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ABSTRACT

A raw object is partially initialized, with only some fields set to legal
values. It may violate its object invariants, such as that a given field
is non-null. Programs often manipulate partially-initialized objects,
but they must do so with care. Furthermore, analyses must be aware
of field initialization. For instance, proving the absence of null pointer
dereferences or of division by zero, or proving that object invariants
are satisfied, requires information about initialization.

We present a static analysis that infers a safe over-approximation
of the program variables, fields, and array elements that, at run time,
might hold raw objects. Our formalization is flow-sensitive and in-
terprocedural, and it considers the exception flow in the analyzed
program. We have proved the analysis sound and implemented it in
a tool called Julia that computes initialization and nullness informa-
tion. We have evaluated Julia on over 160K lines of code. We have
compared its output to manually-written initialization and nullness
information, and to an independently-written type-checking tool that
checks initialization and nullness. Julia’s output is accurate and useful
both to programmers and to static analyses.

Categories and Subject Descriptors: F.3.1 - Logics and Meanings
of Programs - Specifying and Verifying and Reasoning about Pro-
grams - Mechanical Verification

General Terms: Verification, Theory

Keywords: static analysis, abstract interpretation, initialization

1. INTRODUCTION

Modern programming languages such as Java require the initializa-
tion of local variables before their use. By contrast, fields of objects
hold a default value, which is null for fields of reference type in Java.
Hence, it is difficult to prove invariants involving fields. Suppose that
all assignments to a field f write a value with some property p. It is
still possible that a value read from f does not satisfy p, unless one
can prove that f is always initialized before being read. We call an
object raw [8] when its fields are not all initialized yet. Hence it is
important to know which variables might hold raw objects.

Initialization analysis soundly over-approximates the set of local
variables, fields, parameters, return values, and array elements that
might hold a raw value at run time. These sites are not just the this
variable inside the constructors, since it can be passed to methods and
stored in fields or arrays. Moreover, a raw variable loses its rawness
as soon as all its fields have been initialized (or some relevant subset
of them, see Section[4.3). Hence this might be non-raw inside a
constructor, from a given program point onwards.
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. // many fields defined here

public OptionsDialog(Frame owner) {
super (owner, "Options");
// initializes a field
this.owner = owner;
// setup() initializes the remaining fields
setup () ;
// '"this’ is non-raw here
pack () ;
}
Figure 1: A snippet of code from the JFlex program, showing an example
where a variable becomes non-raw after all its fields get initialized.

Initialization analysis has many applications in static analysis of
software. Our original motivation was type-checking of nullness
annotations. For example, the Checker Framework (18] allows fields
to be marked as @NonNull, but that information is valid only after
those fields have been initialized, that is, the containing object is
cooked [3|]. Initialization analysis is important even for a field that
is intended to be able to hold null, because there are usually object
invariants that relate field values to one another. Common examples
include that exactly one out of two fields should be null, or that
one field’s value is meaningful only if another field is non-null.
Initialization analysis can also prevent a programmer from violating
object invariants by forgetting to initialize a field, and can ensure that
a programmer explicitly initializes fields to null when appropriate,
which is good style. Another example is the zeroness analysis of
software, where one wants to guarantee that divisions never occur
over a divisor equal to 0. Since 0 is the default value for integer fields
in Java, proving that all assignments to some field f write a non-zero
value does not entail that a division by o.f (field f of object o) is
valid. Instead, 0 must be proven to be non-raw. As another example,
Boolean fields of an object are often used as flags. Since false is the
default value for Boolean fields, forgetting their initialization leads to
programming errors, when the default value is misread as the value of
a flag.

Figure [T] contains a snippet of code from class OptionsDialog
of the JFlex scanner generator, one of the applications analyzed in
Section[5] The helper method setup () is called by the constructor of
class OptionsDialog to help it build the object: setup () initializes
most of the fields. Our initialization analysis infers that the receiver
of setup () is raw and that all other references are non-raw, such as
the receiver of pack (). Furthermore, our Julia tool infers that many
fields are non-null. Without an inference of object initialization, a
nullness inference tool would either be unsound, or would be forced
to conclude that all fields are possibly null.

In principle, it would be correct to annotate all receivers, fields,
parameters, and return values as raw: that would be a sound over-
approximation of the set of raw sites. However, this would not be
useful, and would hobble follow-on analyses and human understand-
ing. The goal of this paper is to build a sound and precise analysis
that infers as few rawness annotations as possible.

Our algorithm builds a constraint graph. Each node represents a
value, along with the set of fields known to be uninitialized. The



edges represent data- and control-flow. A fixpoint calculation solves
the constraints, computing the smallest sound approximation to the
uninitialized fields for each value.

Initialization analysis is useful primarily to support other analyses
and to aid human understanding. We have evaluated our initialization
analysis in the context of nullness inference and checking. (We
emphasize that initialization analysis has many applications beyond
this one.) We chose this domain since it is very important, it has
been extensively studied, and mature and robust tools are available.
State-of-the-art tools include Julia [21]] for nullness inference and the
Checker Framework [[18] for nullness checking. In particular, the
nullness analysis of Julia is provably correct and very precise [21]].
Julia determines if a collection or array is full (only contains non-null
elements), if a field is always non-null, and if an expression is non-
null locally at a given program point, because it has been assigned a
non-null value or has been explicitly compared with null.

Julia’s nullness inference uses a notion of globally non-null fields,
that are always initialized to a non-null value, in all constructors,
before being read [22]). In this sense, it performs a reasoning that is
related to initialization analysis. However, this was deeply embedded
in and specific to the nullness inference, and its results were not
explicitly represented as initialization analysis. Our contribution
is to create, formalize, and evaluate a new, independent, reusable
initialization analysis.

The present work does not make Julia’s nullness inference any more
accurate or sound, since our initialization analysis is performed after
our nullness analysis and does not influence its results; it just provides
added information that is needed for external checking. Without
information about object initialization, a follow-on analysis, such as
nullness checking or one of the other applications described above,
would be much less useful. The nullness checker would either be
unsound (invalidating any guarantee it might hope to provide) or
would be so conservative that it would issue many spurious warnings
(making the tool unusable in practice). Another alternative would be
for the checker to do initialization inference itself, but that is slow and
non-modular, and inference is not in the spirit of a checking tool.

We have implemented our initialization analysis in Julia, resulting
in a single tool that computes sound and precise rawness and nullness
annotations. We use the Checker Framework to validate Julia’s output.
Since those two tools use different algorithms and share no code, this
provides confidence in the correctness of our initialization analysis
and its implementation in Julia. No previous initialization inference
has externally validated its output quality.

Currently, the implementation of our initialization analysis is not
sound for multi-threaded applications, because Julia assumes that
immediately after a field is checked, its value still satisfies the check.
This can be solved by applying a worst-case assumption to any field
that is not processed in a thread-local way. We do not know of any
initialization analysis that copes with this problem.

This paper makes the following contributions:

1. We formally define and prove correct an initialization analysis
for Java bytecode, independent from any other analysis (such as
nullness).

2. We explicitly consider the exceptional control flows in the pro-
gram in our definitions and proofs.

3. We implemented our initialization analysis in a scalable and
robust tool.

4. We evaluated the correctness and precision of our implemen-
tation experimentally. Julia outperformed other initialization
inference tools and discovered errors in manual annotations. An
independently-implemented type checker verified the correctness
of Julia’s output.

To the best of our knowledge, all of these points are novel.

2. RELATED WORK

We describe here the most closely-related work.

Fahndrich and Leino [8]] check object initialization using a type
qualifier (called “raw”) that indicates how many fields are initial-
ized. On exiting a constructor, the type is non-raw, or cooked, for
that class and all of its superclasses, but is still raw for any sub-
types whose constructor has not yet been exited. In a raw type, all
fields declared in that type are assumed to be possibly null, and the
type checker enforces that these possibly-uninitialized fields are not
used. The initialization and nullness type-checker that we used in
our experiments [|18]] is a re-implementation of this algorithm, with
enhancements. In OIGJ [25]], initialization can continue until an ob-
ject’s owner’s constructor (not just the object’s constructor) completes.
Delayed types [9]] specify when fields can be assumed to have been
initialized; by contrast, initialization specifies where fields can be
assumed to have been initialized.

The most closely related work is Nit, JastAdd, and Jack. Nit [[14]
infers nullness and, in parallel, also initialization. Unlike our work,
its formalization and proofs do not consider exceptional flows. Ini-
tialization analysis is mixed with nullness analysis, thus making for-
malization and proofs more complex. Moreover, it does not report ini-
tialization of specific references, but only statistics about the amount
of initialized fields. JastAdd [5]] infers nullness along with a coarser
variant of initialization, where each object is fully initialized or fully
uninitialized, without reference to how many constructors have been
exited. Its initialization analysis is presented informally and is not
proved correct. The latter increased the percentage of references
that JastAdd reports as safe from 69% to 71%, for three packages
in the JDK. In our experiments, Julia typically reported over 98%
of references to be safe, independently from initialization, since its
nullness analysis does not depend from initialization analysis. Like
Julia, Nit and JastAdd produce an annotation file that can be inserted
into Java source code or class files [2]]. But, both Nit and JastAdd
crashed when run on most of our benchmarks. Furthermore, these
tools cannot formally verify the generated annotations, whose correct-
ness follows from the correctness of the theory and implementation
of the tool. Jack [[17] requires annotated method signatures, then does
a flow-sensitive, alias-sensitive flow analysis to determine initializa-
tion and nullness types for local variables. It operates on bytecode.
Like JastAdd, it infers the coarse version of initialization. Unlike
Julia, none of these tools’ initialization analysis seems to have been
evaluated and compared to manually-identified correct annotations.

Several other nullness inference tools for Java exist. Unlike Julia,
they do not infer initialization annotations. Daikon [7|] runs the pro-
gram and soundly outputs @Nullable for variables that were ever
observed to be null. Daikon can produce an annotation file. Hou-
dini [[10] inserts @NonNull at every possible site, then runs a static
checker. Whenever the static checker issues a warning, Houdini re-
moves the relevant annotation. It iterates this process until it reaches a
fixed point. Houdini is neither sound nor complete. Inapa [|6] is based
on similar principles to Houdini. FindBugs [[13|12] finds null pointer
dereferences by using an imprecise analysis that internally produces
many false warnings, but then prioritizing and filtering aggressively
so that few false warnings are reported to a user. It attempts to infer
programmer intent (w.zz. nullness) based on code patterns. It is neither
sound nor complete.

Our initialization analysis is a constraint-based abstract interpreta-
tion [4] of a concrete operational semantics for Java bytecode, pre-
sented in Section[3] Other operational semantics for Java bytecode
are available, such as that of Freund and Mitchell [[11]. Here we
use exactly our formalization in [19], which is also the basis of the
Julia analyser, and hence we match theory with implementation. Our
formalization is indebted to [[15], where Java and Java bytecode are



load 0 JFlex.gui.OptionsDialog@p0
load 1 java.awt.Frame@p1
const "Options"@p2
call java.awt.Dialog.<init>(java.awt.Frame,java.lang.String):void@p3

N

load 0 JFlex.gui.OptionsDialog@p6
load 1 java.awt.Frame@p7
putfield JFlex.gui.OptionsDialog.owner:;java.awt.Frame@p8
load 0 JFlex.gui.OptionsDialog@p9
call JFlex.gui.OptionsDialog.setup():void@p10

i

load 0 JFlex.gui.OptionsDialog@p11
call java.awt.Window.pack():void@p12

catch@p4 -

throw java.lang.Throwable@p5
Figure 2: The blocks of code for the constructor in Figure

mathematically formalized and the compilation of Java into bytecode
and its type-safeness are machine-proved. Our formalization of the
state of the JVM (Definition 2]in Section 3.2} is similar to theirs, as
well as our formalization of heap and objects.

This paper is the first description of Julia’s initialization analysis.
An earlier version of Julia’s nullness analysis [22] does no initial-
ization analysis: the receiver of private methods are conservatively
annotated with @Raw, but no variables, fields, or return values are
annotated. That paper and this one share only a formalization of Java
bytecode (Section 3); all other material in this paper is new. A tool
paper about Julia’s nullness analyzer [21] states the existence of an
initialization analysis, without definitions, proofs, or experiments. It
refers to this paper for details.

3. OPERATIONAL SEMANTICS

This section presents an operational semantics for Java bytecode
[22]]. Then, the initialization analysis of Section@deﬁnes an abstract
interpretation that executes it on an abstract domain [4].

Bytecodes are the instruction set of the Java Virtual Machine, which
has a stack-based architecture. While lower-level than the Java pro-
gramming language, it does support high-level concepts such as ob-
jects, dispatching, and garbage collection. Our formalization is at the
bytecode level for several reasons. First, bytecode is much simpler
than a programming language: there are a relatively small number of
bytecodes, compared to varieties of source statements, and bytecode
lacks complexities like inner classes. Second, our implementation
of initialization inference is at the bytecode level; as a result, our
formalism and implementation are similar, and our proofs are more
revealing about our implementation than they would be otherwise. We
require a formalization, since one of our goals is to prove our analysis
correct.

Our operational semantics is generally standard, adding uninit to
previous formalisms. Its heart is Figures[3]and [} and the text of this
section primarily serves to introduce their terminology and comment
on their rules.

3.1 Syntax

For simplicity of presentation, we assume that int is the only
primitive type and classes are the only reference types, with only
instance fields and methods. Our implementation handles all Java
types and bytecodes. Our algorithm works on Java bytecodes that have
been preprocessed into a control flow graph. This same representation
is used in [19, 20, 24]); a similar representation is also used in [1],

(ves|p)y  if v Lor (u(v) is defined
const v=MN1| s u). and has no uninit field)
undefined  otherwise

dup t =Ml || top::s||\w).(I || top::top::s || u)
load i =M1 .0 111:5 | )
store i t =Ml || top::s||u).(I[i — top] || s || )

(| s|py  if top # 0 and top # null
undefined otherwise

if_net —Mltop::s,u}{

()€ s|jul€ > o]) if there is enough memory
(1€ ul€ — oomel) otherwise

new k= Ml || s || u)- {
getfield x.f:t = A || rec::s || u).

(U u(rec).f o s||p)  if rec # null, u(rec).f # uninit

(Il null =z sl if rec # null, u(rec).f = uninit andr € K
{0 s if rec # null, p(rec).f = uninit and 7 = int
()1 €| u[€ — npe])  otherwise

: - B (1| s || ufu(rec).f + top]) if rec # null
PulﬁeldK.f.t—Mltop.‘rec..s|y>.{<l|€w}_ww]> e
M if fop#null

h = A||top:: .
throw ¢ =M zop::s | ) {(lﬁ,u[[»—wwe]) if fop=null

catch =M | 1op | ) {1} 10p | )

(I||top||u) if top € L and u(top).x € K

exception_is K =1 [top |- {undeﬁned otherwise

return void = Ml || s||u).(l] €| u)
returnt = A(l || top::s| u).(l || top | u), where t # void
Figure 3: The bytecode semantics. Each instruction is modeled as a
function that maps a pre-state to a post-state. ¢ € LL is a fresh location.

oome is a new instance of OutOfMemoryError. mpe is a new instance of
NullPointerException.

although, there, Prolog clauses encode the graph, while we work
directly on it. A control flow graph is a directed graph of basic blocks.
All jumps are from the end to the beginning of blocks. We graphically
write

ins@p |01
rest [b,,

for a block of code starting with a bytecode instruction ins at program
point p, possibly followed by more bytecodes rest and linked to
m subsequent blocks by, ...,b,,. For examples, see Figure @, The
program point p is often irrelevant, so we write just ins. Bytecodes
operate on variables, which encompass both stack elements and local
variables. A standard algorithm [16] infers their types.

An exception handler starts with a catch bytecode. A condi-
tional, virtual method call, or selection of an exception handler is
translated into a block linked to many subsequent blocks. Each
of these subsequent blocks starts with a filtering bytecode, such as
exception_is[_not] for exceptional handlers and receiver_is
for virtual method calls, that specifies when that continuation is taken.
They are not needed in Figure[T] where a default handler is used: any
kind of exception is caught and thrown back to the caller.

3.2 Semantics

Our semantics keeps a state (Section[3.2.1) that maps program vari-
ables to values. An activation stack (Section[3.2.3)) of states models
the method call mechanism, exactly as in an actual implementation of
the JVM [16].



3.2.1 State

Definition 1. (Classes) The set of classes K in program P is par-
tially ordered w.rz. the subclass relationship <. A fype is an element
of T=KU{int}. A class x € K has instance fields x.f :¢ (field
f of type t € T defined in class k), where k and ¢ are often omit-
ted, and instance methods k.m(%) : t (method m, defined in class %,
with arguments of type T taken from T, returning a value of type
t € TU{void}), where k, %, and 7 are often omitted. Constructors are
seen as methods named init and returning (void). [J

Definition 2. (State) A value is an element of ZULU {null},
where for simplicity we use Z instead of 32-bit two’s-complement
integers as in the actual JVM (this choice is irrelevant in this paper)
and where L is an infinite set of memory locations. A state is a triple
(/|| s||4) where [ is an array of values (the local variables), s is a
stack of values (the operand stack) which grows leftwards, and u is a
memory, or heap, which binds locations to objects. The empty stack
is written €. An object o belongs to class 0.k € K (is an instance of
0.¥) and maps identifier f (a field f of class 0.x or of its superclasses)
into o.f, which can be a value or uninit. The set of states is =. We
write ; ; when we want to fix the number i of local variables and j of
stack elements. If v is a value or uninit, then v has type t in a state
(| sl|w) if: ve€ ZU{uninit} and r = int, or v € {null,uninit}
andt €K, orvel,reKandu(v).x <t [

Compared to [19], Deﬁnition@]lets fields hold uninit, a special case
of null or O that lets us distinguish an uninitialized field, holding its
default value, from a field already initialized to null or 0. States are
type-correct, in the sense that each variable holds a value consistent
with its declared, static type. This is expressed by the last sentence of
Definition[2]

Example 1. A possible state at the beginning of the constructor in
Figureis 6 = ([¢, ¢'] || & || ), where u(¢)(owner) = uninit. Location
£ contains the raw receiver u(£) of the constructor, i.e., this, whose
fields are not initialized yet. Location ¢ contains a non-raw object of
class java.awt.Frame, the explicit argument of the constructor. []

The JVM supports exceptions. Hence we distinguish normal states
E arising during the normal execution of a piece of code, from excep-
tional states E arising just after a bytecode that throws an exception.
States in E always have a stack of height 1 containing a location
(bound to the thrown exception object). We write them underlined in
order to distinguish them from the normal states.

Definition 3. (JVM State) The set of JVM states (from now on just
states) with i local variables and j stack elements is £; j = E; jUE, i,
the union of normal and exceptional states. [

When we denote a state by 6, we do not specify whether it is normal
or exceptional. If we want to stress that fact, we write (/| s || u) for a
normal state and (/| s | u) for an exceptional state.

Example 2. A state G at the beginning of the block in Figure 2]
containing catch@p4 might be an exceptional state arising when
setup () aborts with an OutOfMemoryError (the code of setup ()
contains many new statements). In that case, we would have ¢ =
(621" || ), where £ and ¢ are as in Example u (£)(owner) =
" € L (field owner of this is already initialized at p4), u(¢").x =
OutOfMemoryError and u(¢”) has no uninit fields. [J

3.2.2  Bytecodes

The semantics of a bytecode ins@p is a partial map ins : L;, ;, —
Y, j, from an initial to a final state, where iy, ji,i2, j» depend on p.
The number and type of local variables and stack elements at each p
are statically known [16]]. In the following we silently assume that
the bytecodes are run in a program point with i local variables and j

stack elements and that the semantics of the bytecodes is undefined
for input states of wrong sizes or types, as is required by [16] and as
must hold for legal Java bytecode. Figure[3]defines the semantics of
the bytecode. We discuss it below.

Basic instructions. Bytecode const v pushes v € ZULU{null}
on the stack. When v € LL (that is, a reference rather than a primitive
is being pushed), location v must be already allocated in the memory
and hold an object of a very restricted set of classes, with all fields
already initialized [16]). Figure [3|defines a partial map, because of
the undefined case: const v is undefined when const v tries to push
a location already used or referencing a non-fully initialized object.
Since (I||s|u) (where s might be €) is not underlined, const v is
undefined on exceptional states as well, i.e., const v is run only when
the JVM is in a normal state. This is the case for all bytecodes but
catch, which starts the exceptional handlers from an exceptional
state, and which is undefined on all normal states.

Bytecode dup ¢ duplicates the top of the stack, of type ¢.

Bytecode load it pushes on the stack the value of local variable
number i, which must exist and have type ¢. Conversely, bytecode
store it pops the top of the stack of type ¢ and writes it in local
variable i; if [ contains less than i+ 1 variables, the set of local
variables grows.

In our formalization, conditional bytecodes are used in comple-
mentary pairs (such as 1f_ne and if_eq), at the beginning of the
two conditional branches. The semantics of a conditional bytecode is
undefined when its condition is false. For instance, if_ne ¢ checks if
the top of the stack, of type 7, is not 0 when # = int or is not null
otherwise; the undefined case means that the JVM does not continue
the execution of the code if the condition is false.

Object-manipulating instructions. These bytecodes create or ac-
cess objects in memory.

Bytecode new x pushes on the stack a reference to a new object o
of class x, with reference fields initialized to uninit: o.f = uninit
for every field «’.f : ¢ with t € K and ¥ < ¥’. Note that the initial
value of the fields is fixed to uninit rather than to null or 0, as it
would be in a standard semantics [[19].

Bytecode getfield k. f: reads the field k. f:# of a receiver object
rec popped from the stack, of type k. It interprets uninit as null or
0 before pushing it on the stack, since the value uninit is not allowed
on the stack (Definition 2).

Bytecode putfield k.f:t writes the top of the stack, of type ¢,
inside field k.f:¢ of the object pointed to by the underlying value
rec, of type k. Its semantics might only remove uninit from the
approximation of field f, since the value fop on the stack cannot be
uninit (Definition[2).

Exception-handling instructions. Bytecode throw ¥ throws the
object pointed by the top of the stack, of type K <Throwable.

Bytecode catch starts an exception handler. It takes an exceptional
state and transforms it into a normal state, subsequently used by the
handler. After catch, bytecode exception_is K can be used to
select the appropriate handler on the basis of the run-time class of fop:
it filters those states whose top of the stack is an instance of a class
in K CK. exception_is_not K is shorthand for exception_is H,
where H are the exception classes that are not instance of any class in
K.

Method calls and return. When a caller transfers control to a callee
k.m(T) : ¢, the JVM runs an operation makescope K.m(%) : t that copies
the topmost stack elements, which hold the actual arguments of the
call, to local variables that correspond to the formal parameters of the
callee, and clears the stack. For instance methods, this is a special

argument held in local variable 0 of the callee.
Definition 4. (makescope) Let k.m(T) : t be a method and 7 the

number of stack elements holding its actual parameters, including the



insis not a call, ins(0) is defined

i b
<3;,~; o) 0= ([t |2} lins(o)) :a

7 is the number of parameters of the target method, including this
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Figure 4: The transition rules of our semantics (Section|3.2.3).

implicit parameter this. We define (makescope k.m() :1) : L =%
as

M| ve—p e vy recs || w)([rec, vi, . .. ve—1] | €]l 1)

provided rec # null and the look-up of m(%) : ¢ from the class
u(rec).x leads to k.m(%) : t. We let it be undefined otherwise. [

That is, the ith local variable of the callee is a copy of the element
located (m— 1) — i positions down the top of the stack of the caller.
Rule @) in Figure[d] throws an exception when rec is null.

Bytecode return ¢ terminates a method and clears its operand
stack, leaving only the return value when ¢t # void.

3.2.3 The Transition Rules

We now define the operational semantics of our language.

Definition 5. (Configuration) A configuration is a pair (b||c) of

a block b and a state ©. It represents the fact that the JVM is going

to execute b in state 6. An activation stack is a stack ¢y :: ¢p i

-+ 11 ¢p of configurations, where ¢ is the topmost, current or active
configuration. []

The operational semantics of a Java bytecode program is a relation be-
tween activation stacks. It models the transformation of the activation
stack induced by the execution of each single bytecode.

Definition 6. (Operational Semantics) The (small step) opera-
tional semantics of a Java bytecode program P is a relation ' =p a”
(P is usually omitted) providing the immediate successor activation
stack @’ of an activation stack o’. It is defined by the rules in Fig-

ured O

Rule([T]runs an instruction ins, different from call, by using its se-
mantics ins. Then it moves forward to run the remaining instructions.

Rules 2l and [3are for method calls. If a call occurs on a null re-
ceiver, rule[3creates a new state whose stack contains only a reference
to a NullPointerException. No actual call happens in this case.
Instead, rule2]calls a method on a non-null receiver. It looks up the
correct implementation K;.m(%) : t by using the look-up rules of the
language, builds its initial state ¢’ by using makescope, and creates
a new current configuration containing b and ¢’. It pops the actual

load 0 ODEpO
load 1 j .awt.F @pl
(| Const vopeionorams 3B I EN)) a
call java.awt.Dialog.(init)...Gp3

load 1 java.awt.Frame@pl
@( const "Options"@p2 :;Z‘ﬁ‘ H([Z,f’] Hf”/.l))::a
call java.awt.Dialog.(init)...@p3

(1) const "Options"@p2 — .. .
( call java.awt.Dialog.(init)...@p3 —>£‘é K6 TN ) e

@<| call java.awt.Dialog.({init)...ep3 |3zg ([6,07)1€" 0 20)| ) 2

B s 10,2 el = |2 106N el 2
= (el =B 106 el) =
BTt 11w =a

load 0 ODEp6
@ load 1 java.awt.Frame@p7

(| putfield OD.owner...¢p8 :})57141 H([(,f/]||£“,l,l/>>::a

load 0 OD@p9
call OD.setup() :void@pl0

load 1 java.awt.Frame@p7
{1 utfield OD.owner...Qp8
(7 oad o onepe - Bhy IELTNCNY) a
call OD.setup():void@pl0

m putfield OD.owner...@p8
( load 0 OD@p9Y
call OD.setup():void@pl0

b L))

() load 0 OD@pY .
(| cart OD. setup () :void@pl0 S8 LT el [u().omer =€) 2
o'

[[e.11e]4")) a

@<| call OD.setup():void@pl0 |:;£141

Figure 5: A partial execution according to the semantics of FlgureEI OD stands
for JFlex.qui.OptionsDialog. by is the block in F1gure|2|startmg at px.
Location £” points to the string "Options" from the constant pool. first is the
first block of the constructor of java.awt.Dialog. = is a complete execution
of the latter and ¢/ is the memory at its end.

arguments from the old current configuration and the call from the
instructions still to be executed at return time. A method call might
lead to many implementations, depending on the run-time class of the
receiver, and this rule seems non-deterministic. However, only one
thread of execution will continue, since we assume that the look-up
rules are deterministic (as in Java bytecode).

Control returns to the caller by rules[@and[3] If the callee ends in a
normal state, rule ] rehabilitates the caller configuration but keeps the
memory at the end of the execution of the callee and pushes the return
value on the stack of the caller. If the callee ends in an exceptional
state, rule|§]propagates the exception back to the caller.

Rule |6] applies when all instructions inside a block have been
executed; it runs one of its immediate successors, if any. In our
formalization of the Java bytecode, this rule is always deterministic,
since if a block has two or more immediate successors then they start
with mutually exclusive conditional instructions and only one thread
of control is actually followed.

In the notation =, we often specify the rule in Figur used; for

(1

. . (1) .
instance, we write = for a derivation step through rule

Example 3. The operational semantics, starting from the state
([6,¢'] €|l ) in Example [I| can proceed from p0 as in Figure



The first steps push on the stack the actual arguments of the con-
structor of java.awt.Dialog, whose complete execution generates
a new memory g/ at its end. The computation continues with that
memory. []

4. INITIALIZATION ANALYSIS

We define here a constraint-based abstract interpretation of the
concrete semantics of Section 3} that Julia uses to perform an initial-
ization analysis, after and independently from its nullness analysis.
This makes formalization and correctness proofs (see the technical
report [23]]) simpler and allows its use beyond nullness analysis.

Given a program P, the initialization analysis builds and then solves
a constraint graph. Each node represents a set of non-initialized fields.
Each directed edge, or arc, represents a relationship between those
sets. The arc n; — ny states that the fields in n; are also in n. The

filtering arc ny i> ny states that fields in nj except f are also in ny; it
is used for a put field bytecode that sets a field (possibly for the first
time). When a new K bytecode creates an object o, its uninitialized
fields are all fields of k and of its superclasses. Arcs are built to link
subsequent program points, following all possible flows of control
induced by loops, conditionals and exceptions.

Generally speaking, each node stands for a variable:

e [, @ p stands for the kth local variable (k > 0) at program point p

e 5, @ p stands for the kth stack element (k > 0) at program point p
f@ ew stands for field f, at any program point (“everywhere”)
return@ m stands for the return value of method m
exception@ m stands for any exception thrown by method m
I @ end of m stands for the kth local variable (k > 0) at the end
of every normal execution of method m

e {X|.f1,---,%n.fn} stands for a node containing that explicit set

of uninitialized fields.

A solution to the constraint graph is, for each node, a set of unini-
tialized fields. The best assignment is the one that has the smallest sets
while being consistent with the constraints. We compute it with a least
fixpoint calculation. For each variable, the result over-approximates
the set of its possibly uninitialized fields.

Example 4. In Figure[2] the approximation computed for /[y @p0
is § = {owner,...}, all fields of class OptionsDialog and of its
superclasses; that for so@p10 is S\ {owner}, since field owner has
been already initialized at p10. The approximation for so@p12 is 0,
since all fields of class OptionsDialog and of its superclasses have
been already initialized at p12. [

4.1 The Abstraction Map for Initialization

In order to formalize our initialization analysis and prove it correct,
we now define the abstraction map from states to initialization infor-
mation. For a given state, it maps each reference, stack element, and
field to a set of possibly-uninitialized fields.

Definition 7. (Initialization Abstraction) Let 6= ([vg...vi—{]|
wj_p:--:wp || u) be a state (possibly exceptional, that is, underlined)
with i local variables and j stack elements. Its initialization abstrac-
tion 0,(c) maps the symbols {ly...li_1,50...8j—1,f1,-..,fa}, where
fi,..., fn are all the fields in P, into sets of uninitialized fields, i.e.,
fields that have not been initialized yet for each local variable, stack
element or field:

o if vy, € ZU{null}
(o) (i) = {{f | u(ve).f =uninit} ifv €L

o if w, € ZU{null}
HeNse) = {{f | u(wy).f =uninit} ifwy €L
o(0)(fx) = {f | there exists £ € L s.t. u(u(f).f¢).f = uninit}.

a

By Definition[7] the initialization information of a stack element or
local variable is the set of fields bound to uninit in the object they
hold. The initialization information of a field f;, instead, includes
a field f if there is any object u(¢) at ¢ with field f; bound to a
location ¢ = u(¥). f; that holds an object u(¢') whose field f holds
uninit. We silently assume that u(u(€).f;).f is well defined, i.e.,
that all its components are defined. Instance fields are flattened by
this abstraction, i.e., treated as static fields: we cannot distinguish
fields with the same name but in different objects. This abstraction
is necessary to get a finite analysis, since the number of objects in
memory is potentially unbounded.

Example 5. Consider the state 6 = ([¢,¢'] ||€ | u) from Example[I}
Its abstraction is such that ownere o(c)(lp). [J

4.2 The Abstract Constraint Graph

Each pair of adjacent bytecode instructions in the control flow
graph gives rise to a set of constraint arcs. This section defines those
arcs.

Definition 8. (Bytecode constraints) Let ins, @ p and ins,@gq
be two bytecodes. Let i, and j, be the number of local variables and
stack elements at the beginning of ins, respectively. As a shorthand,
we will use inj{, :'{lk.@ p— L @q| O.S k< ip}Ut{sk@p.ﬁ sk@q|
0 <k < j,}, which indicates that there is no change in the given locals
or stack elements.

There are three cases: edges to a bytecode other than catch; edges
to catch; and constraints for the last bytecode of a method.

Case 1: edges to a bytecode other than catch:
con(const v,insy) = Uiy i
con(catch,insg) = Ui, .jp
con(exception_is[_not] K,ins,) = Ui, jp

con(dup t,insy) = U, j, U {sj-[,,l @p—sj, @q}
con(load xt,insg) = U, j, U{L@p — 5;, @ g}

)={k@p—@q|0<k<i,k#x}
U{sx@p = 5,@q|0<k< j,—1}
U{sj,~1@p—L@q}

con(store xt,insy

con(if_net,insy) =Uj, j,—2

con(new X,insg) = Uj, j, U{{K.f 1 |t e Kand k <K'} —sj, @ g}
) = Mp5j1771 U{f@ew%sj-p,l@q}

con(putfield f,insy) = {lk@p = L @q| 0 <k <ip,(k,s),-2) & aliasy}

U{si@p = 5;@q | 0 <k < ji —2, (s, 8j,~2) & aliasp}

con(getfield f,insg

Uih@p L 1,@q 0 <k <ip, (l,s;, ) € alias,}
U{sr@p EN 5t@q | 0<k<jp,—2,(s5,5),-2) € alias,}
Ulsiy1@pm [Qan)

0=

con(call my...my,in =1 Uy—g {8, —u—1@ p — ln—yy—1 @ first(my) }
U{return@my — 5, 2 @q |1 <k <n}

1 <k<ipandif (lk,s/-p,,,,l) € alias,
U k@p — [ @q| for some 0 < u < 7 then at least an my,
contains a store Iy, t

1<k<ip, 1<w<n,

(> $j,—u—1) € aliasp

for some 0 < u < 7 and no my,
contains a store Iy, t

U {lnul @end of my, — [} @gq
1 <k < jp—mandif (s,s;,—u—1) € alias)

UL 53y @p — s, @q| for some 0 < u < 7 then at least an my,

U{

contains a store Iy, t

1<k<j,—m 1<w<n,
(sk,sjp,u,l) € alias,

for some 0 < u < 7 and no my,
contains a store lg_,_1t

In—u—1@end of my, — s, @q



Case 2: edges to catch:

con(throw K,catch) = {,@p — [ @q|0 <k <ip}U{sj,-1@p —s50@gq}

con(call my...my,catch) = U, Ug;(l) {8jp—u—1@p — ly—y—1 @ first(my) }
U{exception@my — so@q |1 <k <n}U{[{@p—,@q |1 <k<i,}

con(insp,catch) = Uj, o, where ins), is neither a throw nor a call.

Case 3: constraints for the last bytecode of a method:
If the program point p belongs to method m, we define

final_con(throw k) = {s;,-1@ p — exception@m}
final_con(return void) ={@p — [@end of m|0 <k <i,}
final_con(returnt) ={[{@p = [ @end of m |0 <k <ip}
U{s

jp—1@p — return@m}

where t # void. [

The first case of Definition |§| is when ins, is not a catch: the
normal output state of ins, flows to the beginning of ins,. If ins),
is a const, the sets of uninitialized fields for local variables and stack
elements do not change. This happens also for catch, exception_is
and exception_is_not.

For dup, we also build an arc saying that the set of uninitialized
fields for the new top of the stack (s, @ g) contains the uninitialized
fields of the old top of the stack (sj,—1 @ p). Similar constraints are
built for load and store.

If ins) is an if_ne, two elements are removed from the stack. If
it is a new K, the new top of the stack contains all fields defined in x
or in a superclass ¥’ of ¥, since they are not yet initialized. Bytecodes
getfield and putfield create arcs from and to the node f@ ew for
the accessed field f; put field modifies the initialization information
of every definite alias of its receiver s, », since it initializes f. In our
implementation, we reuse here the definite aliasing analysis of [20].

The constraints generated for call are the most complex. They
link the actual arguments (at the top of the stack of the caller) to the
formal ones (the lowest local variables at the first bytecode first(my,)
of each callee my;). The local variables /; of the caller and its stack
elements sy that are not actual arguments might keep their approxima-
tion or can see it improved when they are a definite alias of an actual
argument s;, ., and the callee does not update the corresponding
formal argument /;_,, 1. In that case, the final approximation for
In—y,—1 inside the callee is used to approximate [, (respectively, s;)
after the call. This is important to let helper functions improve the
initialization approximation for the variables of the caller, as is the
case for setup () in Figure[T} whose code initializes tens of fields of
an OptionsDialog.

The second case of Deﬁnition@is when ins,;@ g is a catch: the
execution of ins, throws an exception e, caught by ins, and stored
as so@gq. The initialization approximation for the local variables
does not change. If ins) is neither a call nor a throw, then e is an
internal exception [16] without uninitialized fields and we can use
Ui, 0- Otherwise, e is the top of the stack (s o1 @ p) for throw or
an exception thrown by the called method(s) for call. In the second
case, we link actual to formal arguments.

Function final_con generates constraints for the last bytecodes of a
method m, i.e., a throw or a return: the top of the stack (s),~1 @ p)
is linked to the exception thrown by m or to its return value, if any,
respectively. For return, local variables are linked to the approxima-
tion of the local variables at the end of m.

Example 6. Consider ins, =load 1 java.awt.Frame@pl and
insy =const "Options"@p2 from Figurem Atpl we have i, =2
local variables and j, =1 stack elements. Thus con(insp,insy)=
{ly@pl — [y@p2,]/,@pl — [;@p2,l;@pl — 5, @p2,50@pl —
so@p2}. O

Example 7. Letins,=call java.awt.Dialog.(init)...@p3and
insy =load 0 JFlex.gui.OptionsDialog@pé6 from Figurem At
p3 we have i, = 2 local variables and j, = 3 stack elements. Our
aliasing analysis computes aliasy3 = {(lo,50), (l1,s1)}. This call
has n = 1 targets and ® = 3 parameters (including this). Let first
be the first bytecode of the constructor m of java.awt.Dialog,
whose code does not contain any store 0 nor any store 1. Hence
con(insp,insy) = {s0@p3 — lp@first,s) @p3 — [| @ first,s, @ p3
— L@ first, ly@ end of m — lg@p6,l; @end of m — [, @p6}. [

We now define the constraints induced by the whole program. They

are the union of the constraints generated for each pair of adjacent
instructions, possibly in two consecutive blocks.

Tk be a block
b .

ins, m

Definition 9. (Program constraints) Let

If m > 0, its induced constraints are UZ;% con(insy,insgi1) U
UL con(insy, first(by)), where first(by,) is the first instruction in by,
If m = 0, they are U]’(’;llcon(insk7 insgy1) Ufinal_con(ins,). The
constraints induced by a program P are the union of those induced by
each block of P. [

4.3 Constraint Solving

The constraints built for P are solved, i.e., a least solution is found,
satisfying the inclusions represented by the arcs. This is possible
since arcs stand for monotonic functions from the approximation of
their source to that of their sink. Hence a unique least solution exists
and can be computed with an iterated fixpoint calculation from the
empty approximation for each node.

Definition 10. (Constraint solution) The solution of a constraint
G is the least assignment S of sets of fields to nodes, such

that S({f1,...,/n}) = {f1,-.., [} for every node {fi,...,fu} €G,
S(ny) € S(ny) for every ny — ny € G and S(ny) \ {f} C S(ny) for

every nj an eG. U

Example 8. The solution of the constraints for the program in
Figure[I]is such that §(lp@p0) = {owner, ...} contains the fields of

OptionsDialog and of its superclasses. Moreover, owner¢ S(so@pl0) #

0 and S(so@pl12) = 0: all fields of OptionsDialog and its super-
classes are initialized when pack () is called. [

4.4 Correctness of the Analysis

We can now provide the correctness result for our analysis. It states
that the abstraction of all the states generated during the execution
of P according to our operational semantics is over-approximated by
the solution of the constraints generated for P. The hypothesis of this
proposition guarantees that the considered execution is feasible, i.e.,
it did not hang the Java Virtual Machine.

ins@p *)bl ||G> “a

PROPOSITION 1. Let (bfir(maimle)="{ " s

be any execution of our operational semantics, from method main
and an initial state ¢ whose objects in memory have no uninitialized
fields, with ins(G) defined when ins is not a call, or with G € E
with at least T stack elements when ins is a call with T parameters.
Let there be i local variables and j stack elements at p. Then:

For every 0 <k < i: a(o)(l) CS(L@p).

For every 0 < k < j: o(0)(sg) CS(sx@p) .

For every field fi: o(0)(fi) CS(fi@ew). [

In Java bytecode, method main receives an array of strings as parame-
ter and those strings have no uninitialized fields. Hence the hypothesis
on ¢ is sensible. The proof of Proposition[T]is in [23].



4.5 Building the ¢Raw Annotations

Our initialization analysis computes the fields of a given variable
that are definitely initialized at a given program point. But type-
checkers require a more abstract information, that is, the indication,
by @Raw, of which variables might hold a raw value, with no reference
to the specific uninitialized fields.

Given a set of non-null fields NN and a class x, let us define
NN ={K'.g € NN | ¥ >}, that s, the set of non-nul1 fields defined
in ¥ or in one of its superclasses. We can infer a superset of the
variables v, of type K, at a given program point p and a superset of
the fields f, of type x, that should be typed as @Raw, by checking if
S(v@ p)NNN # 0 or S(f @ ew) N NN # 0, respectively. Similarly
for the formal parameters of the methods and for their return value.

S. EXPERIMENTAL RESULTS

We have implemented our analysis in Section [din the Julia tool.

It can be used through the web interface http://julia.scienze,

univr.itl This section describes experiments that assess its effec-
tiveness and compare it with other tools and with manual annotations.

Section [5.1] gives statistics about Julia’s output. Section[5.2]com-
pares Julia with other inference tools. Section[5.3]compares Julia’s
output to manual annotations of initialization and nullness and to a
type checker.

As explained in the introduction, an initialization analysis is useful
in other contexts besides nullness analysis. However, nullness analysis
is a familiar and well-developed topic, and was our original motivation,
so we use it as an illustration of the benefits of initialization analysis.

5.1 Quantitative Results

We present results for four programs. The Annotation File Utilities
(AFU) 3.0 are tools for reading/writing Java annotations [2]]. JFlex
1.4.3 is a scanner generator (http://jflex.de/). Plume is a li-

brary of utility programs and data structures (http://code.google|

com/p/plume-1ib/, downloaded on Feb. 3, 2010). Daikon 4.6.4
is an invariant generator (http://pag.csail.mit.edu/daikon/).
Figure[f] lists the sizes of the programs, the analysis time, and raw
data about Julia’s output. Julia’s scalability depends on the size of
the reachable application code, rather than on the lines of source
code. Julia starts its analysis at all entry points to the program,
and then proceeds to discover and analyze all reachable code in
the program. It treats as entry points: (1) any public static
void main(String[]) method, and (2) any public static void
test* () method in a class that extends TestCase, to handle JUnit
tests.

The column fotal time in Figure [6] reports the full analysis time,
including nullness, initialization, and all supporting analyses, on a
quadcore Intel machine running at 2.66Ghz with 8 gigabytes of RAM.
The initialization analysis is fast (see the init. time column) — just a
few seconds. Most of the time is spent for the supporting aliasing and
heap analysis.

One use of initialization inference is to support nullness inference.
Nullness inference may be used to indicate locations where a null
pointer exception may be thrown, or to provide annotations for a
human or a follow-on analysis. The last two groups of columns in
Figure [6] address these two uses and are described in the following
two paragraphs.

A “dereference” is any location where a variable must be non-null
to avoid throwing a null pointer exception. These include field and
method dereferences, array accesses, array length expressions, throw
statements, and synchronization operations. In each application, Julia
proves over 94% of the dereferences safe — that is, these locations
can never throw a null pointer exception at run time. This fact can aid
in optimization and reasoning. For comparison, these numbers are

around 80% in the case of Nit [22].

Figure [f] indicates the number of annotations inferred, and the
maximum number of sites where they could possibly be inferred. For
@NonNull, these include fields, method formal parameters and return
types. A single type may have multiple sites: up to three @NonNull
annotations could be placed on Map<String, Object>. Receivers
and constructor results are not counted as sites, since they are trivially
non-null. Primitive and void types are not counted, since they cannot
be null. The sites for @Raw are the same as those for @NonNull,
plus receivers. Julia annotates a significant amount of the program,
lessening the programmer burden. (Either @NonNull annotations, or
a smaller but still significant number of @Nullable annotations, are
automatically inserted into the source code.) @Raw is inferred for as
much as 0.9% of all sites.

5.2 Comparison with Other Inference Tools

Two other tools that aim to infer initialization are Nit and JastAdd.
This section compares these tools to Julia.

Nit crashes when run on any of our subject programs. We man-
aged to make it work on part of the Annotation File Utilities, start-
ing from the two entry points in annotations.io.classfile. [Class-
FileWriter|ClassFileReader] but not from the main entry point in
annotator.Main; we call this “AFU light”. To permit a direct com-
parison, we also ran Julia from those two entry points only, as reported
in Figure[7] Julia (correctly) considers fewer methods reachable than
Nit. This makes the comparison harder, since the two tools analyze
different amounts of code. However, it is undeniable that Nit is
much faster, but the quality of its analysis is much worse. Nit proves
fewer (a smaller proportion of) dereferences safe and generates fewer
@NonNull and more @Raw annotations. Remember the precision is
proportional to the number of the @NonNull annotations and inversely
proportional to that of the @Raw annotations. Nit’s 63 @Raw anno-
tations in Figure [/| are actually an underestimate, because they do
not include receivers, return values, or any references in inner types
(in collections, maps...). By contrast, Julia considers all sites for
rawness and still reports only 10 @Raw annotations. Another concern
is soundness. A spot-check of Nit’s results revealed errors: @NonNull
annotations on references that could be null, or lack of @Raw anno-
tations where they were needed. We are not aware of errors in the
theory underlying Nit, but this incorrect output is nonetheless a cause
for concern.

JastAdd crashes when run on AFU, plume, or Daikon, apparently
because it mishandles overloaded methods. It works fine and fast for
JFlex, reporting 14 rawness annotations, more than the 3 reported
by Julia, and 389 (non-)nullness annotations, fewer than the 591
reported by Julia. We could not get JastAdd to print statistics on
safe dereferences. JastAdd’s imprecise nullness analysis never marks
static fields as @NonNull, which may cause it to output fewer @Raw
annotations than ideal. This illustrates one reason that an initialization
analysis should be evaluated along with a precise client analysis.
Another imprecision in JastAdd, that causes it to output spurious
@Raw annotations not reported by Julia, is that it considers as raw
every variable where the receiver of a constructor might propagate,
even after all its fields have been initialized. Since JastAdd is faster,
could we reduce overall runtime by using it to provide a first, coarser
approximation of initialization analysis, that Julia would improve?
This does not seem practical because of JastAdd’s instability and its
lack of a formal proof of correctness.

5.3 Comparison to Human-Written Annotations

Julia is more precise than a state-of-the-art type-checker for initial-
ization and nullness. Furthermore, Julia’s results pointed out errors in
the type-checker and in manually-written annotations.


http://julia.scienze.univr.it
http://julia.scienze.univr.it
http://jflex.de/
http://code.google.com/p/plume-lib/
http://code.google.com/p/plume-lib/
http://pag.csail.mit.edu/daikon/

size reachable program & libraries time (sec.) dereferences inferred annotations
program (lines) | methods lines | bytecodes | total | init. safe / all (%) @NonNull @Raw
AFU 13892 4342 | 42342 435617 | 209 2 | 507175143 (98.6) 649 /854 (76.0) | 10/ 1124 (0.9)
JFlex 14987 3858 | 41134 385612 | 118 2 | 8624/8753(98.5) 591/741(79.8) | 3/1109 (0.3)
plume 19652 5391 | 53403 518166 | 321 2 | 8360/8457 (98.8) 6757912 (74.0) 1/1118(0.1)
Daikon 112077 11481 | 189223 | 1526231 | 2151 10 | 70747/75062 (94.3) | 7145/10435 (68.5) | 97/15153 (0.6)
plume progs 6167 5391 | 53403 518166 | 321 2 | 247072499 (98.8) 221/277 (80.1) 1/316 (0.3)

Figure 6: Experimental results. “Lines” is counted with the cloc program (http://cloc.sourceforge.net/). Size is computed separately for the application as
downloaded, and for its reachable, analyzed portion, including any reachable libraries but not counting unreachable program and library methods. Dereferences are
counted only in the the reachable application code (not in the libraries). Safe dereferences are those that Julia can guarantee will never throw a null pointer exception
at run time. In the “Inferred annotation” columns, the denominator is the total number of sites at which the annotation could possibly be written, in fields and
method signatures of the reachable application code. The percentage of inferred annotations is also given. The most important statistic is the number of @Raw

statistics projected over the 10 classes that have a main () method; see Section

annotations in the last column; nullness information is provided for context. The “i lume progs” row reports the analysis of plume, as in a previous line, but with

size reachable program & libraries | time (sec.) dereferences inferred annotations
program (lines) | methods lines | bytecodes | total | init. safe / all (%) @NonNull @Raw
AFU light w/ Julia | 13892 2597 | 26164 234823 86 1 | 268372725 (98.5) | 340/405 (83.9) | 10/553 (1.8)
AFU light w/ Nit 13892 ? ? ? 10 ? | 3145/3887(80.9) | 316/502 (63.0) | 63 /502 (12.5)
JFlex w/ Julia 14987 3858 | 41134 385612 | 118 2 | 8624/8753(98.5) | 591/741(79.8) | 3/1109 (0.3)
JFlex w/ JastAdd | 14987 ? ? ? 3 ? 20?77 389/7() 14/7(?)

Figure 7: Comparison of three inference tools: Julia, Nit and JastAdd. A “?” entry means that the tool does not output information needed to compute that entry.

As discussed in Sectionm our analysis is proved formally correct,
modulo threading and user-defined class type parameters. (We have
not proved Julia’s implementation correct.) However, the Checker
Framework still issues some warnings while type-checking Julia’s
results, because of the different perspective of the two tools. Julia
is based on flow- and context-sensitive static analyses and abstract
interpretation; the Checker Framework is based on type-checking,
augmented by local flow-sensitivity and other enhancements [[18].

Plume comes with 508 nullness or rawness manual annotations on
312 distinct lines, plus another 36 warning suppression annotations
The default is @NonNull and @NonRaw (except for local variables,
which are subject to type inference), and so only @Nullable and/or
@Raw references are marked, which leads to fewer annotations overall.
These manual annotations were checked by a pluggable type-checker
built upon the Checker Framework [18]]. It verified both their correct-
ness and that there are no possible null dereferences)”| In contrast,
Julia reports 97 (= 8457 — 8360) possibly-unsafe dereferences and 1
rawness annotation in plume. To gain perspective on these (probably
false) warnings and on Julia’s strengths and weaknesses, we examined
differences between the manual and Julia’s annotations. We examined
rawness annotations in all of plume, rawness and nullness annotations
in a subset of plume, and rawness annotations in all of Daikon.

5.3.1 Rawness Comparison for All of Plume

We examined all rawness differences in plume. Plume contains 7
@Raw annotations and 3 (rawness) warning suppressions. By contrast,
Julia’s output contains only 1 @Raw annotation. Julia’s annotation is
on the receiver of MultiVersionControl.parseArgs(), which also
appears in the manual annotation.

The 6 differing annotations are all weaknesses in the manual anno-
tation. In other words, Julia’s output is correct, and all these variables
always hold fully-initialized values. As a result of Julia’s analysis,
the plume authors removed these extraneous @Raw annotations from
plume.

"Except for this section, all of our experiments use a version of plume from which all
nullness/rawness annotations and warning suppressions have been removed. Therefore,
Julia always starts from a clean slate without any programmer assistance.

2The guarantee is modulo the fact that when the programmer annotated the program, he
also suppressed some type-checking warnings. He only did so when manual reasoning
indicated that it was a false warning, but he may have made mistakes.

Manual Julia
error | weakness | error | weakness
6 18 0 26

Figure 8: Number of lines of diff output between manual annotations and Julia
output, classified according to Section@ In general, each difference results
in two lines of diff output.

The warning suppressions in the manual annotations are examples
of places where Julia’s analysis is more precise than that of the type
checker.

As an example of an analysis difference that accounted for most of
the annotation differences, Julia knows that every Object is non-GRaw
(because it has no fields to initialize), and Julia knows when casting
an object to a subtype may result in a @Raw type. This is because
Julia records the specific set of possibly-initialized fields for each
value (see Section ). By contrast, the type system treats rawness
as a binary property, and requires a variable to be marked as @Raw if
any of its subclasses may not yet be done initializing. This difference
is relevant at the call from MultiVersionControl.main() to the
Options constructor, for example. The manual annotations require
warning suppression for that call.

In another case, the plume developers had temporarily inserted
spurious @Raw annotations to work around a different type checker
limitation related to inferring that an object can be (partly) initialized
before its (superclass) constructor exits. The plume authors forgot to
remove the annotations when the type checker was improved. Julia’s
output reminded the plume authors to remove those temporary anno-
tations. An example was in FileIOException.getLineNumber ().

5.3.2  Full Comparison for Programs in Plume

We examined all differences between the manual annotations and
Julia’s output, for a subset of plume. We used only a subset because
the manual reasoning is so arduous (and doubly so for libraries with
potentially arbitrary calling patterns). For our subset, we chose all the
programs in plume: each class that contains a main method. There
are 10 such classes (out of 44), and they contain over 30% of plume’s
lines of code. The last line of Figure[f] provides more measurements.
We expected to find rawness differences, but did not; we briefly
discuss the results anyway, as they yield insights into the strengths
and weaknesses of Julia and manual annotations.


http://cloc.sourceforge.net/

To compare the manual annotations to Julia’s inference output, we
ran the diff program. Running diff on the plume programs yields
193 lines of diff output (compared to 1489 lines of diff output for all
of plume). Usually, there are 2 lines of diff output per difference: one
line in the diff output shows the old code, and one shows the new code.
In some cases, such as import statements and warning suppression,
there are more or fewer. To permit counting without fear of ambiguity
or subjectivity, we always use number of lines of diff output.

A technical report [23] analyzes every difference in detail. 140
out of 193 lines of diff output are uninteresting, for example because
they are due to whitespace, annotations within method bodies (Julia
only annotates signatures), or dead code. Figure [§] classifies each
remaining line according to the following four categories:

Errors in manual annotations: The type checker verifies that
instance fields are properly initialized by the time the constructor
exits, but does not do a similar check for static fields, so a static field
marked as @NonNull may contain null. Overall, Julia did not reveal
any null pointer errors, only the 3 incorrect annotations. The plume
authors have subsequently corrected these 3 errors by changing the
annotation to @Nullable.

Weaknesses in manual annotations: The plume authors skipped
annotating a few classes, such as tests. Julia’s inference results would
make the annotation task much easier.

Weaknesses in Julia output: Julia does not reason about the struc-
ture of regexps, some complex inter-procedural control flow, etc. The
type-checker also suffers these weaknesses. When the manual an-
notations use @NonNull in such a situation, they also must suppress
warnings.

Suppose that a programmer wants to use a type-checker to verify
that an unannotated version of the 10 plume programs has no null
pointer errors. (Rawness annotations are also required for any such
verification.) Further suppose that the libraries those programs use are
already annotated. (The type-checker comes with an annotated version
of the JDK and some other libraries.) The programmer can start with
Julia’s output, then edit approximately 13 (= 26/2) annotations. The
programmer must also make some other changes to accommodate
differences between the type-checker and Julia, such as suppress some
false positive warnings. This modest cost suggests that Julia’s output
is accurate and can be useful to programmers.

5.3.3 Rawness Comparison for Daikon

Similarly to Section[5.3.1} we compared manual and Julia’s inferred
rawness annotations for Daikon. Wherever there was a difference,
Julia’s annotation was correct and the manual one was incorrect.
This process also revealed an error in the nullness/initialization type-
checker.

6. CONCLUSION

We have defined a new analysis for computing field initialization
(“rawness”), proved it correct, and implemented it. Our experiments
compare it to human-provided, machine-checked, correct annotations,
and these experiments confirm the accuracy of the analysis. This
shows that a precise initialization analysis can provide, automatically,
annotations that can be manipulated or type-checked by other tools
and have similar quality as those written by hand.
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