Inference of Field Initialization

Fausto Spoto and Michael D. Ernst

University of Verona, ltaly & University of Washington, USA

Honolulu, May 25, 2011, ICSE

Clever tracking of windows by name (from a real story)

public class MyWindow extends JWindow {
private final String name; // never null

public MyWindow(String name) {
this.name = name;
setVisible (true);
}
public static void main(String[] args) {
new MyWindow("first");
new MyWindow("second");

}

Clever tracking of windows by name (from a real story)

public class MyWindow extends JWindow {

private final static Map<String, MyWindow>
map = new Hashtable<String, MyWindow>();

Clever tracking of windows by name (from a real story)

public class MyWindow extends JWindow {

@0verride

protected void windowInit() {
super.windowInit();
map.put(name, this);

}

}

Clever tracking of windows by name (from a real story)

public class MyWindow extends JWindow {
private final String name; // never null
private final static Map<String, MyWindow>
map = new Hashtable<String, MyWindow>();
public MyWindow(String name) {
this.name = name;
setVisible (true);
}
public static void main(String[] args) {
new MyWindow("first");
new MyWindow("second");
}
@0verride
protected void windowInit() {
super.windowInit();
map.put(name, this);
}
}

Clever tracking of windows by name (from a real story)

public class MyWindow extends JWindow {

private final String name; // never null

private final static Map<String, MyWindow>
map = new Hashtable<String, MyWindow>();

public MyWindow(String name) {
this.name = name; .
setVisible(true); Execution trace

X

public static void main(String[] args) {

new MyWindow("first");

new MyWindow("second");
} at MyWindow.main()

Q@0verride

protected void windowInit() {
super.windowInit();
map.put(name, this);

}

}

6/8

Clever tracking of windows by name (from a real story)

public class MyWindow extends JWindow {

private final String name; // never null

private final static Map<String, MyWindow>
map = new Hashtable<String, MyWindow>();

public MyWindow(String name) {
this.name = name; .
setVisible(true); Execution trace

X

public static void main(String[] args) {

new MyWindow("first");

new MyWindow("second"); at MyWindow.<init>()
} at MyWindow.main()

Q@0verride

protected void windowInit() {
super.windowInit();
map.put(name, this);

}

}

Clever tracking of windows by name (from a real story)

public class MyWindow extends JWindow {

private final String name; // never null

private final static Map<String, MyWindow>
map = new Hashtable<String, MyWindow>();

public MyWindow(String name) {
this.name = name;

setVisible(true); Execution trace
}
public static void main(String[] args) {
new MyWindow("first"); at JWindow.<init>()
new MyWindow("second"); at MyWindow.<init>()
} at MyWindow.main()
@0verride

protected void windowInit() {
super.windowInit();
map.put(name, this);
}
}

Clever tracking of windows by name (from a real story)

public class MyWindow extends JWindow {

private final String name; // never null

private final static Map<String, MyWindow>
map = new Hashtable<String, MyWindow>();

public MyWindow(String name) {
this.name = name;

Execution trace

setVisible (true);
}
public static void main(String[] args) { T R e
new MyWindow("first"); at JWindow.<init>()
new MyWindow("second"); at MyWindow.<init>()
} at MyWindow.main()
Q@0verride

protected void windowInit() {
super.windowInit();
map.put(name, this);

}

}

Clever tracking of windows by name (from a real story)

public class MyWindow extends JWindow {

private final String name; // never null

private final static Map<String, MyWindow>
map = new Hashtable<String, MyWindow>();

public MyWindow(String name) {
this.name = name;

Execution trace

setVisible (true);
¥ at Hashtable.put()
public static void main(String[] args) { w3 Tt e Tt)
new MyWindow("first"); at JWindow.<init>()
new MyWindow("second"); at MyWindow.<init>()
} at MyWindow.main()
@0verride

protected void windowInit() {
super.windowInit();
map.put (name, this);

}

}

10/8

Clever tracking of windows by name (from a real story)

public class MyWindow extends JWindow {
private final String name; // never null
private final static Map<String, MyWindow>

map = new Hashtable<String, MyWindow>();
public MyWindow(String name) {

this.name = name; .
Execution trace

setVisible (true);

} NullPointerException

. at Hashtable.put()
public static void main(String[] args) { wis Tt e Tt)
new MyWindow("first"); at JWindow.<init>()
new MyWindow("second"); at MyWindow.<init>()
} at MyWindow.main()
@0verride

protected void windowInit() {
super.windowInit();
map.put(name, this);

}

}

11/8

The notion of rawness

Definition (Raw object)

An object is raw wrt. fields F iff some field in F is not initialized.

12/8

The notion of rawness

Definition (Raw object)

An object is raw wrt. fields F iff some field in F is not initialized.

Example

Variable this is raw inside windowInit wrt. field name:

@0verride O@Raw
protected void windowInit() {
. map.put(name, this);

by

Hence there is no guarantee that name is already initialized there.

4

Note: assigning null into a field makes it initialized

13/8

Our goal: an automatic inference for initialization

@ define a concrete operational semantics of a Java-like language

@ define a constraint-based abstract interpretation of that
semantics

© prove them related by a correctness relation

@ use our abstract interpretation as an inference engine for
initialization
© measure its precision by using nullness analysis
e but any other analysis could be used instead

14/8

Java bytecode as a graph of basic blocks

load 0 of type MyWindow
call javax.swing.JWindow.<init>():void

N

load 0 of type MyWindow
load 1 of type java.lang.String
putfield MyWindow.name:java.lang.String
load 0 of type MyWindow
const 1
call MyWindow.setVisible(boolean):void

catch

throw java.lang.Throwable

return void

a graph for each constructor or method
explicit, inferred types
resolved field and method references (through class analysis)

explicit exception handlers

15/8

Bytecodes work over states

A state is a triple (/| s| p) of local variables, operand stack and
heap, that binds locations to objects.

An object o belongs to class 0.x € K and maps field identifiers f
into o.f, which can be a value or uninit.

locals stack

< [this,name], this, 1>
this.name = name;

4

load O of type MyWindow

name

uninit

Bytecodes work over states

A state is a triple (/| s |) of local variables, operand stack and
heap, that binds locations to objects.

An object o belongs to class 0.x € K and maps field identifiers f
into o.f, which can be a value or uninit. J

locals stack

< [this,name], this ::name,y >

this.name = name;

4
load 0 of type MyWindow
load 1 of type String

name

uninit

Bytecodes work over states

A state is a triple (/| s |) of local variables, operand stack and
heap, that binds locations to objects.

An object o belongs to class 0.x € K and maps field identifiers f
into o.f, which can be a value or uninit. J

locals stack

< [this,name], €, 1>

this.name = name;

4
load 0 of type MyWindow
load 1 of type String
putfield MyWindow.name

18/8

Formalisation of state transformations

load i of type t
(sl = s |)

putfield k.f

(I'| top::rec::s | uy = (I s| w[n(rec).f — top]) if rec # null

new r (¢ is fresh, all reference fields in o contain uninit)

M s|p) = (I|€::s|u[l— o]) if there is enough memory

We define an operational semantics over an activation record of
states (see the paper for details).

19

From concrete to abstract

Concrete
We have a concrete notion of states and of state transformers
@ concrete states store locations, integers, everything

@ we have seen an execution of three bytecodes in sequence

Abstract
We are going to define abstract states and state transformers

| \

@ abstract states store the sets of uninitialized fields, only

@ we will see the same execution over this abstraction

| \

Abstract Interpretation

@ we will define this abstraction systematically

@ and link concrete and abstract with a correctness result

Our abstraction of the concrete states

Abstraction of ([lo.../i—1] |sj—1::---11s0 | 1)
o variable-wise: ([/g ... /5] sq - -usg [... £)
oo {(Z) if Ik € Z U {null}
TV {F | wl).f = uninit} if f €L

o if sy € ZU {null}
ST {{f | p(se).F = uninit} if sg €L
0
if fx has primitive type
° f¥=
{f | there exists ¢ € L s.t. p(pu(¢).fc).f = uninit}
if fx has reference type

\

Example of abstract execution

load 0 of type MyWindow

locals stack

< [this,name], this, u>

([{name}, 0] | {nane} | 0

locals stack

22/8

Example of abstract execution

load 1 of type String

locals stack

< [this,name], this::name,y >

- o
—_— 0
count
T
value

name\A

uninit

([{nane}, 0] | {name} 0] 0, 0)

locals stack Dame value

fields
23/8

Example of abstract execution

putfield MyWindow.name

locals stack

< [this,name], €, u>

(I NIND

locals Stack name value

fields
24/8

From program code to an abstract graph

nodes stand for local variables, stack
elements, fields. . .

13

7~ O
r

1oad 0 of type MyWindow
call javax.swing,JWindow. <init>():void
10ad 0 of type MyWindow
load 1 of type java.lang.String
putfield MyWindow.name:java.lang.String
10ad 0 of type MyWindow
const 1
call MyWindow.setVisible(boolean):void

catch return void
throw java.lang.Throwable

25/8

From program code to an abstract graph

nodes contain a set of non-initialized

fields
13

o O
r

10ad 0 of type MyWindow
call javax.swing,JWindow. <init>():void
load 0 of type MyWindow
load 1 of type java.lang.String

putfield MyWindow.name:java.lang.String

load 0 of type MyWindow

const 1

call MyWindow.setVisible(boolean):void

catch
hrow avaiang Throwabie

From program code to an abstract graph

arcs propagate those sets from source
to sink (set inclusion)

load 0 of type MyWindow
call javax.swingJWindow. <init>():void
load 0 of type MyWindow
load 1 of type java.lang.String
putfield MyWindow.name:java.lang.String
load 0 of type MyWindow
const 1
call MyWindow.setVisible(boolean):void

catch return void
throw java.lang.Throwable urn voi {

Propagation of uninitialized fields

program point p program point q
int } 2
{point p g .
new C 2 '
Nodes contain fields not yet ‘ - ‘
initialized, for that local % ,
variable or stack element g X
Arcs propagate those fields ‘ .
from source to sink) constant node 1
containing all ‘ ‘
| >
fields of C
and of its superclasses

28/8

Propagation of uninitialized fields

program point p program point q

)

{point p}
const v

{point q}

locals

Nodes contain fields not yet
initialized, for that local
variable or stack element

stack

® 000

Arcs propagate those fields
from source to sink

)

) ngﬂ

20/8

Propagation of uninitialized fields

program point p program point q

—

{point p}
load k of type t

{point q}

Nodes contain fields not yet
initialized, for that local
variable or stack element

stack

0--0@-'&?—0

Arcs propagate those fields
from source to sink

00 006006

Propagation of uninitialized fields

program pointp program point q
{point p}

store k of type t

{point q} !

locals

Nodes contain fields not yet
initialized, for that local ‘

variable or stack element

stack

Arcs propagate those fields
from source to sink

-
® 000

31/8

Propagation of uninitialized fields

program point p program point q

—_——

locals

o--o<)>--e
- 06 6

{point p}
getfield £

{point q}

stack

Fields are approximated in a
context insensitive way.

fields uninitialized
in the objects
stored in f

32/8

Propagation of uninitialized fields

program point p program point q

locals

‘OOT@@G

{point p}
putfield £

{point q}

|

If local /x is a definite alias of
the stack element s;_; at p.

|

- 06060

stack

There might be more definite
aliases: all are considered.

stored in f

fields uninitialized
@ in the objects
P

\
\
\

33/8

Interprocedural analysis: return

stack

o 0070

A simpler rule applies when
there is no returned value.

)

program point p program point q
w
© 1
3} 1
o 1
{point p}
return type - " @
{point q} ‘
|
1

\- fields uninitialized
- @ in the returned
values of m

34/8

Interprocedural analysis: call

program point p program point q
-7
0 T 1
3 1 1
o 1 1
@ - = @ fields uninitialized
in the returned
{point p} ’ - = ‘ values of m
X 1
call m 5 .
{point q} 5 g -
3
2
L) 0
& L] 1 g
2 i / 1]
“E’ § 1 o
© 1 K
& 1 returned value 3
o 1 =
© ‘ C—)§
13
2 \/
©
o —J

35/8

Putting everything together

@ The previous graph construction rules are applied for any p
and for every intraprocedural successor g of p

@ A single p may have zero, one or more successors q

load 0 of type MyWindow

call javax.swing.JWindow.<init>():void [public javax.swing JWindow.<init>():void]

~

putfield MyWindow.name:java.lang String [private final MyWindow.name:java.lang.String]
load 0 of type MyWindow

load 0 of type MyWindow
load 1 of type java.lang String

const 1

call MyWindow.setVisible(boolean):void [public java.awt. Window.setVisible(boolean):void]

catch
) return void
throw java.lang Throwable

36/8

Putting everything together

@ The previous graph construction rules are applied for any p
and for every intraprocedural successor g of p

@ A single p may have zero, one or more successors q

load 0 of type MyWindow

call javax swing.JWindow.<init>():void [public javax.swing JWindow.<init>(:void]

.

putficld MyWindow.name:java.lang.String [private final MyWindow.name:java.lang.String]

load 0 of type MyWindow

load 1 of type java.lang.String

load 0 of type MyWindow
const 1

call MyWindow.setVisible(boolean):void [public java.awt.Window.setVisible(boolean):void]

catch .
. return void
throw java.lang. Throwable

37/8

Putting everything together

@ The previous graph construction rules are applied for any p
and for every intraprocedural successor g of p

@ A single p may have zero, one or more successors q

load 0 of type MyWindow

call javax.swing.JWindow.<init>():void [public javax swing.JWindow.<init>():void] |

.

putficld MyWindow.name:java.lang.String [private final MyWindow.name:java.lang.String]

Toad 0 of type MyWindow
load 1 of type java.lang.String

load 0 of type MyWindow
const 1

call MyWindow.setVisible(boolean):void [public java.awt.Window.setVisible(boolean):void]

catch .
return void
throw java.lang. Throwable

38/8

More details in the paper

The actual graph construction is more complex
Exceptions

Propagation of side-effects

Optimizations: most nodes are collapsed when they definitely
have the same approximation

39/8

Correctness of the analysis
Solution of the graph

@ a solution is a set of non-initialized fields for each node

@ arcs stand for set inclusion
@ arcs labeled with —=f stand for inclusion of everything but £

@ a minimal solution can be computed through a fixpoint engine

Correctness

For each program point p, every time the operational semantics
reaches p in a state ([lp.../i—1]| sj—1::---::s0 | 1), we have that

@ each /% is included in the solution of node 1i at p

@ each s is included in the solution of node sj at p

@ each 2 is included in the solution of node fk

Inferring rawness annotations

Definition (Raw object, reminder)

An object is raw wrt. fields F iff some field in F is not initialized.

We can use our analysis to annotate each program variable v that
might hold raw objects (w.r.t. F):

@ build the graph
@ find its minimal solution
@ consider the approximation of the node for v

@ if it intersects F, then it gets annotated as @Raw

@ by correctness of the approximation, this annotation is correct

41/8

Experiments: integration Julia/Checker Framework

Julia

An inference engine of
Java program properties
based on abstract
interpretation

@ nullness and rawness analysis are distinct analyses

e Julia performs nullness analysis and infers a set of non-null
fields F

e then it performs initialization analysis and builds the @Raw
annotations wrt. F

42/8

Experiments: integration Julia/Checker Framework

The Checker

lia jaif file

Jul ! Framework

An inference engine of — A generic type-checker
Java program properties for Java program
based on abstract Ii> l:,‘> properties based on
interpretation annotation types

The jaif file contains nullness (@Nullable, @NonNull, @PolyNull)
and initialization (@Raw) annotations of the program under analysis.

43/8

Experiments: a cheap analysis

size | time (sec.) dereferences
program | (lines) | total | init. safe / all (%)
AFU 13892 | 209 | 2| 5071/ 5143 (98.6)
JFlex | 14987 | 118| 2| 8624 / 8753 (98.5)
plume | 10652 | 321 | 2| 8360 / 8457 (98.8)
Daikon | 112077 | 2151 | 10 | 70747/75062 (94.3)

inferred annotations

program | @NonNull/all (%) | @Raw/all (%)

AFU 649 / 854 (76.0) | 10 / 1124 (0.9)

JFlex 591 / 741 (79.8) | 3 / 1109 (0.3) optimal result
plume 675 /912 (74.0) | 1 /1118 (0.1) optimal result
Daikon | 7145/10435 (68.5) | 97/15153 (0.6)

44/8

Experiments: comparison to Nit

A tool inferring nullness and initialization (one abstract domain)

Hubert, Jensen, Pichardie. Semantic foundations and inference of
non-null annotations. Formal Methods for Open Object-based
Distributed Systems (FMOODS'08)

sound theory
crashes on all tests
we could run it on a subset of AFU

no @Raw annotations for receivers, return, inner types

output contained errors

time (s.) dereferences inferred annotations

AFU | tot. | init. safe/all (%) @NonNull/all (%) | ©@Raw/all (%)
Julia | 86 1 | 2683/2725 (98.5) 340/405 (83.9) | 10/553 (1.8)
Nit 10 ? | 3145/3887 (80.9) 316/502 (63.0) | 63/502 (12.5)

45/8

Experiments: comparison to JastAdd

A tool for type inference and checking

Ekman, Hedin. Pluggable checking and inferencing of non-null
types for Java. Journal of Object Technology, 2007.

no sound theory
crashes on all tests but for JFlex

does not deal with static fields

imprecise: the receiver of a constructor is @Raw, always, also
in helper functions

time (s.) dereferences inferred annotations
JFlex tot. | init. safe/all (%) @NonNull/all (%) | eRaw/all (%)
Julia 118 2 | 8624/8753 (98.5) 591/741 (79.8) | 3/1109 (0.3)
JastAdd 3 7 ?/7(7) 389/7 (?) 14/7 (7)

46 /8

Experiments: comparison to human-written annotations

@ the plume library has a full manual annotation wrt.
@Nullable and @Raw

e 7 @Raw annotations, 3 @Raw warning suppressions
@ the jaif file generated by Julia is different

e 1 @Raw annotation only
o the 6 extra are human errors: the developers removed them
e the 3 warning suppressions are weaknesses in the type-checker

@ main difference: rawness is binary for the type-checker, but
not for Julia

@ similar results for Daikon

47/8

Conclusion

@ an inference technique for field initialization

o useful whenever a property of a field holds after its
initialization

o fully implemented and effective

e its results improve manual annotations
@ or can be used as a starting point for manual annotation

@ proved correct through a graph-based abstract interpretation,
not limited to initialization analysis:

o class analysis
o aliasing analysis
o full arrays/collections analysis

@ Julia: http://julia.scienze.univr.it

@ The Checker Framework:
http://types.cs.washington.edu/checker-framework

48 /8

http://julia.scienze.univr.it
http://types.cs.washington.edu/checker-framework

