Collaborative Verification of Information Flow
for a High-Assurance App Store

Michael D. Ernst, René Just, Suzanne Millstein, Werner Dietl*,
Stuart Pernsteiner, Franziska Roesner, Karl Koscher, Paulo Barros,
Ravi Bhoraskar, Seungyeop Han, Paul Vines, and Edward X. Wu

University of Washington
*University of Waterloo

November 6, 2014 W

-y of W
2‘5\\‘! asy, b,
& 2,

Jwod
& n,
ring W

S
. S
:K'/'ence A

7o,

Introduction

Current commercial app stores

@\D a8

> -0 000
==/DD

Several hundred T~
new apps per day [Approval process]

René Just, UW CSE Collaborative Verification of Information Flow for a High-Assurance App Store

1/24

Introduction

Current commercial app stores

@ \ D D|‘|
h ‘
P ~08 8l
= o
Several hundred T~
new apps per day [Approval process]

Problem: Every major app store has approved malware!

René Just, UW CSE Collaborative Verification of Information Flow for a High-Assurance App Store

1/24

Introduction

Current commercial app stores

@ %0,
/ 0 0 C
" o
Several hundred T~
new apps per day [Approval process]

Problem: Every major app store has approved malware!

Best-effort solution: Malware removed when encountered

René Just, UW CSE Collaborative Verification of Information Flow for a High-Assurance App Store 1/24

Introduction

High-assurance app stores

Needed in multiple domains
» Government app stores (e.g., DoD)
» Corporate app stores (e.g., financial sector)
» App stores for medical apps

Require stronger guarantees
» Verified absence of (certain types of) malware

Verification is costly
» Effort is solely on app store side
» Analyst needs to understand/reverse-engineer the app

René Just, UW CSE Collaborative Verification of Information Flow for a High-Assurance App Store 2/24

Introduction

High-assurance app stores

Needed in multiple domains
» Government app stores (e.g., DoD)
» Corporate app stores (e.g., financial sector)
» App stores for medical apps

Require stronger guarantees
» Verified absence of (certain types of) malware

Verification is costly

» Effort is solely on app store side

» Analyst needs to understand/reverse-engineer the app
Our solution: Collaboratively verify absence of malware
Our focus: Information-flow malware

René Just, UW CSE Collaborative Verification of Information Flow for a High-Assurance App Store 2/24

Introduction

Example: Information-flow malware

App Permissions

Read location
Internet

René Just, UW CSE Collaborative Verification of Information Flow for a High-Assurance App Store

3/24

Introduction

Example: Information-flow malware

App

Permissions

Read location
Internet i

René Just, UW CSE

Collaborative Verification of Information Flow for a High-Assurance App Store 3/24

Introduction

Example: Information-flow malware

Permissions

Read location
Internet i

Read location
Internet

René Just, UW CSE

Collaborative Verification of Information Flow for a High-Assurance App Store 3/24

Introduction

Example: Information-flow malware

Permissions

Read location
Internet i

Read location
Internet

René Just, UW CSE

Collaborative Verification of Information Flow for a High-Assurance App Store 3/24

Introduction

Example: Information-flow malware

Permissions Information flow

Read location
Internet i

Read location Location —
Internet Internet

René Just, UW CSE

Collaborative Verification of Information Flow for a High-Assurance App Store 3/24

Introduction

Example: Information-flow malware

Permissions Information flow

Read location

Internet.*i*l
Read location Location —
Internet Internet fi.

René Just, UW CSE

Collaborative Verification of Information Flow for a High-Assurance App Store 3/24

Introduction

Example: Information-flow malware

Permissions Information flow

Read location

Internet.ﬁ,
Read location Location —
Internet Internet .ﬁ.

Read location
Internet

René Just, UW CSE

Collaborative Verification of Information Flow for a High-Assurance App Store 3/24

Introduction

Example: Information-flow malware

Permissions Information flow

Read location

Internet.ﬁ,
Read location Location —
Internet Internet .ﬁ.

Read location
Internet

René Just, UW CSE

Collaborative Verification of Information Flow for a High-Assurance App Store 3/24

Introduction

Example: Information-flow malware

Permissions Information flow

Read location

Internet.ﬁ,
Read location Location —
Internet Internet .ﬁ.

Read location Location —
Internet Internet

René Just, UW CSE

Collaborative Verification of Information Flow for a High-Assurance App Store 3/24

Introduction

Example: Information-flow malware

Permissions Information flow

Read location

Internet.ﬁ,
Read location Location —
Internet Internet .ﬁ.

Read location Location —
Internet Internet

René Just, UW CSE

Collaborative Verification of Information Flow for a High-Assurance App Store 3/24

Introduction

Example: Information-flow malware

Permissions Information flow

Read location

Internet.ﬁ,
Read location Location —
Internet Internet .ﬁ.

Read location Location — Location —
Internet Internet BadGuy.com

René Just, UW CSE

Collaborative Verification of Information Flow for a High-Assurance App Store 3/24

Introduction

Example: Information-flow malware

Permissions Information flow

Read location

Internet.ﬁ,
Read location Location —
Internet Internet .ﬁ.

Read location Location — Location —
Internet Internet BadGuy.cor'ﬁl

René Just, UW CSE

Collaborative Verification of Information Flow for a High-Assurance App Store 3/24

Introduction

Example: Information-flow malware

Permissions

Read location
Internet i

Read location
Internet

Read location
Internet

Information flow

Prevent malware using an
information flow type-system

Location —
Internet =t

Location — Location —
Internet BadGuy.cor'ﬁ
I

René Just, UW CSE

Collaborative Verification of Information Flow for a High-Assurance App Store 3/24

Approach

Approach: Overview

Collaborative verification model
» Leverage but don’t trust the developer

Information Flow Type-checker (IFT)
» Finer-grained permission model for Android
» False positives and declassifications
» Implicit information flow

Evaluation
» Effectiveness: Effective for real malware in real apps
» Usability: Low annotation and auditing burden

René Just, UW CSE Collaborative Verification of Information Flow for a High-Assurance App Store 4/24

Approach

Collaborative verification model

Developer provides

App
description

Annotated
source code

René Just, UW CSE

Collaborative Verification of Information Flow for a High-Assurance App Store

5/24

Approach

Collaborative verification model

Developer provides
D Information Annotated R | 10T
description == . < > --- justifications
flow policy source code

High-level description of
information flows in app
(LOCATION -> INTERNET)

A

René Just, UW CSE Collaborative Verification of Information Flow for a High-Assurance App Store 5/24

Approach

Collaborative verification model

Developer provides

App Information Annotated B
description == . < P> --- justifications
flow policy source code

A

App store verifies

René Just, UW CSE Collaborative Verification of Information Flow for a High-Assurance App Store 5/24

Approach

Collaborative verification model

Developer provides

App Information Annotated B
description == . < P> --- justifications
flow policy source code

Analyst verifies:
acceptable behavior

A

App store verifies

René Just, UW CSE Collaborative Verification of Information Flow for a High-Assurance App Store 5/24

Approach

Collaborative verification model

Developer provides

App Information Annotated B
description == . < P> --- justifications
flow policy source code

@ @

Analyst verifies: Type checker verifies:
acceptable behavior || annotations consistent

A

App store verifies

René Just, UW CSE Collaborative Verification of Information Flow for a High-Assurance App Store 5/24

Approach

Collaborative verification model

Developer provides

App Information Annotated B
description == . < P> --- justifications
flow policy source code

@ @ E@

{ Analyst verifies: J { Type checker verifies: }

A

acceptable behavior declassifications

Analyst verifies:
annotations consistent

App store verifies

René Just, UW CSE Collaborative Verification of Information Flow for a High-Assurance App Store 5/24

Approach

Collaborative verification model

Developer provides

App Information Annotated Docias il e
description == . < P> --- justifications
flow policy source code

@ @ E@

Analyst verifies: Type checker verifies:
acceptable behavior

A

Analyst verifies: J

annotations consistent declassifications

App store verifies

Developer and analyst do tasks that are easy for them

René Just, UW CSE Collaborative Verification of Information Flow for a High-Assurance App Store 5/24

Approach

Verification of information flow

Information | | Annotated
flow policy | source code

A

Type checker verifies:
annotations consistent

René Just, UW CSE Collaborative Verification of Information Flow for a High-Assurance App Store 6/24

Approach

Verification of information flow

Information
flow policy

René Just, UW CSE Collaborative Verification of Information Flow for a High-Assurance App Store 6/24

Approach

Information flow policy

High-level description of permitted information flows

READ_SMS =>
READ_CLIPBOARD =
USER_INPUT =>

ACCESS_FINE_LOCATION =

INTERNET

DISPLAY

CALL_PHONE

INTERNET (maps.google. com)

René Just, UW CSE Collaborative Verification of Information Flow for a High-Assurance App Store 7/24

Approach

Information flow policy

High-level description of permitted information flows

Source flows to
A A
READ_SMS —
READ_CLIPBOARD —
USER_INPUT ==

ACCESS_FINE_LOCATION =

Sink

INTERNET

DISPLAY

CALL_PHONE

INTERNET (maps.google. com)

René Just, UW CSE

Collaborative Verification of Information Flow for a High-Assurance App Store

Approach

Information flow policy

High-level description of permitted information flows

Source flows to Sink
A /_/\ AL
READ_SMS -> INTERNET
READ_CLIPBOARD -> DISPLAY
USER_INPUT -> CALL_PHONE

ACCESS_FINE_LOCATION -> INTERNET (maps.google. com)

Sources and Sinks
» Default Android permissions (145)

Not sufficient to
model information flow!

René Just, UW CSE Collaborative Verification of Information Flow for a High-Assurance App Store 7/24

Approach

Information flow policy

High-level description of permitted information flows

Source flows to Sink
N NG A
READ_SMS = INTERNET
READ_CLIPBOARD -> DISPLAY
USER_INPUT -> CALL_PHONE
ACCESS_FINE_LOCATION -> INTERNET (maps.google. com)

Sources and Sinks
» Default Android permissions (145)
» Additional sensitive resources (28)

René Just, UW CSE Collaborative Verification of Information Flow for a High-Assurance App Store 7/24

Approach

Information flow policy

High-level description of permitted information flows

Source flows to Sink
A /_/\ AL
READ_SMS -> INTERNET
READ_CLIPBOARD -> DISPLAY
USER_INPUT -> CALL_PHONE

ACCESS_FINE_LOCATION = INTERNET (maps.google.com)

Sources and Sinks
» Default Android permissions (145)
» Additional sensitive resources (28)
» Parameterized permissions

René Just, UW CSE Collaborative Verification of Information Flow for a High-Assurance App Store 7/24

Approach

Verification of information flow

Annotated
source code

René Just, UW CSE Collaborative Verification of Information Flow for a High-Assurance App Store 8/24

Approach

Information flow types: sources and sinks

@Source Where might a value come from?
@Sink Where might a value flow to?

René Just, UW CSE Collaborative Verification of Information Flow for a High-Assurance App Store

9/24

Approach

Information flow types: sources and sinks

@Source Where might a value come from?
@Sink Where might a value flow to?

Android API

void sendToInternet (String message);
String readGPS();

René Just, UW CSE Collaborative Verification of Information Flow for a High-Assurance App Store

9/24

Approach

Information flow types: sources and sinks

@Source Where might a value come from?
@Sink Where might a value flow to?

(To Internet)
Android API

void sendToInternet(St{ing message) ;
String readGPS();

René Just, UW CSE Collaborative Verification of Information Flow for a High-Assurance App Store

9/24

Approach

Information flow types: sources and sinks

@Source Where might a value come from?
@Sink Where might a value flow to?

Android API

void sendToInternet (@Sink (INTERNET)String message);
String readGPS();

René Just, UW CSE Collaborative Verification of Information Flow for a High-Assurance App Store

9/24

Approach

Information flow types: sources and sinks

@Source Where might a value come from?
@Sink Where might a value flow to?

Android API

void sendToInternet (@Sink (INTERNET)String message);
Str%g readGPSQ);

(From Location)

René Just, UW CSE Collaborative Verification of Information Flow for a High-Assurance App Store

9/24

Approach

Information flow types: sources and sinks

@Source Where might a value come from?
@Sink Where might a value flow to?

Android API

void sendToInternet (@Sink (INTERNET)String message);
@Source (LOCATION)String readGPSQ);

René Just, UW CSE Collaborative Verification of Information Flow for a High-Assurance App Store 9/24

Approach

Information flow types: sources and sinks

@Source Where might a value come from?
@Sink Where might a value flow to?

Android API

void sendToInternet (@Sink (INTERNET)String message);
@Source (LOCATION)String readGPSQ);

App code

String loc = readGPSQ);
sendToInternet(loc);

René Just, UW CSE Collaborative Verification of Information Flow for a High-Assurance App Store 9/24

Approach

Information flow types: sources and sinks

@Source Where might a value come from?
@Sink Where might a value flow to?

Android API

void sendToInternet (@Sink (INTERNET)String message);
@Source (LOCATION)String readGPSQ);

App code

@Source (LOCATION)@Sink (INTERNET)String loc = readGPS(Q);
sendToInternet(loc);

René Just, UW CSE Collaborative Verification of Information Flow for a High-Assurance App Store

9/24

Approach

Information flow types: sources and sinks

@Source Where might a value come from?
@Sink Where might a value flow to?

Android API API annotations are pre-verified
void sendToInternet (@Sink (INTERNET)String message);
@Source (LOCATION)String readGPSQ);

App code Developer annotations are not trusted
@Source (LOCATION)@Sink (INTERNET)String loc = readGPS(Q);
sendToInternet(loc);

René Just, UW CSE Collaborative Verification of Information Flow for a High-Assurance App Store 9/24

Approach

Type hierarchy for sources and sinks

| @Source (ANY) | @Sink({})

| /\

| @Source ({SMS, LOCATION}) | | @Sink (INTERNET)

@Sink (SMS)

7 N N

@Source (SMS) ||@Source(LOCATION)| | @Sink ({INTERNET,

SMS}H) |

< “

@Source({}) | | @Sink (ANY)

René Just, UW CSE Collaborative Verification of Information Flow for a High-Assurance App Store

10/24

Approach

Type hierarchy for sources and sinks

| @Source (ANY) | @Sink({})

| /\

| @Source ({SMS, LOCATION}) | | @Sink (INTERNET)

@Sink (SMS)

7 N N

| @Source (SMS) ||@Source(LOCATION)| | @Sink ({INTERNET, SMS}) |
\ / A
| @Source({}) | | @Sink (ANY)

@Source(ANY) = @Source({SMS, LOCATION, INTERNET, ...3})

René Just, UW CSE Collaborative Verification of Information Flow for a High-Assurance App Store

10/24

Approach

Type hierarchy for sources and sinks

| @Source (ANY) | @Sink({})

| /\

| @Source ({SMS, LOCATION}) | | @Sink(INTERNET)

@Sink (SMS)

7O

N

| @Source (SMS) ||@Source(LOCATION)| | @Sink ({INTERNET, SMS}) |
\ / A
@Source({}) | | @Sink (ANY) |

@Source(SMS)String sms = ...;
@Source({SMS, LOCATION})String smsLoc = sms;

René Just, UW CSE

Collaborative Verification of Information Flow for a High-Assurance App Store

10/24

Approach

Type hierarchy for sources and sinks

| @Source (ANY) | @Sink({})

| /\

| @Source ({SMS, LOCATION}) | | @Sink (INTERNET)

@Sink (SMS)

7 AN N

| @Source (SMS) ||@Source(LOCATION)| | @Sink ({INTERNET, SMS}) |
\ / A
@Source({}) | | @Sink (ANY) |

@Source(SMS)String sms = ;
@Source(LOCATION)String loc = sms; l'l

René Just, UW CSE Collaborative Verification of Information Flow for a High-Assurance App Store

10/24

Approach

Type hierarchy for sources and sinks

| @Source (ANY) | @sink({})

| .

| @Source ({SMS, LOCATION}) | | @Sink (INTERNET)

@Sink (SMS)

7 N N

@Source (SMS) ||@Source(LOCATION)| | @Sink ({INTERNET,

SMS}H) |

< “

@Source({}) | | @Sink (ANY)

René Just, UW CSE Collaborative Verification of Information Flow for a High-Assurance App Store

10/24

Approach

Type hierarchy for sources and sinks

| @Source (ANY) | | @Sink({})

\

A

N

| @Source ({SMS, LOCATION}) | | @Sink (INTERNET) @Sink (SMS)

7 N i

@Source (SMS) ||@Source(LOCATION)| | @Sink ({INTERNET, SMS})
\ / A
@Source({}) | | @Sink (ANY) |

@Sink ({INTERNET, SMS})String toInetSms;

@Sink (SMS)String toSms = toInetSms;

René Just, UW CSE Collaborative Verification of Information Flow for a High-Assurance App Store

10/24

Approach

Type hierarchy for sources and sinks

| @Source (ANY) | @Sink({})

A

N,

\

| @Source ({SMS, LOCATION}) | | @Sink (INTERNET)

@Sink (SMS)

7 N

%

—

@Source (SMS)

||@Source(LOCATION)| | @Sink ({INTERNET, SMS}) |

< “

@Source({}) | | @Sink (ANY) |

@Sink(SMS)String toSms;

@Sink (INTERNET)String toInet = toSms; l'l

René Just, UW CSE

Collaborative Verification of Information Flow for a High-Assurance App Store

10/24

Approach

Verification of information flow

Type checker verifies:
annotations consistent

René Just, UW CSE Collaborative Verification of Information Flow for a High-Assurance App Store

11/24

Approach

Information Flow Type-checker (IFT): Overview

Guarantees of type-checking
1. Annotations are consistent with code (type correctness)
2. Annotations are consistent with flow policy

Type checker verifies:
annotations consistent

René Just, UW CSE Collaborative Verification of Information Flow for a High-Assurance App Store 12/24

Approach

Information Flow Type-checker (IFT): Overview

Guarantees of type-checking
1. Annotations are consistent with code (type correctness)
2. Annotations are consistent with flow policy

Appcode || Android API | Flow policy |

\ | /

Type checker verifies:
annotations consistent

¥

No undisclosed information flows in app

René Just, UW CSE Collaborative Verification of Information Flow for a High-Assurance App Store 12/24

Approach

Information Flow Type-checker (IFT): Example

App code

@Source (LOCATION)@Sink (INTERNET)String loc = readGPS(Q);
sendToInternet(loc);

Flow policy

LOCATION -> INTERNET

/

Type checker verifies:
annotations consistent

René Just, UW CSE Collaborative Verification of Information Flow for a High-Assurance App Store 13/24

Approach

Information Flow Type-checker (IFT): Example

App code

@Source (LOCATION)@Sink (INTERNET)String loc = readGPS(Q);
sendToInternet(loc);

Flow policy

LOCATION -> INTERNET

/

Type checker verifies:
annotations consistent

¥

René Just, UW CSE Collaborative Verification of Information Flow for a High-Assurance App Store

13/24

Approach

Information Flow Type-checker (IFT): Example

App code

@Source (LOCATION)@Sink (INTERNET)String loc = readGPS(Q);
sendSms (loc) ;

Flow policy

LOCATION -> INTERNET

/

Type checker verifies:
annotations consistent

René Just, UW CSE Collaborative Verification of Information Flow for a High-Assurance App Store 13/24

Approach

Information Flow Type-checker (IFT): Example

App code

@Source (LOCATION)@Sink (INTERNET)String loc = readGPS(Q);
sendSms (loc) ;

Flow policy

LOCATION -> INTERNET

/

Type checker verifies:
annotations consistent

v
P Incompatible sinks:
L INTERNET £: SMS

René Just, UW CSE Collaborative Verification of Information Flow for a High-Assurance App Store 13/24

Approach

Information Flow Type-checker (IFT): Example

App code

@Source (LOCATION)@Sink (SMS)String loc = readGPS(Q);
sendSms (loc) ;

Flow policy

LOCATION -> INTERNET

/

Type checker verifies:
annotations consistent

René Just, UW CSE Collaborative Verification of Information Flow for a High-Assurance App Store 13/24

Approach

Information Flow Type-checker (IFT): Example

App code

@Source (LOCATION)@Sink (SMS)String loc = readGPS(Q);
sendSms (loc) ;

Flow policy

LOCATION -> INTERNET

/

Type checker verifies:
annotations consistent

'

IHI Forbidden flow:
' LOCATION -> SMS

René Just, UW CSE Collaborative Verification of Information Flow for a High-Assurance App Store 13/24

Approach

False positives and declassifications

App code
@Source ({LOCATION, SMS})String [] array;
array[0] = readGPS(Q);
array[l] = readSMSQ);

@Source (LOCATION)String loc = array[0];

René Just, UW CSE Collaborative Verification of Information Flow for a High-Assurance App Store 14/24

Approach

False positives and declassifications

App code
@Source ({LOCATION, SMS})String [] array;
array[0] = readGPS()

array[1] = I‘eadSMS();\(IEEource(LOCATION))

@Source (LOCATION)String loc = array[0];

René Just, UW CSE Collaborative Verification of Information Flow for a High-Assurance App Store 14/24

Approach

False positives and declassifications

App code

@Source ({LOCATION, SMS})String [] array;
array[0] = readGPS()

array[1] = I‘eadSMS()%ource(LOCATION))

@Source (LOCATION)String loc = a;ray[@] ;

(@Source (LOCATION, SMS))

René Just, UW CSE Collaborative Verification of Information Flow for a High-Assurance App Store

14/24

Approach

False positives and declassifications

App code

@Source ({LOCATION, SMS})String [] array;

array[0] = readGPS(Q);

array[l] = readSMSQ);

@SuppressWarnings("flow") // Safe: returns location data
@Source (LOCATION)String loc = array[0];

Declassifications
» Developer can suppress false-positive warnings
» App store employee verifies each declassification

René Just, UW CSE Collaborative Verification of Information Flow for a High-Assurance App Store

14/24

Approach

Reducing false positives

Flow sensitivity
» Type refinement with intra-procedural data flow analysis

App code

@Source ({LOCATION, SMS})String value;
if (...) {
value = readSMS(Q) ;

S [value: @Source(SMS)J

}
.- - (value: @Source({LOCATION, SMS})]

René Just, UW CSE Collaborative Verification of Information Flow for a High-Assurance App Store 15/24

Approach

Reducing false positives

Flow sensitivity
» Type refinement with intra-procedural data flow analysis

Context sensitivity
» Polymorphism (e.g., String operations, I/O streams, etc.)

App code

@Source ({LOCATION, SMS})String value = ...;
String substring = value.suj)/string (0,8);

(Returns @Source ({LOCATION, SMS}))

René Just, UW CSE Collaborative Verification of Information Flow for a High-Assurance App Store

15/24

Approach

Reducing false positives

Flow sensitivity
» Type refinement with intra-procedural data flow analysis

Context sensitivity
» Polymorphism (e.g., String operations, I/O streams, etc.)

Indirect control flow
» Constant value propagation
» Reflection analysis
» Intent analysis

René Just, UW CSE Collaborative Verification of Information Flow for a High-Assurance App Store

15/24

Approach
Implicit information flow

App code

@Source (USER_INPUT)long creditCard = getCard();

long i=0;
while (true) {
if (++i == creditCard) {

sendToInternet (i);
}
}

René Just, UW CSE Collaborative Verification of Information Flow for a High-Assurance App Store 16/24

Approach
Implicit information flow

App code

@Source (USER_INPUT)long creditCard = getCard();
long i=0;
while (true) {
if (++i == creditCard) {
(sendToInternet (i));

}
} (Card number implicitly leaked)

Classic approach (Denning and Denning, CACM’77)
» Taint all computations in dynamic scope
» Over-tainting may lead to taint explosion

René Just, UW CSE Collaborative Verification of Information Flow for a High-Assurance App Store 16/24

Approach
Implicit information flow

App code

@Source (USER_INPUT)long creditCard = getCard();
long i=0;
while (true) {

if ((++i == creditCard)) {

sendToIntefﬁe&é&i;}\
}

} (USER_INPUT -> CONDITIONAL)

Our approach: Prune irrelevant conditions
» Add additional sink CONDITIONAL
» Type-checker warning for conditions with sensitive source

René Just, UW CSE Collaborative Verification of Information Flow for a High-Assurance App Store 16/24

Approach
Implicit information flow

App code

@Source (USER_INPUT)long creditCard = getCard();
long i=0;
while (true) {

if ((++i == creditCard)) {

sendToIntefﬁe&é&i;}\
}

} (USER_INPUT -> CONDITIONAL)

Our approach: Prune irrelevant conditions

» Add additional sink CONDITIONAL

» Type-checker warning for conditions with sensitive source
Analyst must manually verify

» Analyst is aware of context

» No need to analyze dynamic scope for irrelevant conditions
(e.g., null checks, malicious conditions, or trigger)

René Just, UW CSE Collaborative Verification of Information Flow for a High-Assurance App Store

16/24

Evaluation

Evaluation: Overview

Are our permission model and type system effective?

» Adversarial Red Team challenge

» Evaluation of effectiveness for real malware
Is our approach effective and efficient in a time-
constrained set up?

» Control team study

» Comparison of effectiveness and efficiency to control team

Is our verification model applicable for real-world apps?
» Usability study with annotators and auditors
» Evaluation of annotation and auditing burden

René Just, UW CSE Collaborative Verification of Information Flow for a High-Assurance App Store 17/24

Evaluation

Evaluation: Overview

Are our permission model and type system effective?

» Adversarial Red Team challenge

» Evaluation of effectiveness for real malware
Is our approach effective and efficient in a time-
constrained set up?

» Control team study

» Comparison of effectiveness and efficiency to control team

Is our verification model applicable for real-world apps?
» Usability study with annotators and auditors
» Evaluation of annotation and auditing burden

Apps are not pre-annotated

René Just, UW CSE Collaborative Verification of Information Flow for a High-Assurance App Store 17/24

Evaluation

Adversarial Red Team challenge

Setup
» 5 independent Red Teams
» 72 Android apps (47 malicious with information-flow malware)
» 8,000 LOC and 12 permissions per app on average

René Just, UW CSE Collaborative Verification of Information Flow for a High-Assurance App Store 18/24

Evaluation

Adversarial Red Team challenge

Setup
» 5 independent Red Teams
» 72 Android apps (47 malicious with information-flow malware)
» 8,000 LOC and 12 permissions per app on average

Results for 47 malicious apps

B Android permissions

[0 Additional Sources and Sinks
[0 Parameterized permissions
B Undetected

20%

36%

» 96% overall detection rate — 4% require modeling of
information flow paths (LOCATION -> ENCRYPT -> INTERNET)

» 60% of apps require our finer-grained sources and sinks

René Just, UW CSE Collaborative Verification of Information Flow for a High-Assurance App Store 18/24

Evaluation

Control team study

Setup
» Control team using dynamic and static analysis tools
» 18 Android apps (13 malicious)
» 7,000 LOC and 16 permissions per app on average

René Just, UW CSE Collaborative Verification of Information Flow for a High-Assurance App Store

19/24

Evaluation

Control team study

Setup
» Control team using dynamic and static analysis tools
» 18 Android apps (13 malicious)
» 7,000 LOC and 16 permissions per app on average

Results
Oocontror 0@

100 ! ‘
2 80 - =
= 60 - I
o
= 40 - -
T 2 0

0 1 1
Detection rate Analysis time

René Just, UW CSE Collaborative Verification of Information Flow for a High-Assurance App Store 19/24

Evaluation

Usability study

Setup
» 2 groups acting as annotators and auditors
» 11 Android apps (1 malicious)
» 900 LOC and 12 permissions per app on average

René Just, UW CSE Collaborative Verification of Information Flow for a High-Assurance App Store

20/24

Evaluation

Usability study

Setup
» 2 groups acting as annotators and auditors
» 11 Android apps (1 malicious)
» 900 LOC and 12 permissions per app on average

Annotation burden
» 96% of type annotations are inferred
» Annotations required: 6 per 100 lines of code
» Annotation time: 16 minutes per 100 lines of code

Most time spent on reverse engineering

René Just, UW CSE Collaborative Verification of Information Flow for a High-Assurance App Store

20/24

Evaluation

Usability study

Declassifications
» 50% of apps had no declassifications
» On average 3 declassification per 1,000 lines of code

IFT’s features effectively reduce false positives

René Just, UW CSE Collaborative Verification of Information Flow for a High-Assurance App Store 21/24

Evaluation

Usability study

Declassifications
» 50% of apps had no declassifications
» On average 3 declassification per 1,000 lines of code

IFT’s features effectively reduce false positives

Auditing burden
» Overall review time: 3 minutes per 100 lines of code
» 35% of time: review the flow policy
» 65% of time: review declassifications & conditionals

Only 23% of conditionals needed to be reviewed

René Just, UW CSE Collaborative Verification of Information Flow for a High-Assurance App Store

21/24

Conclusion

Related work: Information flow

Jif (Myers, POPL’99)
» A security-typed language (incompatible Java extension)
» Supports dynamic checks and focuses on expressiveness

FlowDroid (Arzt et al., PLDI’'14), SUSi (Rasthofer et al., NDSS’14)
» FlowDroid propagates sources and sinks found by SuSi
» SuSi classifies Android APl methods using machine learning

IFT makes static verification of Android apps practical
» Finer-grained sources and sinks at type level
» Compiler plug-in using standard Java type annotations

René Just, UW CSE Collaborative Verification of Information Flow for a High-Assurance App Store 22/24

Conclusion

Related work: Collaborative verification model

Verifying browser extensions
» IBEX (Guha et al., S&P’11)
» Verification of Fine (ML dialect) against complex policies
> Lerner et al., ESORICS’13
» Verification of private browsing using annotated JavaScript

IFT verifies information flow in Android apps
using a high-level flow policy

Automated policy verification
» Crowd-sourcing (Agarwal & Hall, MobiSys’13)
» Natural language processing (Pandita et al., USENIX’13)
» Clustering (Gorla et al., ICSE’14)

Could aid manual verification of flow policies

René Just, UW CSE Collaborative Verification of Information Flow for a High-Assurance App Store 23/24

Conclusion

Conclusions

Developer provides

Collaborative verification model = =)
» Low overall verification effort for = /{MT_"K =

developer and app store analyst
» IFT combined with other analyses

Analyst verifies: Type checker vermes
behavnor

Analysi vermes

App store verifies

Information Flow Type-checker (IFT) e [asoaan][Fonpoiey
» Context and flow-sensitive type system Typmefkerven,‘es
» Fine-grained model for sources and sinks w
» High-level information flow policy 5
Evaluation
» Detected 96% information-flow malware
» Low annotation and auditing burden 20% | pedeuiin
» Low false-positive rate 36% | Pl =

https://www.cs.washington.edu/sparta

René Just, UW CSE Collaborative Verification of Information Flow for a High-Assurance App Store 24/24

https://www.cs.washington.edu/sparta

