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Verifying Deadlock Freedom

Deadlock

A cycle of threads, each blocked waiting for a resource held by the next
thread in the cycle.

T1 → T2 → . . .→ Tn, T1 = Tn

Goal

Statically verify deadlock freedom for fine-grained locking

Balanced binary trees

Resizable hash tables

Array elements

Circular lists

Approach

A static (capability) type system
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Deadlock-Free Code

Assuming n2 == n1.left and n3 == n1.right:
Thread1 : sync n2 {}
Thread2 : sync n3 {}
Thread3 : sync n1 {sync n1.left {sync n1.right {}}}
Thread4 : sync n1 {sync n1.right {sync n1.left {}}}

n1
↙ ↘

n2 n3

Prior static approaches require either:

A total ordering on n1’s children (rejects T3 or T4), or

Disallow interior pointers (n2, n3, rejecting T1 and T2)

Lock capabilities impose neither restriction.
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Lock Capabilities

Lock Capability

A static capability that permits acquiring additional locks

Baked into a type-and-effect system

Proved sound (they prevent deadlock)

Straightforward extensions

Scale to handle a set of diverse structures
I with the help of some extensions to plumb singleton types
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Intuition: Tree-Based Ordering

Fine-grained locking in a binary tree:

Acquiring one lock while holding
none avoids deadlock;
“First lock is free”

Following tree order deeply
through the tree avoids
deadlock.

Assuming children are acquired
only while holding the parent
lock, locking siblings avoids
deadlock.
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Generalizing Beyond Trees

Trees → Tree-shaped Partial Orders

In an immutable tree-shaped partial ordering, a thread may acquire a lock
l when:

It holds no other locks, or

It holds a lock l ′ and l is a child of l ′

Notice:

No ordering imposed between siblings

No restriction on aliases

Harder:

Early lock releases

Modifying the partial order
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Lock Capabilities

c l a s s TreeNode {
guardedBy〈this〉 TreeNode left ;
guardedBy〈this〉 TreeNode right ;

}

←− Parent lock x grants capability 〈x〉

←− Child type includes the guarding capability:
x .right : guardedBy〈x〉 TreeNode

lock (x) in lock (x .right) in . . .

May only acquire lock of type guardedBy〈x〉
when holding lock x (or no locks at all).

Deadlock freedom follows from the
capability granting relation being a forest
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Structures with Cycles

A forest-shaped capability granting relation doesn’t require forest-shaped
data structures. For example, here is a circular list:

This circular list has cycles in the heap, but a tree-shaped capability
granting relation.
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Supporting Mutable Structures

Lock relationships can change dynamically, so we need:

Strong Updates
=⇒ weakened form of uniqueness

Preserving Acyclicity
=⇒ track shape of capability-granting relation

Releasing Out-Of-Order
=⇒ restrictions on lock acquisition

I No time to discuss out-of-order releases
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Changing Capability Grants

The capability granting relation that determines each lock’s guard must
allow changes.

Partial Uniqueness

A single reference carries the guard information for an object

1 u guardedBy〈x〉 TreeNode “Unique” with guard information
∞ guardless TreeNode Duplicable, no guard information

Partial Strong Updates

Guard information is isolated, enabling strong updates to the guard

x : u guardedBy〈y〉 TreeNode −→ x : u guardedBy〈z〉 TreeNode

Goal: Type system infers strong updates without explicit guidance
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Changing Tree Structure

public TreeNode {

public u_guardedBy〈this〉 TreeNode left;

public u_guardedBy〈this〉 TreeNode right;

}

...

guardless TreeNode a;

...

lock(a) {

lock(a.left) {

lock(a.left.left) {

let b = dread(a.left) in

let c = dread(b.left) in

c.left := dread(b);

a.left := dread(c);

} } }

Destructive Reads
dread(p) atomically assigns null to path p and returns
the old value, preventing duplication.
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Preserving Acyclicity

Changes to the capability-granting relation must not create cycles.

We track disjointness of capability-granting trees in a flow-sensitive
manner.

Removing an edge produces two mutually disjoint trees

Adding an edge between two mutually disjoint trees produces one tree
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The Core Type System

Core typing judgement:

Υ; Γ; L ` e : τ ;Υ′

Two theorems proven for basic lock capabilities with reordering:
1 Type Preservation

I Long, straightforward

2 Deadlock Freedom Preservation
I Extended semantics with capability-use log in graph form, modeling

thread dependencies
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Proposed Extensions

“Plumbing” Extensions:

Arrays (treated as object with integer-named fields)

Fixed guards (no strong update, but sharing guard info)

External capabilities
I Parameterized classes a la RCC/Java
I class CircularListNode<ghost List l> {

fixed_guard<l> CircularListNode<l> next;

fixed_guard<l> CircularListNode<l> prev;

...

}

More substantial extensions:

Unstructured Locking (requires more precise capability tracking)

Combination with lock levels
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Examples

Splay Tree Rotation
I Captured by SafeJava and Chalice, but SafeJava special-cases

Array Element Locking (with array extension)
I Only addressed by Gadara, which may over-synchronize

Circular Lists (with external capabilities and fixed guard extensions)
I List used in OS kernels
I Each list node guarded by a central list object
I Allows parallelism between threads using single nodes and one thread

using multiple

Dining Philosophers (with external capabilities, fixed guards, and
explicit unlock)

I All “chopstick” locks guarded by central lock
I Threads “eat” by locking central lock, then chopsticks, then releasing

central lock
I Can build hierarchy of intermediate locks for improved parallelism

All handled cleanly by a single general approach.
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Contributions

Introduced lock capabilities
I New approach to verifying deadlock freedom
I Well-suited to fine-grained locking
I Suitable for any verification approach, we used types

Proved soundness: lock capabilities ensure deadlock freedom

Sketched useful, straightforward extensions

Showed how lock capabilities can verify deadlock freedom for
important, challenging examples
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Backup Slides

Colin S. Gordon (University of Washington) Lock Capabilities for Deadlock Freedom TLDI’12 17 / 16



Splay Tree Rotation

c l a s s Node {
u guardedBy<t h i s>Node l e f t ;
u guardedBy<t h i s>Node r i g h t ;

}
. . .

l e t f i n a l n = . . . i n
l o c k ( n ) {

l e t final x = n . r i g h t i n
i f ( x ) {

l o c k ( x ) {
i f ( x . l e f t ) {
let final v name = x.left in

l o c k ( x . l e f t ) {
l e t v = dread( x . l e f t ) i n
let final w name = v.right in

l e t w = dread( v . r i g h t ) i n
// v . r i g h t := x
v . r i g h t := dread( n . r i g h t ) ;
x . l e f t := dread(w ) ;
n . r i g h t := dread( v ) ;

}}}}}

Differences from regular code
are highlighted. Most can be
inferred by a compiler.
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Array-order Locking

Array-order locking is generally undecidable; lock capabilities enable a
restricted form to be verified. In our core language extended with arrays
and integers:
l e t f i n a l a r r , u n i q u e a = new u guardedBy Object [ n ] i n
. . .
l o c k ( a r r ) {

l o c k ( a r r [ i ] ) {
l o c k ( a r r [ j ] ) {

. . .
}

}
}

Note that we don’t need to compare i and j!
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Circular Lists

The list of running processes in an OS kernel is circular
It requires fine-grained locking for performance.
Atomic resource transfer requires locking multiple processes.
There is no sensible ordering on processes.

In our core language extended with fixed guards and external capabilities:
c l a s s C i r c u l a r L i s t {

f i x e d<t h i s> C i r c u l a r L i s t N o d e<t h i s> head ;
}
c l a s s C i r c u l a r L i s t N o d e<g h o s t C i r c u l a r L i s t l i s t > {

f i x e d g u a r d< l i s t > C i r c u l a r L i s t N o d e< l i s t > p r e v ;
f i x e d g u a r d< l i s t > C i r c u l a r L i s t N o d e< l i s t > n e x t ;
u guardedBy<t h i s> Object data ;

}
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Orphaned Locks

Acyclic capability granting is only half of
soundness:

p u b l i c TreeNode {
p u b l i c u guardedBy〈this〉TreeNode l e f t ;
p u b l i c u guardedBy〈this〉TreeNode r i g h t ;

}
. . .
g u a r d l e s s TreeNode a ;
. . .
l o c k ( a ) {

l o c k ( a . l e f t ) {
l o c k ( a . l e f t . l e f t ) {

l e t b = dread ( a . l e f t ) i n
l e t c = dread ( b . l e f t ) i n
c . l e f t := dread ( b ) ;
a . l e f t := dread ( c ) ;

} // r e l e a s e c
lock(a.left) { // l o c k c aga in

// do stuff
}

}
}

l o c k ( n ) { // l o c k c
lock(n.left) { // l o c k b

// DEADLOCK!!!
}

}
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Theorem: Type Preservation

Syntactic proof

Extended typing rules add:
I Heap typing Σ
I Per-thread capability grants φi : Value→ Variable

(or intuitively, Lock→ Lock)

Requires many invariants
I Most are natural (e.g. well-formed environments)
I A few natural to preserve, subtle to state

F e.g. relating multiple threads’ assertions about the capability-granting
relation

I Full details in TR
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Theorem: Deadlock Freedom Preservation

Deadlock freedom is a preservation
proof:

Build a labeled graph of how
threads use capabilities

Prove there is never a path
between a single thread’s locks
using capabilities of multiple
threads.

Detailed sketch in paper, full proof in
TR.
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Dining Philosophers

The problem:

The canonical deadlock example

n philosophers eating at a circular table
I Only n chopsticks, one to each side of each philosopher
I Must share chopsticks (locks) with neighbors
I Philosophers are greedy and won’t put down chopstick (release lock)

until they’ve eaten

There is no way to put a consistent structural ordering on chopsticks
(locks)

With support for lock capabilities with unstructured locking:

Capability-granting relation identical to the circular list

With releasing “global” lock early:
I Serializes acquisition
I Allows parallelism between threads holding multiple locks

Verifiably deadlock-free solution that allows some parallelism with
simple code
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Background: Lock Levels

The program’s locks are
partitioned into levels, and the
programmer specifies a partial
order on levels.

Lock Levels Locking Protocol

A thread may acquire a lock l
when:

It holds no other locks, or

l is in a lock level ordered
after the level of all locks
held

Limitations:

Requires total ordering on
any set of locks held
concurrently.

Can’t deal with reordering,
except for SafeJava and
Chalice.
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Comparing Lock Levels and Lock Capabilities

Fundamental philosophical difference: with lock levels, acquiring a lock
restricts the set of locks the thread may then acquire, while with lock
capabilities, acquiring a lock extends the set of locks the thread may then
acquire.

Lock Capabilities

Are well-suited to fine-grained
locking and reordering locks

Allow some locking without
total orderings

Poorly-suited for locking
unrelated “distant” locks

Lock Levels

Are well-suited to locking
unrelated “distant” locks

Require total ordering on locks
held simultaneously

Poorly suited for fine-grained
locking, or reordering locks

I Except Chalice, which has a
very smart variation

It is possible to integrate the two for a more expressive system.
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Chalice (Leino & Müller, ESOP’09, ’10)

Combines a clever variant of levels
with fractional permissions:

Uses a dense lattice of levels,
not discrete

I For any levels l0, l1, exists l ′

s.t. l0 @ l ′ @ l1

Uses fractional permissions on a
ghost field µ to reorder

These add great flexibility over other
lock level systems.

class TreeNode {

TreeNode left , right;

// declare full permission

// on left.µ, right.µ }

...

lock (n) {

reorder n.left.µ after n.µ;
lock (n.left) {

reorder n.right.µ after n.left.µ;
lock (n.right) {...}

} }

Approaches lock capabilities, but

Requires explicit reordering

Full permissions for reordering
loses external references

Fails to exploit that this structure
doesn’t need ordering on children
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