
Verification for Legacy Programs

Michael Ernst
MIT Computer Science and Artificial Intelligence Lab

Verified Software: Theories, Tools, Experiments
10 October 2005

Verification: long- and short-term

Long-term goal:

• All programs are written with verification in mind

• All are accompanied by a formal specification

In the short term, this will not be the case

• Tool deficiencies

• Programmer skills and mindset

• Legacy code

What can we do?

• To address current needs

• To move toward the desired future

Legacy code and executions

Legacy code is neither specified nor well-understood
Rich information is available in test suites and executions

• Can be integrated into formal verification

Formal and informal techniques are compatible

• Each has unique value

Applications

1. Specification inference from executions
2. Guiding human proofs
3. Automating automated theorem-proving
4. Detecting incompatible software upgrades
5. Predicting test outcomes

For each of these, a theory, a tool, and an experiment

1. Specification inference from
executions

Theory: Program executions can yield semi-formal properties

Observational abstractions state program properties [ICSE99]

• Syntactically identical to formal specification

• Reports what the program actually did

• Automatically generated from executions
• No guarantee (as with any dynamic technique)
• Typically much richer than static analysis output

• Relatively insensitive to test suite, overwhelmingly
accurate, and useful

Example

// theArray != null;
// \typeof(theArray) == \type(java.lang.Object[]);
// -1 <= topOfStack <= theArray.length-1;
// theArray[0..topOfStack] elements != null
// theArray[topOfStack+1..] elements == null
public class Stack {

private Object [] theArray;
private int topOfStack;

...

// (\result == false) == (topOfStack >= 0);
// (\result == true) == (topOfStack == -1);
public boolean isEmpty() { ... }

}

Dynamic detection
of likely invariants

Tool: Daikon invariant detector outputs operational
abstractions

• Works on C, C++, Java, Perl, . . .

• Rich output, customizable and extensible

• Relatively scalable [FSE04]

• Integrated with many other tools

• Publicly available (with source code):
http://pag.csail.mit.edu/daikon/

• Well-documented and supported

Experiments: Used in over 60 published papers

• See http://pag.csail.mit.edu/daikon/pubs/

http://pag.csail.mit.edu/daikon/
http://pag.csail.mit.edu/daikon/pubs/

2. Guiding human proofs

Theory: executions can aid humans in formal verification

• Need not throw away results of testing

Proof assistants require lemmas

• Properties always true during testing

Proof assistants require tactics

• Adapt test suite generation approach

Providing assistance

Tool: Generates lemmas and tactics

• Integrated with both Isabelle and LP

Experiments: [STTT04]

• 3 distributed algorithms

• Eliminated 90% of human interaction with both
theorem-provers

3. Automating automated
theorem-proving

Theory: Possibly unsound data can be automatically verified

Problem with operational abstractions: unsound
Problem with ATP: requires annotations
Solution: Use run-time properties as annotations

• Ease static checking, and gain guarantees on results

Annotations for static checking

Tools: ESC/Java, integration code [RV01]

Experiments: [ISSTA02, FSE02]

• 90% of properties are verifiable by ESC/Java

• 90% of necessary annotations are present

• Humans are aided even by artificially bad results
• It is easy to check, but hard to generate

4. Detecting incompatible software
upgrades

Theory: Can automatically warn of bad component upgrades

Scenario: A vendor releases version 2.0 of a software package

• Will it break your system?

Use a novel logical test to compare

• tested behavior of the new component

• observed behavior of the old component [FSE03]

Results:

• Guarantee is as good as for current component

• Proof of relative soundness [SAVCBS04]

Preventing bad upgrades

Tools: Simplify theorem prover

Experiments: [ECOOP04]
Upgrades to Perl components and to the C standard library
The tool detected incompatible upgrades
The tool approved of safe upgrades

5. Predicting test outcomes

Theory: We can effectively predict test outcomes

It is easy to generate many test inputs
It is hard to determine a (legacy) program’s desired behavior

• That is, to construct a test case from a test input

Automatically classifying test inputs

Tools: Eclat system for generating and classifying test inputs

• http://pag.csail.mit.edu/eclat/

Randomly generates many inputs
Comparing to previous behavior, classifies each as

• normal operation

• illegal input

• bug — show these to the user

Experiments: [ECOOP05]

• Outputs a small number (2–3) of suspicious test inputs

• Found bugs in real programs
• including formally specified ones!

http://pag.csail.mit.edu/eclat/

Conclusion
Legacy programs are here to stay
Sound and unsound techniques are complementary

• . . . and compatible, even for verification

• combining them leads to rich new ideas and useful tools

Automatically generated pseudo-specifications are

• quite accurate in practice

• an aid to formal verification

• a step toward a fully verified future

• useful for many other tasks

	Introduction

