Lock Capabilities for Deadlock Freedom TLDI’12 13 / 16

The Core Type System

Core typing judgement:
tree disjointness

Υ; Γ; L ` e : τ ;Υ′

local variable typing held locks (≡ capabilities)

Two theorems proven for basic lock capabilities with reordering:
1 Type Preservation

I Long, straightforward

2 Deadlock Freedom Preservation
I Extended semantics with capability-use log in graph form, modeling

thread dependencies

Colin S. Gordon (University of Washington) Lock Capabilities for Deadlock Freedom TLDI’12 13 / 16

The Core Type System

Core typing judgement:
tree disjointness

Υ; Γ; L ` e : τ ;Υ′

local variable typing held locks (≡ capabilities)

Two theorems proven for basic lock capabilities with reordering:
1 Type Preservation

I Long, straightforward

2 Deadlock Freedom Preservation
I Extended semantics with capability-use log in graph form, modeling

thread dependencies

Colin S. Gordon (University of Washington) Lock Capabilities for Deadlock Freedom TLDI’12 13 / 16

Proposed Extensions

“Plumbing” Extensions:

Arrays (treated as object with integer-named fields)

Fixed guards (no strong update, but sharing guard info)

External capabilities
I Parameterized classes a la RCC/Java
I class CircularListNode<ghost List l> {

fixed_guard<l> CircularListNode<l> next;

fixed_guard<l> CircularListNode<l> prev;

...

}

More substantial extensions:

Unstructured Locking (requires more precise capability tracking)

Combination with lock levels

Colin S. Gordon (University of Washington) Lock Capabilities for Deadlock Freedom TLDI’12 14 / 16

Proposed Extensions

“Plumbing” Extensions:

Arrays (treated as object with integer-named fields)

Fixed guards (no strong update, but sharing guard info)

External capabilities
I Parameterized classes a la RCC/Java
I class CircularListNode<ghost List l> {

fixed_guard<l> CircularListNode<l> next;

fixed_guard<l> CircularListNode<l> prev;

...

}

More substantial extensions:

Unstructured Locking (requires more precise capability tracking)

Combination with lock levels

Colin S. Gordon (University of Washington) Lock Capabilities for Deadlock Freedom TLDI’12 14 / 16

Proposed Extensions

“Plumbing” Extensions:

Arrays (treated as object with integer-named fields)

Fixed guards (no strong update, but sharing guard info)

External capabilities
I Parameterized classes a la RCC/Java
I class CircularListNode<ghost List l> {

fixed_guard<l> CircularListNode<l> next;

fixed_guard<l> CircularListNode<l> prev;

...

}

More substantial extensions:

Unstructured Locking (requires more precise capability tracking)

Combination with lock levels

Colin S. Gordon (University of Washington) Lock Capabilities for Deadlock Freedom TLDI’12 14 / 16

Proposed Extensions

“Plumbing” Extensions:

Arrays (treated as object with integer-named fields)

Fixed guards (no strong update, but sharing guard info)

External capabilities
I Parameterized classes a la RCC/Java
I class CircularListNode<ghost List l> {

fixed_guard<l> CircularListNode<l> next;

fixed_guard<l> CircularListNode<l> prev;

...

}

More substantial extensions:

Unstructured Locking (requires more precise capability tracking)

Combination with lock levels

Colin S. Gordon (University of Washington) Lock Capabilities for Deadlock Freedom TLDI’12 14 / 16

Proposed Extensions

“Plumbing” Extensions:

Arrays (treated as object with integer-named fields)

Fixed guards (no strong update, but sharing guard info)

External capabilities
I Parameterized classes a la RCC/Java
I class CircularListNode<ghost List l> {

fixed_guard<l> CircularListNode<l> next;

fixed_guard<l> CircularListNode<l> prev;

...

}

More substantial extensions:

Unstructured Locking (requires more precise capability tracking)

Combination with lock levels

Colin S. Gordon (University of Washington) Lock Capabilities for Deadlock Freedom TLDI’12 14 / 16

Examples

Splay Tree Rotation
I Captured by SafeJava and Chalice, but SafeJava special-cases

Array Element Locking (with array extension)
I Only addressed by Gadara, which may over-synchronize

Circular Lists (with external capabilities and fixed guard extensions)
I List used in OS kernels
I Each list node guarded by a central list object
I Allows parallelism between threads using single nodes and one thread

using multiple

Dining Philosophers (with external capabilities, fixed guards, and
explicit unlock)

I All “chopstick” locks guarded by central lock
I Threads “eat” by locking central lock, then chopsticks, then releasing

central lock
I Can build hierarchy of intermediate locks for improved parallelism

All handled cleanly by a single general approach.

Colin S. Gordon (University of Washington) Lock Capabilities for Deadlock Freedom TLDI’12 15 / 16

Examples

Splay Tree Rotation
I Captured by SafeJava and Chalice, but SafeJava special-cases

Array Element Locking (with array extension)
I Only addressed by Gadara, which may over-synchronize

Circular Lists (with external capabilities and fixed guard extensions)
I List used in OS kernels
I Each list node guarded by a central list object
I Allows parallelism between threads using single nodes and one thread

using multiple

Dining Philosophers (with external capabilities, fixed guards, and
explicit unlock)

I All “chopstick” locks guarded by central lock
I Threads “eat” by locking central lock, then chopsticks, then releasing

central lock
I Can build hierarchy of intermediate locks for improved parallelism

All handled cleanly by a single general approach.

Colin S. Gordon (University of Washington) Lock Capabilities for Deadlock Freedom TLDI’12 15 / 16

Examples

Splay Tree Rotation
I Captured by SafeJava and Chalice, but SafeJava special-cases

Array Element Locking (with array extension)
I Only addressed by Gadara, which may over-synchronize

Circular Lists (with external capabilities and fixed guard extensions)
I List used in OS kernels
I Each list node guarded by a central list object
I Allows parallelism between threads using single nodes and one thread

using multiple

Dining Philosophers (with external capabilities, fixed guards, and
explicit unlock)

I All “chopstick” locks guarded by central lock
I Threads “eat” by locking central lock, then chopsticks, then releasing

central lock
I Can build hierarchy of intermediate locks for improved parallelism

All handled cleanly by a single general approach.

Colin S. Gordon (University of Washington) Lock Capabilities for Deadlock Freedom TLDI’12 15 / 16

Examples

Splay Tree Rotation
I Captured by SafeJava and Chalice, but SafeJava special-cases

Array Element Locking (with array extension)
I Only addressed by Gadara, which may over-synchronize

Circular Lists (with external capabilities and fixed guard extensions)
I List used in OS kernels
I Each list node guarded by a central list object
I Allows parallelism between threads using single nodes and one thread

using multiple

Dining Philosophers (with external capabilities, fixed guards, and
explicit unlock)

I All “chopstick” locks guarded by central lock
I Threads “eat” by locking central lock, then chopsticks, then releasing

central lock
I Can build hierarchy of intermediate locks for improved parallelism

All handled cleanly by a single general approach.

Colin S. Gordon (University of Washington) Lock Capabilities for Deadlock Freedom TLDI’12 15 / 16

Examples

Splay Tree Rotation
I Captured by SafeJava and Chalice, but SafeJava special-cases

Array Element Locking (with array extension)
I Only addressed by Gadara, which may over-synchronize

Circular Lists (with external capabilities and fixed guard extensions)
I List used in OS kernels
I Each list node guarded by a central list object
I Allows parallelism between threads using single nodes and one thread

using multiple

Dining Philosophers (with external capabilities, fixed guards, and
explicit unlock)

I All “chopstick” locks guarded by central lock
I Threads “eat” by locking central lock, then chopsticks, then releasing

central lock
I Can build hierarchy of intermediate locks for improved parallelism

All handled cleanly by a single general approach.

Colin S. Gordon (University of Washington) Lock Capabilities for Deadlock Freedom TLDI’12 15 / 16

Contributions

Introduced lock capabilities
I New approach to verifying deadlock freedom
I Well-suited to fine-grained locking
I Suitable for any verification approach, we used types

Proved soundness: lock capabilities ensure deadlock freedom

Sketched useful, straightforward extensions

Showed how lock capabilities can verify deadlock freedom for
important, challenging examples

Colin S. Gordon (University of Washington) Lock Capabilities for Deadlock Freedom TLDI’12 16 / 16

Backup Slides

Colin S. Gordon (University of Washington) Lock Capabilities for Deadlock Freedom TLDI’12 17 / 16

Splay Tree Rotation

c l a s s Node {
u guardedBy<t h i s>Node l e f t ;
u guardedBy<t h i s>Node r i g h t ;

}
. . .

l e t f i n a l n = . . . i n
l o c k (n) {

l e t final x = n . r i g h t i n
i f (x) {

l o c k (x) {
i f (x . l e f t) {
let final v name = x.left in

l o c k (x . l e f t) {
l e t v = dread(x . l e f t) i n
let final w name = v.right in

l e t w = dread(v . r i g h t) i n
// v . r i g h t := x
v . r i g h t := dread(n . r i g h t) ;
x . l e f t := dread(w) ;
n . r i g h t := dread(v) ;

}}}}}

Differences from regular code
are highlighted. Most can be
inferred by a compiler.

Colin S. Gordon (University of Washington) Lock Capabilities for Deadlock Freedom TLDI’12 18 / 16

Array-order Locking

Array-order locking is generally undecidable; lock capabilities enable a
restricted form to be verified. In our core language extended with arrays
and integers:
l e t f i n a l a r r , u n i q u e a = new u guardedBy Object [n] i n
. . .
l o c k (a r r) {

l o c k (a r r [i]) {
l o c k (a r r [j]) {

. . .
}

}
}

Note that we don’t need to compare i and j!

Colin S. Gordon (University of Washington) Lock Capabilities for Deadlock Freedom TLDI’12 19 / 16

Circular Lists

The list of running processes in an OS kernel is circular
It requires fine-grained locking for performance.
Atomic resource transfer requires locking multiple processes.
There is no sensible ordering on processes.

In our core language extended with fixed guards and external capabilities:
c l a s s C i r c u l a r L i s t {

f i x e d<t h i s> C i r c u l a r L i s t N o d e<t h i s> head ;
}
c l a s s C i r c u l a r L i s t N o d e<g h o s t C i r c u l a r L i s t l i s t > {

f i x e d g u a r d< l i s t > C i r c u l a r L i s t N o d e< l i s t > p r e v ;
f i x e d g u a r d< l i s t > C i r c u l a r L i s t N o d e< l i s t > n e x t ;
u guardedBy<t h i s> Object data ;

}

Colin S. Gordon (University of Washington) Lock Capabilities for Deadlock Freedom TLDI’12 20 / 16

Orphaned Locks

Acyclic capability granting is only half of
soundness:

p u b l i c TreeNode {
p u b l i c u guardedBy〈this〉TreeNode l e f t ;
p u b l i c u guardedBy〈this〉TreeNode r i g h t ;

}
. . .
g u a r d l e s s TreeNode a ;
. . .
l o c k (a) {

l o c k (a . l e f t) {
l o c k (a . l e f t . l e f t) {

l e t b = dread (a . l e f t) i n
l e t c = dread (b . l e f t) i n
c . l e f t := dread (b) ;
a . l e f t := dread (c) ;

} // r e l e a s e c
lock(a.left) { // l o c k c aga in

// do stuff
}

}
}

l o c k (n) { // l o c k c
lock(n.left) { // l o c k b

// DEADLOCK!!!
}

}

Colin S. Gordon (University of Washington) Lock Capabilities for Deadlock Freedom TLDI’12 21 / 16

Orphaned Locks

Acyclic capability granting is only half of
soundness:

p u b l i c TreeNode {
p u b l i c u guardedBy〈this〉TreeNode l e f t ;
p u b l i c u guardedBy〈this〉TreeNode r i g h t ;

}
. . .
g u a r d l e s s TreeNode a ;
. . .
l o c k (a) {

l o c k (a . l e f t) {
l o c k (a . l e f t . l e f t) {

l e t b = dread (a . l e f t) i n
l e t c = dread (b . l e f t) i n
c . l e f t := dread (b) ;
a . l e f t := dread (c) ;

} // r e l e a s e c
lock(a.left) { // l o c k c aga in

// DEADLOCK!!!
}

}
}

l o c k (n) { // l o c k c
lock(n.left) { // l o c k b

// DEADLOCK!!!
}

}

Colin S. Gordon (University of Washington) Lock Capabilities for Deadlock Freedom TLDI’12 21 / 16

Theorem: Type Preservation

Syntactic proof

Extended typing rules add:
I Heap typing Σ
I Per-thread capability grants φi : Value→ Variable

(or intuitively, Lock→ Lock)

Requires many invariants
I Most are natural (e.g. well-formed environments)
I A few natural to preserve, subtle to state

F e.g. relating multiple threads’ assertions about the capability-granting
relation

I Full details in TR

Colin S. Gordon (University of Washington) Lock Capabilities for Deadlock Freedom TLDI’12 22 / 16

Theorem: Deadlock Freedom Preservation

Deadlock freedom is a preservation
proof:

Build a labeled graph of how
threads use capabilities

Prove there is never a path
between a single thread’s locks
using capabilities of multiple
threads.

Detailed sketch in paper, full proof in
TR.

Colin S. Gordon (University of Washington) Lock Capabilities for Deadlock Freedom TLDI’12 23 / 16

Dining Philosophers

The problem:

The canonical deadlock example

n philosophers eating at a circular table
I Only n chopsticks, one to each side of each philosopher
I Must share chopsticks (locks) with neighbors
I Philosophers are greedy and won’t put down chopstick (release lock)

until they’ve eaten

There is no way to put a consistent structural ordering on chopsticks
(locks)

With support for lock capabilities with unstructured locking:

Capability-granting relation identical to the circular list

With releasing “global” lock early:
I Serializes acquisition
I Allows parallelism between threads holding multiple locks

Verifiably deadlock-free solution that allows some parallelism with
simple code

Colin S. Gordon (University of Washington) Lock Capabilities for Deadlock Freedom TLDI’12 24 / 16

Dining Philosophers

The problem:

The canonical deadlock example

n philosophers eating at a circular table
I Only n chopsticks, one to each side of each philosopher
I Must share chopsticks (locks) with neighbors
I Philosophers are greedy and won’t put down chopstick (release lock)

until they’ve eaten

There is no way to put a consistent structural ordering on chopsticks
(locks)

With support for lock capabilities with unstructured locking:

Capability-granting relation identical to the circular list

With releasing “global” lock early:
I Serializes acquisition
I Allows parallelism between threads holding multiple locks

Verifiably deadlock-free solution that allows some parallelism with
simple code

Colin S. Gordon (University of Washington) Lock Capabilities for Deadlock Freedom TLDI’12 24 / 16

Background: Lock Levels

The program’s locks are
partitioned into levels, and the
programmer specifies a partial
order on levels.

Lock Levels Locking Protocol

A thread may acquire a lock l
when:

It holds no other locks, or

l is in a lock level ordered
after the level of all locks
held

Limitations:

Requires total ordering on
any set of locks held
concurrently.

Can’t deal with reordering,
except for SafeJava and
Chalice.

Colin S. Gordon (University of Washington) Lock Capabilities for Deadlock Freedom TLDI’12 25 / 16

Comparing Lock Levels and Lock Capabilities

Fundamental philosophical difference: with lock levels, acquiring a lock
restricts the set of locks the thread may then acquire, while with lock
capabilities, acquiring a lock extends the set of locks the thread may then
acquire.

Lock Capabilities

Are well-suited to fine-grained
locking and reordering locks

Allow some locking without
total orderings

Poorly-suited for locking
unrelated “distant” locks

Lock Levels

Are well-suited to locking
unrelated “distant” locks

Require total ordering on locks
held simultaneously

Poorly suited for fine-grained
locking, or reordering locks

I Except Chalice, which has a
very smart variation

It is possible to integrate the two for a more expressive system.

Colin S. Gordon (University of Washington) Lock Capabilities for Deadlock Freedom TLDI’12 26 / 16

Comparing Lock Levels and Lock Capabilities

Fundamental philosophical difference: with lock levels, acquiring a lock
restricts the set of locks the thread may then acquire, while with lock
capabilities, acquiring a lock extends the set of locks the thread may then
acquire.

Lock Capabilities

Are well-suited to fine-grained
locking and reordering locks

Allow some locking without
total orderings

Poorly-suited for locking
unrelated “distant” locks

Lock Levels

Are well-suited to locking
unrelated “distant” locks

Require total ordering on locks
held simultaneously

Poorly suited for fine-grained
locking, or reordering locks

I Except Chalice, which has a
very smart variation

It is possible to integrate the two for a more expressive system.

Colin S. Gordon (University of Washington) Lock Capabilities for Deadlock Freedom TLDI’12 26 / 16

Comparing Lock Levels and Lock Capabilities

Fundamental philosophical difference: with lock levels, acquiring a lock
restricts the set of locks the thread may then acquire, while with lock
capabilities, acquiring a lock extends the set of locks the thread may then
acquire.

Lock Capabilities

Are well-suited to fine-grained
locking and reordering locks

Allow some locking without
total orderings

Poorly-suited for locking
unrelated “distant” locks

Lock Levels

Are well-suited to locking
unrelated “distant” locks

Require total ordering on locks
held simultaneously

Poorly suited for fine-grained
locking, or reordering locks

I Except Chalice, which has a
very smart variation

It is possible to integrate the two for a more expressive system.

Colin S. Gordon (University of Washington) Lock Capabilities for Deadlock Freedom TLDI’12 26 / 16

Chalice (Leino & Müller, ESOP’09, ’10)

Combines a clever variant of levels
with fractional permissions:

Uses a dense lattice of levels,
not discrete

I For any levels l0, l1, exists l ′

s.t. l0 @ l ′ @ l1

Uses fractional permissions on a
ghost field µ to reorder

These add great flexibility over other
lock level systems.

class TreeNode {

TreeNode left , right;

// declare full permission

// on left.µ, right.µ }

...

lock (n) {

reorder n.left.µ after n.µ;
lock (n.left) {

reorder n.right.µ after n.left.µ;
lock (n.right) {...}

} }

Approaches lock capabilities, but

Requires explicit reordering

Full permissions for reordering
loses external references

Fails to exploit that this structure
doesn’t need ordering on children

Colin S. Gordon (University of Washington) Lock Capabilities for Deadlock Freedom TLDI’12 27 / 16

	Verifying Deadlock Freedom
	Lock Capabilities
	Supporting Mutable Structures
	Type System & Soundness
	Extensions and Examples
	Conclusion
	Appendix

