
ReIm & ReImInfer: Checking and Inference
of Reference Immutability and Method Purity

Wei Huang Ana Milanova
Rensselaer Polytechnic Institute

Troy, NY, USA
{huangw5, milanova}@cs.rpi.edu

Werner Dietl Michael D. Ernst
University of Washington

Seattle, WA, USA
{wmdietl, mernst}@cs.washington.edu

Abstract
Reference immutability ensures that a reference is not used to
modify the referenced object, and enables the safe sharing of
object structures. A pure method does not cause side-effects
on the objects that existed in the pre-state of the method
execution. Checking and inference of reference immutability
and method purity enables a variety of program analyses and
optimizations.

We present ReIm, a type system for reference immutabil-
ity, and ReImInfer, a corresponding type inference analysis.
The type system is concise and context-sensitive. The type
inference analysis is precise and scalable, and requires no
manual annotations. In addition, we present a novel applica-
tion of the reference immutability type system: method purity
inference.

To support our theoretical results, we implemented the
type system and the type inference analysis for Java. We in-
clude a type checker to verify the correctness of the inference
result. Empirical results on Java applications and libraries
of up to 348kLOC show that our approach achieves both
scalability and precision.

Categories and Subject Descriptors D.3.3 [Programming
Languages]: Language Constructs and Features; D.1.5 [Pro-
gramming Techniques]: Object-oriented Programming

General Terms Experimentation, Languages, Theory

1. Introduction
An immutable, or readonly, reference cannot modify the state
of an object, including the transitively reachable state. For
instance, in the following code, the Date object cannot be
modified by using the immutable reference rd, but the same

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
OOPSLA’12, October 19–26, 2012, Tucson, Arizona, USA.
Copyright c© 2012 ACM 978-1-4503-1561-6/12/10. . . $10.00

Date object can be modified through the mutable reference
md:

Date md = new Date(); // mutable by default
readonly Date rd = md; // an immutable reference
md.setHours(1); // OK, md is mutable
rd.setHours(2); // compile−time error, rd is immutable

The type qualifier readonly denotes that rd is an immutable
reference. By contrast to reference immutability, object im-
mutability enforces a stronger guarantee that no reference
in the system can modify a particular object. Each variety
of immutability is preferable in certain situations; neither
dominates the other. This paper only deals with reference
immutability.

As a motivating example, consider a simplification of
the Class.getSigners method which returns elements that
have signed a particular class. In JDK 1.1, it is implemented
approximately as follows:

class Class {
private Object[] signers;
public Object[] getSigners() {

return signers;
}
}

This implementation is not safe because a malicious client
can obtain a reference to the signers array by invoking the
getSigners method and can then side-effect the array to add
an arbitrary trusted signer. Even though the field is declared
private, the referenced object is still modifiable from the
outside. There is no language support for preventing outside
modifications, and the programmer must manually ensure
that the code only returns clones of internal data.

A solution is to use reference immutability and annotate
the return value of getSigners as readonly. (A readonly array
of mutable objects is expressed, following Java 8 syntax [13],
as Object readonly [].) As a result, mutations of the array
through the returned reference will be disallowed:

Object readonly [] getSigners() {
return signers;
}

...
Object readonly [] signers = getSigners();
signers[0] = maliciousClass; // compile−time error

A type system enforcing reference immutability has a
number of benefits. It improves the expressiveness of inter-
face design by specifying the mutability of parameters and
return values; it helps prevent and detect errors caused by
unwanted object mutations; and it facilitates reasoning about
and proving other properties such as object immutability and
method purity.

This paper presents a context-sensitive type system for
reference immutability, ReIm, and an efficient inference
analysis, ReImInfer. We implemented our inference system
for Java and performed case studies of applications and
libraries of up to 348kLOC.

ReIm is related to Javari [33], the state-of-the-art in
reference immutability, but also differs in important points
of design and implementation. ReIm’s design was motivated
by a particular application: method purity inference. As a
result, ReIm is simpler than Javari, if less expressive in some
respects that are irrelevant to purity inference. ReIm treats
every structure as a whole and assigns a single mutability to
the structure. By contrast, Javari contains multiple features
for excluding certain fields or generic type arguments from
the immutability guarantee, in order to support code patterns
such as caches and lazily-initialized fields. Another difference
is that ReIm encodes context sensitivity using the concept
of viewpoint adaptation from Universe Types [9, 10], while
Javari uses templatizing. These design decisions result in a
more compact type system, particularly suitable for reasoning
about method purity.

Our inference system allows programmers to annotate
only references they care about (programmers may choose to
annotate no references at all). The inference analysis fills in
the remaining types, and the system performs type checking.
The inference is precise in the sense that it infers the maximal
number of immutable references. It has O(n2) worst-case
complexity and scales linearly in practice. Our inference
system, ReImInfer, has two advantages over Javarifier [26],
the state of the art reference immutability inference tool.
First, as with ReIm, it models context sensitivity using
the concept of viewpoint adaptation from Universe Types.
Javarifier handles context sensitivity by replicating methods.
Viewpoint adaptation contributes to the better scalability of
ReImInfer compared to Javarifier. Second, ReImInfer relies
entirely on the Checker Framework [11, 23], which provides
better integration of programmer-provided annotations, type
inference, and type checking.

In addition, we present method purity inference built as
an application of reference immutability. Purity information
facilitates compiler optimization [6, 19, 37], model check-
ing [32], Universe Type inference [12, 18], and memoiza-
tion of procedure calls [17]. Purity inference (also known
as side-effect analysis) has a long history. Most existing pu-

rity or side effect analyses are whole-program analyses that
are based on points-to analysis and/or escape analysis and
therefore scale poorly. We know of no purity inference tool
that scales to large Java codes and analyzes both whole pro-
grams and libraries. In fact, the work presented here was
motivated by our need for purity information for Universe
Type inference [12, 18]. We spent considerable time trying to
use existing tools. Unfortunately, existing tools were impre-
cise, fragile, whole-program, and/or unscalable, as we detail
in Section 4. Our solution was to build ReIm and ReImInfer
and the purity extension. ReImInfer outperformed existing
tools, and is fully integrated with the Checker Framework.

Our reference immutability inference and purity inference
are modular and compositional. They are modular in the
sense that they can analyze any given set of classes L.
Unknown callees in L are handled using appropriate defaults.
Callers of L can be analyzed separately and composed with
L without re-analysis of L.

In summary, we make the following contributions:

• ReIm, a context-sensitive type system for reference im-
mutability. A key novelty in ReIm is the use of viewpoint
adaptation to encode context sensitivity.
• ReImInfer, a type inference algorithm for reference im-

mutability.
• A novel application of reference immutability: method

purity inference.
• An implementation for Java.
• An empirical evaluation of reference immutability infer-

ence and purity inference on programs of up to 348kLOC,
including widely used Java applications and libraries, com-
prising 766kLOC in total.

The rest of this paper is organized as follows. Section 2
describes the type system and the inference analysis. Sec-
tion 3 presents purity inference, and Section 4 describes our
experiments. Section 5 discusses related work, and Section 6
concludes.

2. ReIm Reference Immutability Types
This section describes the immutability qualifiers (Sec-
tion 2.1) and explains context sensitivity (Section 2.2). It
proceeds to define the type system for reference immutability
(Section 2.3) and the inference analysis (Section 2.4).

2.1 Immutability Qualifiers
The ReIm type system has three immutability qualifiers:
mutable, readonly, and polyread. These qualifiers were in-
troduced by Javari [33] (except that polyread was romaybe
in Javari but became polyread in Javarifier [26]). They have
essentially the same meaning in Javari and ReIm, except
that readonly in Javari allows certain fields and generic type
arguments to be excluded from the immutability guarantee,

while readonly in ReIm guarantees immutability of the entire
structure. We detail the differences in Section 5.1.

• mutable: A mutable reference can be used to mutate the
referenced object. This is the implicit and only option in
standard object-oriented languages.
• readonly: A readonly reference x cannot be used to mutate

the referenced object nor anything it references. For
example, all of the following are forbidden:

x.f = z

x.setField(z) where setField sets a field of its receiver

y = id(x); y.f = z where id is a function that returns
its argument

x.f.g = z

y = x.f; y.g = z

• polyread: This qualifier expresses polymorphism over
immutability. Essentially, polyread denotes a reference
is immutable in the current context, but it may or may
not be mutable in other contexts. The interpretation of
polyread depends on the context and will be explained in
Section 2.2.

The subtyping relation between the qualifiers is

mutable <: polyread <: readonly

where q1 <: q2 denotes q1 is a subtype of q2. For example,
it is allowed to assign a mutable reference to a polyread
or readonly one, but it is not allowed to assign a readonly
reference to a polyread or mutable one.

2.2 Context Sensitivity
ReIm expresses context sensitivity using a variant of view-
point adaptation [9]. Consider the following code. For read-
ability, code throughout this section makes the formal param-
eter this explicit.

1 class DateCell {
2 Date date;
3 Date getDate(DateCell this) { return this.date; }
4 void cellSetHours(DateCell this) {
5 Date md = this.getDate();
6 md.setHours(1); // md is mutated
7 }
8 int cellGetHours(DateCell this) {
9 Date rd = this.getDate();

10 int hour = rd.getHours(); // rd is readonly
11 return hour;
12 }
13 }

In the above code, this of cellGetHours may be annotated
as readonly, which is the top of the type hierarchy. Doing so
is advantageous because then cellGetHours can be called on
any argument.

The return value of method DateCell.getDate is used in
a mutable context in cellSetHours and is used in a readonly

context in cellGetHours. A context-insensitive type system
would give the return type of getDate one specific type,
which would have to be mutable. This would cause rd to
be mutable, and then this of cellGetHours would have to be
mutable as well (if this.date is of type mutable, this means
that the current object was modified using this, which forces
this to become mutable). This violates our goal that this of
cellGetHours is readonly.

A context-sensitive type is required for the return type of
DateCell.getDate. The effective return type will depend on
the calling context. An example of calling context is the type
of the left-hand side of an assignment statement, when the
call is the right-hand side. Another example is the type of a
formal parameter, when the call is used as an actual argument.

The polymorphic qualifier polyread expresses context
sensitivity. We annotate this, the return type of getDate, and
field date as polyread:

polyread Date date;
polyread Date getDate(polyread DateCell this) {

return this.date;
}

Intuitively, viewpoint adaptation instantiates polyread to
mutable in the context of cellSetHours, and to readonly in
the context of cellGetHours. The call this.getDate on line 5
returns a mutable Date, and the call this.getDate on line 9 re-
turns a readonly Date. As a result, the mutability of md prop-
agates only to this of cellSetHours; it does not propagate to
this of cellGetHours which remains readonly. ReIm handles
polyread via viewpoint adaptation, and Javari/Javarifier han-
dle polyread via templatizing methods. The two approaches
appear to be semantically equivalent. Viewpoint adaptation
however, is a more compact and scalable way of handling
polymorphism than templatizing.

Conceptually, a method must type-check with each in-
stance of polyread replaced by (adapted to) mutable, and
with each instance of polyread replaced by readonly. Thus, a
polyread reference x cannot be used to mutate the referenced
object. A method may return x to the caller, in which case
the caller might be able to mutate the object. Programmers
should use polyread when the reference is readonly in the
scope of the enclosing method, but may be modified in some
caller contexts after the method’s return.

The type of a polyread field f is adapted to the viewpoint
of the receiver that accesses the field. If the receiver x is
mutable, then x.f is mutable. If the receiver x is readonly,
then x.f is readonly. If the receiver x is polyread, then x.f is
polyread and cannot be used to modify the referenced object,
as the access might be further instantiated with a readonly
receiver. For example,

• x.f = 0, where x is polyread, is not allowed, but
• z = id(y); z.f = 0, where id is

polyread X id(polyread X x) { return x; } ,
is allowed when y and z are mutable.

We forbid mutable as a qualifier for fields. ReIm gives a
strong reference immutability guarantee, including the whole
transitive state. A mutable field would not depend on the type
of the receiver and would therefore violate this guarantee.

Viewpoint adaptation is a concept from Universe Types [7,
9, 10], which can be adapted to Ownership Types [5] and
ownership-like type systems such as AJ [35]. Viewpoint
adaptation of a type q′ from the point of view of another
type q, results in the adapted type q′′. This is written as
q B q′ = q′′. Traditional viewpoint adaptation from Universe
Types defines one viewpoint adaptation operation B; it uses
B to adapt fields, formal parameters, and method returns from
the point of view of the receiver at the field access or method
call.

Below, we explain viewpoint adaptation for reference
immutability. In ReIm, B adapts field accesses from the point
of view of the receiver, but adapts method calls from the
point of view of the variable at the left-hand-side of the call
assignment. This concept is also known as the calling context
or call-site context.

We define B as:

B mutable = mutable
B readonly = readonly

q B polyread = q

The underscore denotes a “don’t care” value. Qualifiers
mutable and readonly do not depend on the viewpoint. Qual-
ifier polyread depends on the viewpoint and is substituted by
that viewpoint.

For a field access, viewpoint adaptation q B qf adapts the
declared field qualifier qf from the point of view of receiver
qualifier q. In field access y.f where the field f is readonly, the
type of y.f is readonly. In field access y.g where the field g
is polyread, y.g takes the type of y. If y is readonly, then y.g
must be readonly as well, in order to disallow modifications
of y’s object through y.g. If y is polyread then y.g is polyread
as well, propagating the context-dependency.

For a method call x = y.m(z), viewpoint adaptation qx Bq
adapts q, the declared qualifier of a formal parameter/return of
m, from the point of view of qx, the qualifier at the left-hand-
side x of the call assignment. If a formal parameter/return
is readonly or mutable, its adapted type remains the same
regardless of qx. However, if q is polyread, the adapted type
depends on qx — it becomes qx (i.e., the polyread type is the
polymorphic type, and it is instantiated to qx).

This is a generalization of traditional viewpoint adaptation
in that ReIm allows for adaptation from other points of view,
not only the point of view of the receiver as in traditional
viewpoint adaptation. We use viewpoint adaptation to encode
context sensitivity. Thus, it can be interpreted as encoding
context sensitivity at field-transmitted dependences differently
from context sensitivity at call-transmitted dependences. And
it can be viewed as allowing different abstractions of context.
For example, adaptation from the point of view of the receiver

cd ::= class C extends D {fd md} class
fd ::= t f field
md ::= t m(t this, t x) { t y s; return y } method
s ::= s; s | x = new t() | x = y statement
| x = y.f | x.f = y | x = y.m(z)

t ::= q C qualified type
q ::= readonly | polyread | mutable qualifier

Figure 1. Syntax. C and D are class names, f is a field name,
m is a method name, and x, y, and z are names of local
variables, formal parameters, or parameter this. As in the
code examples, this is explicit. For simplicity, we assume all
names are unique.

amounts to object sensitivity [22]. Adaptation from the point
of view of the left-hand-side of a call amounts to call-site
context sensitivity. We note that the purpose of this paper
is to develop reference immutability and method purity.
The precise relation between context sensitivity in dataflow
analysis, CFL-reachability [27], and viewpoint adaptation is
left for future work.

2.3 Typing Rules
For brevity, we restrict our formal attention to a core calculus
in the style of Vaziri et al. [35] whose syntax appears in
Figure 1. The language models Java with a syntax in a “named
form”, where the results of field accesses, method calls, and
instantiations are immediately stored in a variable. Without
loss of generality, we assume that methods have parameter
this, and exactly one other formal parameter. Features not
strictly necessary are omitted from the formalism, but they
are handled correctly in the implementation. We write t y for
a sequence of local variable declarations.

In contrast to a formalization of standard Java, a type
t has two orthogonal components: type qualifier q (which
expresses reference immutability) and Java class type C. The
immutability type system is orthogonal to (i.e., independent
of) the Java type system, which allows us to specify typing
rules over type qualifiers q alone.

The type system is presented in Figure 2. Rules (TNEW)

and (TASSIGN) are straightforward. They require that the left-
hand-side is a supertype of the right-hand-side. The system
does not enforce object immutability and, for simplicity, only
mutable objects are created. Rule (TWRITE) requires Γ(x) to
be mutable because x’s field is updated in the statement. The
adaptation rules for field access are used in both (TWRITE) and
(TREAD).

Rule (TCALL) demands a detailed explanation. Function
typeof retrieves the type of m. qthis is the type of parameter
this, qp is the type of the formal parameter, and qret is the
type of the return. Rule (TCALL) requires qx B qret <: qx. This
constraint disallows the return value of m from being readonly
when there is a call to m, x = y.m(z), where left-hand-side x

(TNEW)

Γ ` x = new mutable C

(TASSIGN)

Γ(x) = qx Γ(y) = qy qy <: qx

Γ ` x = y

(TWRITE)

Γ(x) = qx qx = mutable Γ(y) = qy

typeof (f) = qf qy <: qx B qf

Γ ` x.f = y

(TREAD)

Γ(x) = qx Γ(y) = qy

typeof (f) = qf qy B qf <: qx

Γ ` x = y.f

(TCALL)

Γ(x) = qx Γ(y) = qy Γ(z) = qz

typeof (m) = qthis, qp → qret

qy <: qx B qthis qz <: qx B qp

qx B qret <: qx

Γ ` x = y.m(z)

Figure 2. Typing rules. Function typeof retrieves the de-
clared immutability qualifiers of fields and methods. Γ is a
type environment that maps variables to their immutability
qualifiers.

is mutable. Only if the left-hand-sides of all call assignments
to m are readonly, can the return type of m be readonly;
otherwise, it is polyread. A programmer can annotate the
return type of m as mutable. However, this typing is pointless,
because it unnecessarily forces local variables and parameters
in m to become mutable when they can be polyread.

In addition, the rule requires qy <: qx B qthis. When qthis

is readonly or mutable, its adapted value is the same. Thus,
when qthis is mutable (e.g., due to this.f = 0 in m),

qy <: qx B qthis becomes qy <: mutable

which disallows qy from being anything but mutable, as
expected. The most interesting case arises when qthis is
polyread. Recall that a polyread parameter this is readonly
within the enclosing method, but there could be a dependence
between this and ret such as

X m() { z = this.f; w = z.g; return w; }

which allows the this object to be modified in caller context,
after m’s return. Well-formedness guarantees that whenever
there is dependence between this and ret, as in the above
example, the following constraint holds:

qthis <: qret

Recall that when there exists a context where the left-hand-
side variable x is mutated, qret must be polyread. Therefore,
constraint qthis <: qret forces qthis to be polyread (let us
assume that this is not mutated in the context of its enclosing
method).

The role of viewpoint adaptation is to transfer the depen-
dence between this and ret in m, into a dependence between
actual receiver y and left-hand-side x in the call assignment.
In the above example, there is a dependence between this and
the return ret. Thus, we also have a dependence between y
and x in the call x = y.m() — that is, a mutation of x makes y
mutable as well. Function B does exactly that. Rule (TCALL)

requires
qy <: qx B qthis

When there is a dependence between this and ret, qthis is
polyread, and the above constraint becomes

qy <: qx

This is exactly the constraint we need. If x is mutated, y
becomes mutable as well. In contrast, if x is readonly, y
remains unconstrained.

Note that adapting from the viewpoint of the receiver, as
is customary in ownership type systems, will result in

qy <: qy

which does not impose any constraints on y when qthis is
polyread.

Our inference tool, ReImInfer, types the DateCell class
from Section 2.2 as follows:

class DateCell {
polyread Date date;
polyread Date getDate(polyread DateCell this) {

return this.date;
}
void cellSetHours(mutable DateCell this) {

mutable Date md = this.getDate();
md.setHours(1);
}
void cellGetHours(readonly DateCell this) {

readonly Date rd = this.getDate();
int hour = rd.getHours();
}
}

Field date is polyread because it is mutated indirectly in
method cellSetHours. Because the type of this of getDate
is polyread, it is instantiated to mutable in cellSetHours as
follows:

qmd B qthis = mutable B polyread = mutable

It is instantiated to readonly in cellGetHours:

qrd B qthis = readonly B polyread = readonly

Thus, this of cellGetHours can be typed readonly.

Method overriding is handled by the standard constraints
for function subtyping. If m′ overrides m we require

typeof (m′) <: typeof (m)

and thus,

(qthism′ , qpm′ → qretm′) <: (qthism , qpm → qretm)

This entails qthism <: qthism′ , qpm <: qpm′ , and qretm′ <: qretm .

2.4 Type Inference
The type inference algorithm operates on mappings from keys
to values S. The keys in the mapping are (1) local variables
and parameters, including parameters this, (2) field names,
and (3) method returns. The values in the mapping are sets
of type qualifiers. For instance, S(x) = {polyread, mutable}
means the type of reference x can be polyread or mutable.
For the rest of the paper we use “reference” and “variable” to
refer to all kinds of keys: local variables, fields, and method
returns.

S is initialized as follows. Programmer-annotated refer-
ences, if any, are initialized to the singleton set that contains
the programmer-provided type. Method returns are initialized
S(ret) = {readonly, polyread} for each method m. Fields
are initialized S(f) = {readonly, polyread}. All other ref-
erences are initialized to the maximal set of qualifiers, i.e.,
S(x) = {readonly, polyread, mutable}. We denote the initial
mapping by S0.

There is a function fs for each statement s. Each fs takes
as input the current mapping S and outputs an updated map-
ping S′. fs refines the set of each reference that participates
in s as follows. Let x, y, z be the references in s. For each
reference, fs removes all inconsistent qualifier from the refer-
ence’s set. Consider reference x. fs removes each qx ∈ S(x)
from S(x), if there does not exist a pair qy ∈ S(y), qz ∈ S(z)
such that qx, qy, qz type check under the type rule for s from
Figure 2. The same repeats for y, and then z. Note that the
order in which references are examined does not affect the
final result — one can see that fs always removes the same
set of qualifiers from, say, S(x), regardless of whether x is
examined first, second or last. This algorithm is similar to the
one used by Tip et al. [14, 31].

For example, consider statement x = y.f and correspond-
ing rule (TREAD). Suppose that S(x) = {polyread}, S(y) =
{readonly, polyread, mutable} and S(f) = {readonly, polyread}
before the application of the function. The function re-
moves readonly from S(y) because there does not exist
qf ∈ S(f) and qx ∈ S(x) that satisfies readonly B qf <: qx.
Similarly, the function removes readonly from S(f) be-
cause there does not exist qy ∈ S(y) and qx ∈ S(x) that
satisfies qy B readonly <: qx. After the application
of the function, S′ is as follows: S′(x) = {polyread},
S′(y) = {polyread, mutable}, and S′(f) = {polyread}.

class A {
X f; S(f) = {polyread}

X get(A this, Y y) { S(thisget) = {polyread, mutable}

... = y.h; S(yget) = {readonly, polyread, mutable}

X x = this.getF(); S(xget) = {polyread, mutable}

return x; S(retget) = {polyread}

}
X getF(A this) { S(thisgetF) = {polyread, mutable}

X x = this.f; S(xgetF) = {polyread, mutable}

return x; S(retgetF) = {polyread}

}
}
void setG() {

A a = ... S(asetG) = {mutable}

Y y = ... S(ysetG) = {readonly, polyread, mutable}

X x = a.get(y); S(xsetG) = {mutable}

x.g = null;
}
void getG() {

A a = ... S(agetG) = {readonly, polyread, mutable}

Y y = ... S(ygetG) = {readonly, polyread, mutable}

X x = a.get(y); S(xgetG) = {readonly, polyread, mutable}

... = x.g;
}

Figure 3. Polymorphic methods. A.get(Y) has different
mutabilities in the contexts of setG and getG. Also, A.getF(),
which is called from A.get(Y), has different mutabilities in
different calling contexts. The box beside each statement
shows the set-based solution; the underlined qualifiers are the
final qualifiers picked by ReImInfer.

The inference analysis iterates over the statements in the
program and refines the sets until either (1) a reference is
assigned the empty set in which case the analysis terminates
with an error, or (2) the iteration reaches a fixpoint.

Note that the result of fixpoint iteration is a mapping
from references to sets. The actual mapping from references
to qualifiers is derived as follows: for each reference x we
pick the greatest element of S(x) according to the subtyping
relation, which we also call the “preference ranking” when
we use it for this purpose. This ranking maximizes the number
of readonly references. Note that leaving all references as
mutable is also a valid typing but a useless one, as it expresses
nothing about immutability.

Consider the example in Figure 3. We use xget to denote
the reference x in method get. Initially, all references are
initialized to the sets as described above. The analysis iter-

ates over all statements in class A and in methods setG and
getG. In the first iteration, the analysis changes nothing un-
til it processes x.g = null in setG. S(xsetG) is updated to
{mutable}. In the second iteration, when the analysis pro-
cesses x = a.get(y) in setG, S(retget) becomes {polyread}.
In the third iteration, S(xget) becomes {polyread, mutable}
because xget has to be a subtype of S(retget). This in turn
forces S(retgetF) and subsequently S(thisgetF) to become
{polyread, mutable}. The iteration continues until it reaches
the fixpoint as shown in the boxes in Figure 3. For brevity,
some references are not shown in the boxes. The underlined
qualifiers are the greatest element in the preference ranking.

The fixpoint will be reached in O(n2) time where n is the
size of the program. In each iteration, at least one of the O(n)
references is updated to point to a smaller set. Hence, there
are at most O(3n) iterations (recall that each set has at most
3 qualifiers), resulting in the O(n2) time complexity.

The inferred solution is correct, precise, and maximal. The
following propositions formalize its properties.

Proposition 2.1. The type assignment type checks under the
rules from Figure 2.

Proof. (Sketch) The proof is a case-by-case analysis which
shows that after the application of each function, the rule type
checks with the maximal assignment. Let max (S(x)) return
the maximal element of S(x) according to the preference
ranking (which is the same as the type hierarchy). We show
(TCALL) x = y.m(z). The rest of the cases are straightforward.

• Let max (S(x)) be readonly.
If max (S(this)) is readonly or polyread, qy <: qx Bqthis

holds for any value of max (S(y)). If max (S(this)) is
mutable, the only possible max for y would be mutable
(the others would have been removed by the function for
(TCALL)). We do not discuss qz <: qx B qp because it is
analogous to qy <: qx B qthis

qx B qret <: qx holds for any value of max (S(ret)).
• Let max (S(x)) be mutable.

If max (S(this)) is readonly, qy <: qx B qthis holds for
any value of max (S(y)). If max (S(this)) is polyread, the
only possible value for max (S(y)) would be mutable. If
max (S(this)) is mutable, the only possible max for y
would be mutable as well (the others would have been
removed by the function for (TCALL)).
If max (S(ret)) is polyread, clearly qx Bqret <: qx holds.
max (S(ret)) cannot be readonly, readonly would have
been removed by the function.
• Let max (S(x)) be polyread.

If max (S(this)) is readonly, qy <: qx B qthis holds for
any value of max (S(y)). If max (S(qthis)) is polyread, the
only possible values for max (S(y)) would be polyread or
mutable. If max (S(qthis)) is mutable, the only possible
max for y would be mutable.

If max (S(ret)) is polyread, clearly qx Bqret <: qx holds.
max (S(ret)) cannot be readonly, readonly would have
been removed by the function.

The next two propositions establish the precision of our
inference algorithm. ReIm, like Ownership type systems [5,
9] allows many different typings for a given program. As
mentioned earlier, the trivial typing for ReIm applies mutable
to every reference; this clearly type checks, but is useless as
we would like to prove as many references as readonly as
possible. The main challenges for type inference is to define
which typing is “best” (or most desirable/precise) and then
infer that typing.

In previous work [18], we formalized the notion of best
typing for ownership type systems, specifically Ownership
types [5] and Universe Types [9], by using a heuristic ranking
over typings. This formalization applies to ReIm as well as
to other ownership-like type systems such as AJ [35] and
EnerJ [29].

We say that T is a valid typing if T type checks with
ReIm. We proceed to define an objective function o which
ranks valid typings. o takes a valid typing T and returns a
tuple of numbers. For ReIm, the objective function is the
following:

oReIm(T) = (|T−1(readonly)|, |T−1(polyread)|, |T−1(mutable)|)

The tuples are ordered lexicographically. We have T1 > T2 iff
T1 has more readonly references than T2, or T1 and T2 have
the same number of readonly references, but T1 has more
polyread references than T2. The preference ranking over
typings is based on the preference ranking over qualifiers:
we prefer readonly over polyread and mutable, and polyread
over mutable. This is a natural ranking for ReIm.

The following two propositions establish that the maximal
typing, i.e., the typing that maps each x to max (S(x)),
maximizes the above objective function. In other words, the
maximal typing computed by our inference procedure is the
best typing. Note that Proposition 2.1 establishes that the
maximal typing is valid. Recall that S0 denotes the initial
mapping. T ∈ S0 denotes that T (v) ∈ S0(v) for every
variable v.

Proposition 2.2. Let S be the set-based solution. Let v be
any variable in the program and let q be any qualifier in ReIm.
If q /∈ S(v) then there does not exist a valid typing T ∈ S0,
such that T (v) = q.

Proof. (Sketch) We say that q is a valid qualifier for v if there
exists a valid typing T , where T (v) = q. Let v be the first
variable that has a valid qualifier q removed from its set S(v)
and let fs be the function that performs the removal. Since
q is a valid qualifier there exist valid qualifiers q1, ..., qk that
make s type check. If q1 ∈ S(v1) and q2 ∈ S(v2), . . . , and
qk ∈ S(vk), then by definition, fs would not have had q
removed from S(v). Thus, one of v1, . . . , vk must have had a
valid qualifier removed from its set before the application of

fs. This contradicts the assumption that v is the first variable
that has a valid qualifier removed.

The second proposition states that if we map every variable
v to max (S(v)) and the typing is valid, then this typing
maximizes the objective function.

Proposition 2.3. Let oReIm be the objective function over
valid typings, and S be the set-based solution. The maximal
typing T is the following: T (v) = max (S(v)) for every
variable v. If T is a valid typing, then T is the unique maximal
typing of the program under oReIm .

Proof. (Sketch) We show that T is a maximal typing. Suppose
that there exists a different valid typing T ′ ≥ T . Let q′ be the
most-preferred qualifier such that T ′−1(q′) 6= T−1(q′). Since
T ′ ≥ T , there must exist a variable v such that T ′(v) = q′,
but T (v) = q < q′. In other words, T ′ types v with q′, but
T types v differently — and lesser in the preference ranking.
Since T (v) = max (S(v)), it follows that q′ /∈ S(v). By
Proposition 2.2, if q′ /∈ S(v) there does not exist a valid
typing which maps v to q′, which contradicts the assumption
that T ′ is a valid typing.

Additionally, the propositions are validated empirically as
detailed in Section 4. To validate Proposition 2.1, we build
an independent type checker in the Checker Framework and
type check the inferred types. To validate Propositions 2.2
and 2.3, which state the precision argument, we perform
detailed comparison with Javarifier, the state-of-the-art tool
for inference of reference immutability.

3. Method Purity
A method is pure (or side-effect free) when it has no vis-
ible side effects. Knowing which methods are pure has a
number of practical applications. It can facilitate compiler
optimization [6, 19, 37], model checking [32], Universe Type
inference [12, 18], memoization of function calls [17], and
so on.

We adopt the definition of purity given by Sălcianu and
Rinard [30]: a method is pure if it does not mutate any object
that exists in prestates. Thus, a method is pure if (1) it does
not mutate prestates reachable through parameters, and (2) it
does not mutate prestates reachable through static fields. The
definition allows a pure method to create and mutate local
objects, as well as to return a newly constructed object as a
result. This is the semantics of the @Pure annotation in JML.

For a method that does not access static fields, the prestates
it can reach are the objects reachable from the actual argu-
ments and the method receiver. Therefore, if any of the for-
mal parameters of m or implicit parameter this is inferred
as mutable by reference immutability inference, m is im-
pure. Otherwise, i.e., if none of the parameters is inferred as
mutable, m is pure. Consider the implementation of List in
the left column of Figure 4. For method add, reference im-
mutability inference infers that both n and this are mutable,

class List {
Node head;
int len;
void add(Node n) {

n.next = this.head;
this.head = n;
this.len++;
}
void reset() {

this.head = null;
this.size = 0;
}
int size() {

return this.len;
}
}

class Main {
static List sLst;
void m1() {

List lst = ...
Node node = ...
lst.add(node);
Main.sLst = lst;
}
void m2() {

int len = sLst.size();
PrintStream o = System.out;
o.print(len);
}
void m3() {

m2();
}
}

Figure 4. A simple linked list and example usage.

i.e., the objects referred by them may be mutated in add.
When there is a method invocation lst.add(node), we know
that the prestates referred to by the actual argument node and
the receiver lst may be mutated. As a result, we can infer
that method add is impure. We can also infer that method
reset is impure because implicit parameter this is inferred as
mutable by reference immutability inference. Method size is
inferred as pure because its implicit parameter this is inferred
as readonly and it has no formal parameters.

However, the prestates can also come from static fields. A
method is impure if it mutates (directly, or indirectly through
callees), a static field, or objects reachable from a static field.
We introduce a static immutability type qm for each method
m. Roughly, qm is mutable when m accesses static state
through some static field and then mutates this static state;
qm is polyread if m accesses static state but does not mutate
this state directly, however, m may return this static state
to the caller and the caller may mutate it; qm is readonly
otherwise. Static immutability types are computed using
reference immutability. We introduce a function statictypeof
that retrieves the static immutability type of m:

statictypeof (m) = qm

We extend the program syntax with two additional statements
(TSWRITE) sf = x for static field write, and (TSREAD) x = sf
for static field read. Here x denotes a local variable and sf
denotes a static field.

In contrast to instance fields, static fields are declared as
either readonly or mutable. There is no receiver for static field
accesses and therefore no substitution for polyread would
occur.

Figure 5 extends the typing rules from Figure 2 with
constraints on static immutability types. If method m contains
a static field write sf = x, then its static immutability type is
mutable (see rule (TSWRITE)). If m contains a static field read

(TSWRITE)

methodof (sf = x) = m statictypeof (m) = qm

qm = mutable

Γ ` sf = x

(TSREAD)

methodof (x = sf) = m statictypeof (m) = qm

Γ(x) = qx qm <: qx

Γ ` x = sf

(TCALL)

Γ(x) = qx Γ(y) = qy Γ(z) = qz

typeof (m) = qthis, qp → qret

qy <: qx B qthis qz <: qx B qp

qx B qret <: qx

methodof (x = y.m(z)) = m′ statictypeof (m) = qm

statictypeof (m′) = qm′ qm′ <: qx B qm

Γ ` x = y.m(z)

Figure 5. Extended typing rules for static fields (see Figure 2
for the base type system). Function methodof (s) returns the
enclosing method of statement s. Function statictypeof (m)
returns the static immutability type of m. Static immutability
types can be readonly, polyread, or mutable . Rule (TCALL)

includes the antecedents from the base type system and the
new antecedents that handle the static immutability type of
m, underlined.

x = sf where x is inferred as mutable, qm becomes mutable
as well (see rule (TSREAD)). While the handling of (TSWRITE)

is expected, the handling of (TSREAD) may be unexpected. If
sf is read in m, using x = sf, then m or one of its callees
can access and mutate the fields of sf through x. If m or one
of its callees writes a field of sf through x, then x will be
mutable. If m does not write x, but returns x to a caller and
the caller subsequently writes a field of the returned object,
then x will be polyread. x being readonly guarantees that x is
immutable in the scope of m and after m’s return, and sf is
not mutated through x. Note that aliasing is handled by the
type system which disallows assignment from readonly to
mutable or polyread. Consider the code:

void m() {
...
x = sf; // a static field read
y = x.f;
z = id(y);
z.g = 0;
...
}

Here static field sf has its field f aliased to local z, which is
mutated. The type system propagates the mutation of z to x;

thus, the constraints in Figure 5 set the static immutability
type of m to mutable.

Rule (TCALL) in Figure 5 captures two cases:

1. If the callee m mutates static fields, i.e. statictypeof (m)
= mutable, the statictypeof (m′) of enclosing method
m′ has to be mutable as well, because B mutable =
mutable.

2. If the callee m returns a static field which is mutated
later, statictypeof (m) would be polyread. If the enclos-
ing method m′ mutated the return value x, i.e. qx =
mutable, statictypeof (m′) would be mutable because
mutable B polyread = mutable. Otherwise, if x is
polyread, statictypeof (m′) is constrained to polyread
or mutable. Finally, if x is readonly, statictypeof (m′) is
readonly, indicating that m′ does not mutate static fields.

Method overriding is handled by an additional constraint.
If m′ overrides m we must have

qm <: qm′

In other words, if m′ mutates static state, qm must be mutable,
even if m itself does not mutate static state. This constraint
ensures that m′ is a behavioral subtype of m and is essential
for modularity.

Static immutability types are inferred in the same fashion
as reference immutability types. The analysis initializes every
S(m) to {readonly, polyread, mutable} and iterates over the
statements in Figure 5 and the overriding constraints, until it
reaches the fixpoint. If readonly remains in S(m) at the end,
the static immutability type of m is readonly; otherwise, it is
polyread or mutable.

Consider the right column of Figure 4. qm1 becomes
mutable because m1 assigns lst to the static field sLst. qm2 is
mutable as well, because it mutates the PrintStream object
referred by System.out by invoking the print method on it,
and local variable o is mutable. qm3 becomes mutable as
well, because it invokes method m2 and qm2 is mutable.

The observant reader has likely noticed that qm = mutable
does not account for all mutations of static state in m. In
particular, static state may be aliased to parameters and be
accessed and mutated in m through parameters:

void m(X p) {
p.g = 0;
}
...
void n() {

X x = sf; // a static field read (TSREAD)
m(x);
}

In the above example, qm is readonly, even though m mutates
static state. Note however that method m is impure, because
there is a write to its parameter. Interestingly, this is not un-
sound. Parameter and static mutability types capture precisely
the information needed to infer purity as we shall see shortly.

We infer that a method m is pure if all of its parameters,
including implicit parameter this, are not mutable (i.e., they
are readonly or polyread), and its static immutability type is
not mutable (i.e., it is readonly or polyread). More formally,
let typeof (m) = qthis, qp → qret and statictypeof (m) = qm.
We have:

pure(m) =


false if qthis = mutable or

qp = mutable or
qm = mutable

true otherwise

As discussed earlier, a method m can be impure because: (1)
prestates are mutated through parameters, or (2) prestates are
mutated through static fields. If prestates are mutated through
parameters, then this will be captured by the mutability of this
and p. Now, suppose that prestates are not mutated through
parameters, but are mutated after access through a static field.
In this case, there must be an access in m to a static field sf
through (TSREAD) or (TSWRITE), and the mutation is captured
by the static immutability type qm.

4. Experiments
The inference of reference immutability, and the type checker
that verifies the inferred types are implemented as compiler
plug-ins in the Checker Framework (CF) [11, 23]. The pu-
rity inference is implemented on top of the CF as well. The
implementation relies on the CF to generate type constraints
for Java programs. Because it handles context sensitivity
by using viewpoint adaptation, it generates less type con-
straints compared to Javarifier, and the constraints can be
solved faster. The tool, called ReImInfer, is publicly avail-
able at http://code.google.com/p/type-inference/,
including source.

4.1 Benchmarks
The implementation is evaluated on 13 large Java benchmarks,
including 4 whole-program applications and 9 Java libraries.

Whole programs:

• Java Olden (JOlden) is a benchmark suite of 10 small
programs.
• ejc-3.2.0 is the Java Compiler for the Eclipse IDE.
• javad is a Java class file disassembler.
• SPECjbb 2005 is SPEC’s benchmark for evaluating

server side Java.

Libraries:

• tinySQL-1.1 is a database engine.1

• htmlparser-1.4 is a library for parsing HTML.
• jdbm-1.0 is a lightweight transactional persistence en-

gine.

1 We added 392 empty methods in tinySQL in order to compile it with Java
1.6. The modified version is available online.

• jdbf-0.0.1 is an object-relational mapping system.
• commons-pool-1.2 is a generic object-pooling library.
• jtds-1.0 is a JDBC driver for Microsoft SQL Server and

Sybase.
• java.lang is the package from JDK 1.6
• java.util is the package from JDK 1.6.
• xalan-2.7.1 is a library for transforming XML documents

to HTML from the DaCapo 9.12 benchmark suite.

Benchmarks JOlden, tinySQL, htmlparser, and ejc are
precisely the benchmarks used by Javarifier [33]. Javarifier’s
distribution includes regression tests, which greatly facilitates
the comparison between Javarifier and ReImInfer. java.lang
and java.util are included because they are representative
libraries. The rest of the benchmarks come from our previous
experimental work [18, 21].

We run our inference tool, called ReImInfer, on the above
benchmarks on a server with Intel R© Xeon R© CPU X3460
@2.80GHz and 8 GB RAM (the maximal heap size is set to
2 GB). The software environment consists of Sun JDK 1.6
and the Checker Framework 1.3.0 on GNU/Linux 3.2.0.

The goal of our experiments is to demonstrate the scala-
bility, precision, and robustness of ReImInfer.

4.2 Reference Immutability Inference
In this section, we present our results on reference immutabil-
ity inference. We treat the this parameters of java.lang.Object’s
hashCode, equal, and toString as readonly, even though these
methods may mutate internal fields (these fields are used only
for caching and can be excluded from the object state). This
handling is consistent with the notion of observational purity
discussed in [3] as well as other related analyses such as
JPPA [30]; these methods are intended to be observationally
pure. Our analysis does not detect bugs due to unintended
mutation in these methods.

ReImInfer treats private fields f that are read and/or written
through this in exactly one instance method m, as if they
were local variables. Precisely, this means that for these fields
we allow qualifier mutable, and treat field reads x = this.f
and writes this.f = x as if they were assignments x = f
and f = x. One such field and method are current and
nextElement() in class Enumerate shown in Figure 7. We
preserve the dependence between this and f, by using an
additional constraint: qthis <: qf . Thus, when f is mutated in
m, f and this are inferred as mutable. When f is readonly in
the scope of m, but depends on the context of the caller, f is
polyread and this is polyread or mutable. If f is readonly, no
constraints are imposed on this. As an example, field current
and this of nextElement() in Figure 7 are both inferred
polyread. The motivation behind this optimization is precisely
the Enumeration class in Figure 7. The goal is to transfer
the dependence from the element stored in the container, to
the container itself, which is important for purity inference.

http://code.google.com/p/type-inference/

If current were treated as a field, it would be polyread, and
therefore, this of elements would be mutable, which entails
that every container that creates an enumeration is mutable,
even if its elements were not mutated. If current was excluded
from abstract state, then this of nextElement would have been
readonly and mutation from elements would not have been
transferred to the container. Our optimization allows this of
nextElement and elements to be polyread, which is important
for purity inference, as we discuss shortly. The optimization
affected 8 nextElement and elements methods and 12 other
methods that call nextElement and elements throughout all
of our benchmarks.

Recall that reference immutability inference is modular.
Thus, it is able to analyze any given set of classes L. If there
are unknown callees in L, the analysis assumes default typing
mutable, mutable → polyread. The mutable parameters
assume worst-case behavior of the unknown callee — the
unknown callee mutates its arguments. Clearly, readonly is
the most general return type. However, this will require that
every use of the return in the client is readonly, and many
clients violate this restriction. mutable, mutable→ polyread
is safe because we can always assign the polyread return value
to a readonly variable. And it also imposes a constraint on the
callee: e.g., suppose the code for X id(X p) { return p; } was
unavailable and we assumed typing mutable→ polyread for
id. When it becomes available, p will be polyread.

User code U , which uses previously analyzed library L, is
analyzed separately using the result of the analysis of L. In
our case, when analyzing user code U , we use the annotated
JDK available with Javarifier from the CF; the similarities
between Javari and ReIm justify this use. Correctness of
the composition is ensured by the check that the function
subtyping constraints hold: for every m′ in U that overrides
an m from L, typeof (m′) <: typeof (m) must hold. For
example, suppose that L contains code x.m() where thism,
is inferred as readonly. The typing is correct even in the
presence of callbacks. If x.m() results in a callback to m′

in U (m′ overrides m), constraint typeof (m′) <: typeof (m)
(Section 2.3) which entails thism <: thism′ , ensures that
thism′ is readonly as well.

Of course, it is possible that U violates the subtyping ex-
pected by L. Interestingly however, in our experiments the
only violations were on special-cased methods of Object:
equals, hashCode and toString. Furthermore, the vast ma-
jority of violations occurred in the java.util library. As with
other analyses (JPPA), we report these violations as warnings.

Below, we present our results on inference of reference
immutability. Sections 4.2.1–4.2.3 evaluate our tool in terms
of scalability and precision.

4.2.1 Inference output
Table 1 presents the result of running our inference tool
ReImInfer on all benchmarks.

Figure 6. Runtime performance comparison. Note that the
running time for type checking is excluded for both ReImInfer
and Javarifier.

In all benchmarks, about 41% to 69% of references are
reported as readonly, less than 16% are reported as polyread
and 24% to 50% are reported as mutable.

To summarize our findings, ReImInfer is more scalable
than Javarifier (Section 4.2.2). Furthermore, ReImInfer pro-
duces equally precise results (Section 4.2.3).

4.2.2 Timing results
Figure 6 compares the running times of ReImInfer and
Javarifier on the first 5 benchmarks in Table 1. ReImInfer
and Javarifier analyze exactly the same set of classes (given
at the command-line), and use stubs for the JDK. That is,
both ReImInfer and Javarifier generate and solve constraints
for the exact same set of classes, and neither analyzes the
JDK. The timings are the medians of three runs.

ReImInfer scales better than Javarifier. ReImInfer appears
to scale approximately linearly. As the applications grow
larger, the difference between ReImInfer and Javarifier be-
comes more significant. These results are consistent with the
results reported by Quinonez et al. [26] where Javarifier posts
significant nonlinear growth in running time, when program
size goes from 62kLOC to 110kLOC.

4.2.3 Correctness and precision evaluation
To evaluate the correctness and precision of our analysis,
we compared our result with Javarifier on the first four
benchmarks from Table 1. We do not compare the numbers
directly because we use a different notion of annotatable
reference from Javarifier (e.g., Javarifier counts List<Date>
twice while we only count it once). In our comparison,
we examine only fields, return values, formal parameters,
and this parameters; we call these references identifiable
references. We exclude local variables because Javarifier does

Code size Annotatable References Time (in seconds)
Benchmark #Line #Meth #Pure #Ref #Readonly #Polyread #Mutable Infer Check Total
JOlden 6223 326 175 (54%) 949 453 (48%) 149 (16%) 347 (37%) 4.0 1.6 5.7
tinySQL 31980 1597 965 (60%) 4247 2644 (62%) 418 (10%) 1185 (28%) 11.3 3.7 15.1
htmlparser 62627 1698 647 (38%) 4853 2711 (56%) 421 (9%) 1721 (35%) 11.4 5.3 16.9
ejc 110822 4734 1740 (37%) 15434 6161 (40%) 1803 (12%) 7470 (48%) 43.3 22.7 66.2
xalan 348229 10386 4019 (39%) 41186 25181 (61%) 3254 (8%) 12751 (31%) 57.4 23.3 81.1
javad 4207 140 60 (43%) 363 249 (69%) 19 (5%) 95 (26%) 2.2 0.9 3.2
SPECjbb 28333 529 200 (38%) 1537 830 (54%) 246 (16%) 461 (30%) 6.9 2.2 9.3
commons-pool 4755 275 94 (34%) 602 266 (44%) 37 (6%) 299 (50%) 2.7 1.0 3.8
jdbm 11610 446 139 (31%) 1161 470 (40%) 161 (14%) 530 (46%) 4.0 1.8 5.9
jdbf 15961 707 336 (48%) 2510 1669 (66%) 240 (10%) 601 (24%) 7.1 2.4 9.6
jtds 38064 1882 672 (36%) 5048 2805 (56%) 299 (6%) 1944 (39%) 12.1 5.0 17.2
java.lang 43282 1642 1128 (69%) 2970 2028 (68%) 187 (6%) 755 (25%) 8.6 3.0 12.1
java.util 59960 2724 1093 (40%) 6920 2852 (41%) 1005 (15%) 3063 (44%) 16.7 7.6 24.5

Table 1. Inference results for reference immutability. #Line shows the number of lines of the benchmarks, including blank
lines and comments. #Meth gives the number of methods of the benchmarks. #Pure is the number of pure methods inferred
by our purity analysis. Annotatable References include all references, including fields, local variables, return values, formal
parameters, and implicit parameters this. It does not include variables of primitive type. #Ref is the total number of annotatable
references, #Readonly, #Polyread, and #Mutable are the number of references inferred as readonly, polyread, and mutable,
respectively. We also include the running time for the benchmarks. Infer is the running time of ReImInfer for inferring reference
immutability, and method purity. Check is the running time for type checking. The last column Total shows the total running
time, including reference immutability inference, purity inference and type checking.

public class Body {
Body next;
public final Enumeration elements() {

class Enumerate implements Enumeration {
private Body current;
public Enumerate() { current = Body.this; }
public Object nextElement() {

Object retval = current;
current = current.next;
return retval;
}
}
return new Enumerate();
}
}

Figure 7. The elements() method in JOlden/BH

not give identifiable names for local variables (it only shows
local 0, local 1, and so on). In addition, polyread fields in
Javarifier are called this-mutable. In the comparison, we view
all such fields as polyread.

JOlden We examined all programs in the Java Olden
(JOlden) benchmark suite. We found 34 differences between
our result and Javarifier’s, out of 758 identifiable references.
We exclude the following difference from the count: the this
parameters of constructors are reported as readonly by Javar-
ifier, while they are reported as mutable if this is mutated,
by ReImInfer. Differences due to the annotated JDK are also
excluded because Javarifier treated variables from library
methods as mutable even though we have specified the anno-

tated JDK. 8 out of the 34 differences are the nextElement()
method that implements the Enumeration interface (Figure 7).
Javarifier infers the return value as readonly. This is correct
with respect to the semantics of Javari and Javarifier, which
separates a structure from the elements stored in it; thus, a
mutation on an element, should not necessarily affect the data
structure itself.

The semantics of ReIm and ReImInfer demands that the
return of nextElement should be polyread, because there are
cases when the retrieved element is mutated. ReImInfer re-
ports that nextElement()’s return is polyread. Also Javarifier
infers the this parameter of nextElement() as mutable while
ReImInfer reports that it is polyread. This is possible because
ReImInfer treats field current in Figure 7 as a local variable
as discussed earlier. There are 4 nextElement() methods in
the JOlden benchmark suite, causing 8 differences in total.

These 8 differences directly or indirectly lead to the re-
maining 26 differences. First, these 8 differences directly
lead to 8 differences in the current field and the elements()
method in the Enumerate class, which is shown in Figure 7.
Our analysis infers retval as polyread because the return
value of nextElement() is polyread as discussed earlier. This
causes field current to be inferred as polyread in statement
Object retval=current since current is a field but treated as
a local variable. As a result, the this parameter of elements()
becomes polyread due to the assignment current=Body.this.
Because Javarifier infers the return value of nextElement()
as readonly, it reports both the current field and the this of
elements() are readonly, which leads to 8 differences in total.
The treatment of Javarifier reflects the expected semantics

of Javari — the container that calls elements should not be
affected by the data stored in it. ReIm and ReImInfer’s seman-
tics demands that a mutation on the element is propagated to
the container.

Second, these 8 differences on current and elements()
propagate to the other 18 differences. The following code
shows an example:

Body bodyTab = ...;
for(Enumeration e = bodyTab.elements();

e.hasMoreElements();){
Body b = (Body)e.nextElement();
...
b.setProcNext(prev);
}

Here b is mutable since the this parameter of setProc-
Next(Body) is mutable. Because bodyTab is indirectly as-
signed to b through the Enumeration instance referred by
e, bodyTab should be mutable as well. Javarifier reports
bodyTab is readonly because the this parameter of ele-
ments() is inferred as readonly. ReImInfer reports bodyTab
as mutable. This is important for purity — e.g., if bodyTab is
a parameter, its mutability entails that the enclosing method
is impure.

Other benchmarks For the remaining three benchmarks,
tinySQL, htmlparser and ejc, we examined 4 randomly se-
lected classes from each (a total of 12 classes). We found 2
differences out of 868 identifiable references. The 2 differ-
ences are caused by the fact that Javarifier infers a parameter
of String type as polyread, which causes an actual argument
to become polyread or mutable; ReImInfer infers this param-
eter as readonly.

Overall, the differences are very minor. Most are at-
tributable to the different semantics of ReIm and Javari, and
the few others are due to an apparent bug in a corner case of
Javarifier’s handling of the annotated JDK.

4.3 Purity Inference
This section presents our results on purity inference. We treat
methods equals, hashCode, toString in java.lang.Object, as
well as java.util.Comparable.compareTo, as observationally
pure. This is analogous to previous work [30].

Our purity inference is modular. Reference immutability
assumptions for unknown callees are exactly as before. Static
immutability types, which we discussed in Section 3, are not
available in Javari’s annotated JDK. We ran ReImInfer on
java.lang and java.util packages, and we assumed that other
library methods have not mutated static fields. JPPA, a Java
Pointer and Purity Analysis tool by Sălcianu and Rinard [30],
makes the same assumption for unknown library methods,
and our decision to use qm = readonly as default, is motivated
by this, in order to facilitate comparison with JPPA.

When composing previously analyzed libraries L with
user code U for purity inference, we need one additional

Program #Meth JPPA JPure ReImInfer
BH 69 20 (29%) N/A 33 (48%)
BiSort 13 4 (31%) 3 (23%) 5 (38%)
Em3d 19 4 (21%) 1 (5%) 8 (42%)
Health 26 6 (23%) 2 (8%) 11 (42%)
MST 33 15 (45%) 12 (36%) 16 (48%)
Perimeter 42 27 (64%) 31 (74%) 38 (90%)
Power 29 4 (14%) 2 (7%) 10 (34%)
TSP 14 4 (29%) 0 (0%) 1 (7%)
TreeAdd 10 1 (10%) 1 (10%) 6 (60%)
Voronoi 71 40 (56%) 30 (42%) 47 (66%)

Table 2. Pure methods in Java Olden benchmarks

check: for every m′ in U that overrides m in L, we must have
qm <: qm′ . In particular, if qm is inferred as readonly, then
qm′ must be readonly as well. As with reference immutability,
it is possible that user code violates this constraint. In the first
11 benchmarks in Table 1, we found 205 out of 22,720 user
methods that violate the inferred statictypeof on java.lang
and java.util packages, and the vast majority of the violations
are on the special-cased methods, equals, hashCode, and
toString. These violations are reported as warnings.

The results of purity inference by ReImInfer are shown
in Table 1, column #Pure. To evaluate analysis precision,
we compared with JPPA by Sălcianu and Rinard [30] and
JPure by Pearce [24]. We ran JPPA and JPure on the JOlden
benchmark suite and directly compared its output with ours.
Table 2 presents the comparison result.

To summarize our results, ReImInfer scales well to large
programs and shows good precision compared to JPPA and
JPure. Furthermore, ReImInfer, which is based on the stable
and well-maintained CF, appears to be more robust than JPPA
and JPure, both of which are based on custom compilers.
These results suggest that ReImInfer can be useful in practice.

4.3.1 Comparison with JPPA
JOlden There are 59 differences out of 326 user methods
between ReImInfer’s result and JPPA’s. Of these differences,
(a) 4 are due to differences in definitions/assumptions, (b)
51 are due to limitations/bugs in JPPA and (c) 4 are due to
limitations in ReImInfer.

4 differences are due to JPPA’s assumption about un-
known library methods. For example, JPPA reports as pure
the method median in Jolden/TSP, which invokes new
java.lang.Random(). The constructor Random should not
be pure because it mutates a static field seedUniquifier. ReIm-
Infer precomputes static immutability types qm on the JDK
library and thus reports method median as impure.

51 differences are due to limitations/bugs of JPPA. 38
differences are the constructors, which ReImInfer reports as
pure but JPPA does not. According to [30], JPPA follows
the JML convention and constructors that mutate only fields
of the this object are pure. Thus, JPPA should have inferred
them as pure. ReImInfer follows the same definition and

reports these constructors as pure. There are 3 differences on
methods that are inferred as pure by ReImInfer but impure by
JPPA. These 3 methods that return newly-constructed objects,
which are mutated later. According to the definition in [30],
JPPA should have inferred them as pure. There is 1 difference
on method loadTree in Jolden/BH. It is likely a bug in JPPA
because the this parameter is passed to another object’s field
which is mutated later, but JPPA reports loadTree as pure.
ReImInfer detects the this parameter is mutated and reports
the method as impure. There are 9 methods reported as pure
by ReImInfer but not covered by JPPA. This is because
JPPA is a whole-program analysis and these methods are
not reachable, resulting in 9 differences in the comparison.

The remaining 4 differences are the nextElement method
discussed in Section 4.2.3. Because ReImInfer considers the
current field as a local variable, it infers these 4 methods as
pure while JPPA considers they are impure.

Other benchmarks We attempted to run JPPA and compare
on benchmarks tinySQL, htmlparser, and ejc as we did with
Javarifier. tinySQL is a library and there is no main method.
htmlparser, which is a library as well, comes with a main,
which exercises a portion of its functionality; JPPA threw an
exception on htmlparser which we were unable to correct.
JPPA completed on ejc. Due to the fact that it is a whole-
program analysis, it analyzed 3790 reachable user methods;
ReImInfer covered all 4734 user methods.

We examined 4 randomly selected classes from ejc and
found 17 differences out of 163 methods in total. 9 methods
are not reachable according to JPPA. Of the remaining 8
differences, (a) 2 are due to limitations/bugs in JPPA and (b)
6 are due to limitations/bugs in ReImInfer. 1 constructor that
should have been pure according to the JML convention was
reported as impure by JPPA. In addition, 1 method which we
believe is pure because it does not mutate any prestate, was
reported as impure by JPPA. The remaining 6 methods are
reported as pure by JPPA but impure by ReImInfer; this
is imprecision in ReImInfer. These methods are inferred
as impure by ReImInfer because they are overridden by
impure methods. This is an insurmountable imprecision for
ReImInfer.

4.3.2 Comparison with JPure
JOlden There are 60 differences out of 257 user methods
between ReImInfer’s result and JPure’s, excluding the BH
program (JPure could not compile BH). Of these, (a) 29
differences are caused by different definitions/assumptions,
(b) 2 are caused by limitations/bugs in ReImInfer, and (c) 29
differences are caused by limitations/bugs in JPure.

29 differences are caused by different definitions of pure
constructors. We follow the JML convention that a construc-
tor is pure if it only mutates its own fields. JPure has different
definition of a pure constructor and that leads to these dif-
ferences. 2 differences are the nextElement method where
ReImInfer considers the current field as a local variable as

discussed above. There are 8 differences in toString meth-
ods, which are inferred as impure by JPure. Our examination
shows that those methods are pure; it appears that they should
be pure, but are inferred as impure due to imprecision in
JPure, according to [24]. 16 differences are caused by meth-
ods that return fresh local references. JPure should have been
able to identify them as @Fresh, but it did not. The remaining
5 differences are due to the static methods in java.lang.Math.
JPure infers all methods that invoke the static methods in
java.lang.Math as impure, while ReImInfer identifies that
these methods satisfy qm is readonly by using the inference
result from the java.lang package.

Other benchmarks We attempted to run JPure on the li-
braries from JDK 1.6, but that caused problem with the un-
derlying compiler in JPure. We attempted to run JPure on
tinySQL, htmlparser and ejc. In all three cases, the tool issued
an error. We were unable to perform direct comparison on
larger benchmarks.

5. Related Work
We begin by comparison with Javari [33] and its inference
tool Javarifier [26], which represent the state-of-the-art in
reference immutability. Although the type systems have sim-
ilarities, they also differ in important points of design and
implementation. The corresponding inference tools imple-
ment substantially different inference algorithms. Section 5.1
compares ReIm with Javari, and Section 5.2 compares our
inference approach, ReImInfer, with Javarifier. Section 5.3
discusses related work on purity inference, and Section 5.4
discusses other related work.

5.1 Comparison with Javari
There are two essential differences between ReIm and
Javari [33]. First, Javari allows programmers to exclude fields
from the abstract state by designating fields as assignable
or mutable. Such a field may be assigned or mutated even
through a readonly reference. An example is a field used for
caching (e.g., hashCode) — modifying it should not be con-
sidered mutation from the client’s point of view. As expected
however, this expressive power complicates Javari: to prevent
converting an immutable reference to a mutable reference,
Javari requires the access to an assignable field through a
readonly reference, to have different mutabilities depending
on whether it is an l-value or an r-value of an assignment
expression. ReIm does not allow assignable or mutable fields
and therefore it is less expressive but simpler. This decision
is motivated by our intended application: purity inference.
Including assignable and assignable for fields in the type
system would have complicated purity inference.

Second, Javari treats generics and arrays differently. Javari
permits annotating the type arguments when instantiating a
parametric class: a programmer can express designs such as
“readonly list of readonly elements”, “readonly list of mutable
elements”, “mutable list of readonly elements”, and “mutable

list of mutable elements”. ReIm does not support annotations
on the type arguments when instantiating a parametric class,
and can express only “readonly list of readonly elements”
and “mutable list of mutable elements” (which it uses to
approximate the two inexpressible designs). The difference
between the two approaches is illustrated by the following
example:

void m(List<Date> lst2) {
lst2.get(0).setHours(1);
}

Here Javari’s inference tool (Javarifier) infers that reference
lst2 is of type readonly List<mutable Date>. ReImInfer
annotates lst2 as mutable List<Date>. (Javarifier does
not have an option to make it prefer the solution mutable
List<mutable Date> over readonly List<mutable Date>.)
Again, the primary motivation for the decision about ReIm’s
simpler design is the application we had in mind: purity
inference. Purity is a single bit that summarizes whether
any reachable datum may be modified, and finer-grained
information is not of use when computing whether a method
is pure.

Arrays are treated similarly to generics in Javari and its
inference tool. In the following code b would be annotated as
mutable Date readonly [].

void m(Date[] b) {
b[0].setHours(2);
}

Again, Javari and Javarifier permit a programmer to give the
array and its elements either the same or different mutability
annotations. ReIm and ReImInfer enforce that the array and
its elements have the same mutability annotation, so the array
reference b would be inferred as mutable Date mutable []
due to the mutation of element 0.

One might imagine inferring method purity from Javari-
fier’s output, as follows: a method is pure if all the mutabilites
of its formal parameters and static variables, and their type
arguments and array elements, are readonly. This approach
is sound but can be unnecessarily conservative, in certain cir-
cumstances. A concrete example is when the type argument
is not part of the state of the object but is mutated. Consider
the following example:

class A<T> {
T id(T p) { return p; }
}

void m(A<Date> x) {
Date d = x.id(new Date());
d.setHours(0);
}

Here Javarifier infers that x is of type readonly A<mutable
Date>. Using the proposed approach, method m would be
conservatively marked as non-pure. By contrast, ReImInfer
annotates x as readonly, so m is inferred to be pure.

Another important (but non-essential for our purpose)
difference between Javari and ReIm is the type qualifier
hierarchy.

5.2 Comparison with Javarifier
Our inference approach is comparable to Javarifier, the in-
ference tool of Javari. Both tools use flow-insensitive and
context-sensitive analysis and solve constraints generated
during type-based analysis. There are three substantial differ-
ences between the tools.

The most significant difference is in the context-sensitive
handling of methods. The main idea of Javarifier is to create
two context copies for each method that returns a reference,
one copy for the case when the left-hand-side of the call as-
signment is mutable, and another copy for the case when
the left-hand-side is readonly. As a result, Javarifier doubles
the total number of method-local references, including local
variables, return values, formal parameters and implicit pa-
rameters this. It also doubles the number of constraints. In
contrast, our inference uses polyread and viewpoint adapta-
tion, which efficiently captures and propagates dependences
from parameters to return values in the callee, to the caller.
For example, in m() { x = this.f; y = x.g; return y; }, the
polyread of the return value is propagated to implicit param-
eter this; the dependence is transferred to the callers when
viewpoint adaptation is applied at the call sites of m.

Second, Javarifier and ReImInfer have different constraint
resolution approaches. Javarifier computes graph reachability
over the constraint graph. Its duplication of nodes in its
constraint graph correctly handles context sensitivity. In
contrast, ReImInfer uses fixpoint iteration on the set-based
solution and outputs the final typing based on the preference
ranking over the qualifiers.

Third, Javarifier is based on Soot [34] while ReImInfer
is based on the Checker Framework (CF), which did not yet
exist when Javarifier was developed. Javari’s type-checker is
completely separate code from Javarifier, and Javarifier also
requires an additional utility to map the inference result back
to the source code in order to do type checking. In total, Javari
and Javarifier depend on three tools: Soot, the annotation
utility, and the Checker Framework. In contrast, ReImInfer
and the type checker require only the Checker Framework
and the annotation utility. These differences contribute to the
usability of ReImInfer.

We conjecture that viewpoint adaptation, the constraint
resolution approach, and the better infrastructure in the CF,
contribute to the better scalability of ReImInfer compared to
Javarifier.

5.3 Purity
Sălcianu and Rinard present a Java Pointer and Purity Anal-
ysis tool (JPPA) for reference immutability inference and
purity inference. Their analysis is built on top of a combined
pointer and escape analysis. Their analysis not only infers
the immutability, but also the safety for parameters, which

means the abstract state referred by a safe parameter will
not be exposed to externally visible heap inside the method.
However, the pointer and escape analysis is more expensive.
It relies on whole program analysis, which requires main, and
analyzes only methods reachable from main. ReImInfer does
not require the whole program and thus it can be applied to
libraries. Plus, we also include a type checker for verifying
the inference result, which is not available in JPPA.

JPure [24] is a modular purity system for Java. The
way JPure infers method purity is not based on reference
immutability inference, as our purity inference and JPPA did.
Instead, it exploits two properties, freshness and locality, for
purity analysis. Its modular analysis enables inferring method
purity on libraries and gains efficient runtime performance.

Rountev’s analysis is designed to work on incomplete
programs using fragment analysis by creating artificial main
routine [28]. However, its definition of pure method is more
restricted in that it disallows a pure method to create and use
a temporary object.

Clausen develops Cream, an optimizer for Java bytecode
using an inter-procedural side-effect analysis [6]. It infers an
instruction or a collection of instructions as pure, read-only,
write-only or read/write, based on which it can infer purity
for methods, loops and instructions. It is a whole-program
analysis which requires a main method and also, unused
methods are not covered.

Other researchers also explore the dynamic notion of pu-
rity. Dallmeier et al. develop a tool, also called JPURE, to
dynamically infer pure methods for Java [8]. Their analysis
calculates the set of modified objects for each method invo-
cation and determines impure methods by checking if they
write non-local visible objects. Xu et al. use both static and
dynamic approaches to analyze method purity in Java pro-
grams [36]. Their implementation supports different purity
definitions that range from strong to weak. These dynamic ap-
proach depends on the runtime behavior of programs, which
is totally different from our purity analysis.

5.4 Other Related Work
Artzi et al. present Pidasa for classifying parameter reference
immutability [1, 2]. They combine dynamic analysis and
static analysis in different stages, each of which refines the re-
sult from the previous stage. The resulting analysis is scalable
and produces precise result. They also incorporate optional
unsound heuristics for improving precision. In contrast, our
analysis is entirely static and it also infers immutability types
for fields and method return values. It is unclear how their
analysis handles polymorphism of methods.

The IGJ [38] and OIGJ [39] type systems support both
reference immutability (a la Javari and ReIm) and also object
immutability. Concurrent work by Haack et al. [16] also
supports object immutability.

JQual [15] is a framework for inference of type qualifiers.
JQual’s immutability inference in field-sensitive and context-
sensitive mode is similar to Javari’s inference. However, it is

not scalable in this mode according to the authors. And Artzi
et al.’s evaluation confirms this [2]. In field-insensitive mode,
JQual suffers from the problem that the method receiver has
to be mutable when the method reads a mutable field, even
if the method itself does not mutate any program state. Our
analysis is scalable and may even have better scalability than
Javarifier. Also, by introducing the polyread annotation and
viewpoint adaptation, our analysis is able to correctly infer
that a method receiver is readonly or polyread, even if a field
is returned from the method, and the returned value is mutated
later.

Porat et al. [25] present an analysis that detects immutable
static fields and also addresses sealing/encapsulation. Their
analysis is context-insensitive and libraries are not analyzed.
Liu and Milanova [20] describe field immutability in the
context of UML. Their work incorporates limited context sen-
sitivity, analyzes large libraries and focuses on instance fields.
This work is an improvement over [20]. Immutability infer-
ence not only includes instance fields, but also local variables,
return values, formal parameters, and this parameters. Also,
this work provides a type checker to verify the correctness of
the inference result.

Chin et al. [4] propose CLARITY for the inference of
user-defined qualifiers for C programs based on user-defined
rules, which can also be inferred given user-defined invari-
ants. It infers several type qualifiers, including pos and neg
for integers, nonnull for pointers, and tainted and untainted
for strings. These type qualifiers are not context-sensitive. In
contrast, our tool focuses on the type system for reference im-
mutability and it is context-sensitive, as viewpoint adaptation
is used in the type system to express context sensitivity.

ReIm uses and adapts the concept of viewpoint adaptation
from Universe Types [7, 9, 10], which is a lightweight
ownership type system that optionally enforces the owner-
as-modifier encapsulation discipline. The readonly qualifier
in ReIm is similar to the any qualifier in Universe Types
(in earlier work on Universe Types, qualifier any is actually
called readonly). Both readonly references and any references
disallow mutations on their referents. However, the ownership
structure in Universe Types can be used to give a more
concrete interpretation of casts from a readonly type to a
mutable type.

In addition, the purity results from this work can be used
in the inference of Universe Types, as shown by our previous
work [12, 18]. The type inference algorithm presented in
this paper, fits in the framework from [18]. One difference is
that viewpoint adaptation in [18] is the traditional viewpoint
adaptation from Universe Types: it uses the same operation
at field accesses and at method calls, and adapts only from
the point of view of the receiver. In this paper, we use a
more general notion of viewpoint adaptation. The precise
relation between [18] and this work, will be formalized in
future work.

The inference algorithm (Section 2.4) of ReImInfer is
similar to the algorithm used by Tip et al. [14, 31]. Both
algorithms start with sets containing all possible answers and
iteratively remove elements that are inconsistent with the
typing rules. Then, they use a ranking over valid typings to
select from the multiple options that remain.

6. Conclusion
We have presented ReIm and ReImInfer, a type system
and a type inference analysis for reference immutability. In
addition, we have applied reference immutability to method
purity inference. We have shown that our approach is scalable
and precise by implementing a prototype, evaluating it on 13
large Java programs and Java libraries, and comparing the
results to the leading reference immutability inference tool,
Javarifier, and to purity inference tools, JPPA and JPure.

We envision several potential applications of ReIm and
ReImInfer. We have already used ReImInfer to infer method
purity which is needed, for example, for Universe Type
inference [12, 18]. Other applications are flow-sensitive
type inference, error detection in concurrent programs, and
optimization of concurrent programs.

In future work, we plan to develop a framework for
inference and checking of pluggable types, which will include
ReIm, ownership types, Universe Types, as well as other type
systems such as AJ [35], EnerJ [29], etc. In addition, we
intend to study the interesting relationship between context
sensitivity and CFL-reachability from data-flow analysis and
viewpoint adaptation from ownership types.

Acknowledgments
This research was supported in part by NSF grants CCF-
0642911 and CNS-0855252 and by DARPA contracts
FA8750-12-2-0107 and FA8750-12-C-0174.

References
[1] S. Artzi, A. Kieżun, D. Glasser, and M. D. Ernst. Combined

static and dynamic mutability analysis. In ASE, pages 104–113,
2007.

[2] S. Artzi, A. Kieżun, J. Quinonez, and M. D. Ernst. Parameter
reference immutability: formal definition, inference tool, and
comparison. Automated Software Engineering, 16(1):145–192,
Dec. 2009.

[3] M. Barnett, D. A. Naumann, W. Schulte, and Q. Sun. 99.44%
pure: Useful abstractions in specifications. In FTfJP, pages
11–19, 2004.

[4] B. Chin, S. Markstrum, T. Millstein, and J. Palsberg. Inference
of user-defined type qualifiers and qualifier rules. In ESOP,
pages 264–278, 2006.

[5] D. Clarke, J. M. Potter, and J. Noble. Ownership types for
flexible alias protection. In OOPSLA, pages 48–64, 1998.

[6] L. R. Clausen. A Java bytecode optimizer using side-effect
analysis. Concurrency: Practice and Experience, 9:1031–1045,
1997.

[7] D. Cunningham, W. Dietl, S. Drossopoulou, A. Francalanza,
P. Müller, and A. J. Summers. Universe Types for topology
and encapsulation. In FMCO, 2008.

[8] V. Dallmeier, C. Lindig, and A. Zeller. Dynamic purity analysis
for java programs. http://www.st.cs.uni-saarland.de/
models/jpure/, 2007.

[9] W. Dietl and P. Müller. Universes: Lightweight ownership for
JML. Journal of Object Technology, 4:5–32, 2005.

[10] W. Dietl, S. Drossopoulou, and P. Müller. Generic Universe
Types. In ECOOP, pages 28–53, 2007.

[11] W. Dietl, S. Dietzel, M. D. Ernst, K. Muşlu, and T. W. Schiller.
Building and using pluggable type-checkers. In ICSE, pages
681–690, 2011.

[12] W. Dietl, M. D. Ernst, and P. Müller. Tunable static inference
for Generic Universe Types. In ECOOP, pages 333–357, 2011.

[13] M. D. Ernst. Type Annotations specification (JSR 308). http:
//types.cs.washington.edu/jsr308/, July 3, 2012.

[14] R. Fuhrer, F. Tip, A. Kieżun, J. Dolby, and M. Keller. Effi-
ciently refactoring Java applications to use generic libraries. In
ECOOP, pages 71–96, July 2005.

[15] D. Greenfieldboyce and J. S. J. Foster. Type qualifier inference
for Java. In OOPSLA, pages 321–336, 2007.

[16] C. Haack, E. Poll, J. Schäfer, and A. Schubert. Immutable
objects for a Java-like language. In ESOP, pages 347–362,
Mar. 2007.

[17] A. Heydon, R. Levin, and Y. Yu. Caching function calls using
precise dependencies. In PLDI, pages 311–320, 2000.

[18] W. Huang, W. Dietl, A. Milanova, and M. D. Ernst. Inference
and checking of object ownership. In ECOOP, pages 181–206,
2012.

[19] A. Le, O. Lhoták, and L. Hendren. Using inter-procedural
side-effect information in JIT optimizations. In CC, pages
287–304, 2005.

[20] Y. Liu and A. Milanova. Ownership and immutability inference
for UML-based object access control. In ICSE, pages 323–332,
2007.

[21] A. Milanova and W. Huang. Static object race detection. In
APLAS, pages 255–271, 2011.

[22] A. Milanova, A. Rountev, and B. G. Ryder. Parameterized
object sensitivity for points-to analysis for Java. ACM Transac-
tions on Software Engineering and Methodology, 14(1):1–41,
Jan. 2005.

[23] M. M. Papi, M. Ali, T. L. Correa, Jr., J. H. Perkins, and M. D.
Ernst. Practical pluggable types for Java. In ISSTA, pages
201–212, 2008.

[24] D. Pearce. JPure: A modular purity system for Java. In CC,
pages 104–123, 2011.

[25] S. Porat, M. Biberstein, L. Koved, and B. Mendelson. Au-
tomatic detection of immutable fields in Java. In CASCON,
pages 10–24, 2000.

[26] J. Quinonez, M. S. Tschantz, and M. D. Ernst. Inference of
reference immutability. In ECOOP, pages 616–641, 2008.

http://www.st.cs.uni-saarland.de/models/jpure/
http://www.st.cs.uni-saarland.de/models/jpure/
http://types.cs.washington.edu/jsr308/
http://types.cs.washington.edu/jsr308/

[27] T. Reps. Undecidability of context-sensitive data-independence
analysis. ACM Transactions on Programming Languages and
Systems, 22:162–186, 2000.

[28] A. Rountev. Precise identification of side-effect-free methods
in Java. In ICSM, pages 82–91, 2004.

[29] A. Sampson, W. Dietl, E. Fortuna, D. Gnanapragasam, L. Ceze,
and D. Grossman. EnerJ: Approximate data types for safe
and general low-power computation. In PLDI, pages 164–174,
2011.

[30] A. Sălcianu and M. Rinard. Purity and side effect analysis for
Java programs. In VMCAI, pages 199–215, 2005.

[31] F. Tip, R. M. Fuhrer, A. Kieżun, M. D. Ernst, I. Balaban,
and B. D. Sutter. Refactoring using type constraints. ACM
Transactions on Programming Languages and Systems, 33(3):
9:1–9:47, May 2011.

[32] O. Tkachuk and M. B. Dwyer. Adapting side effects analysis
for modular program model checking. In ESEC/FSE, pages
188–197, 2003.

[33] M. S. Tschantz and M. D. Ernst. Javari: Adding reference
immutability to Java. In OOPSLA, pages 211–230, 2005.

[34] R. Vallée-Rai, P. Co, E. Gagnon, L. Hendren, P. Lam, and
V. Sundaresan. Soot - a Java bytecode optimization framework.
In CASCON, pages 13–, 1999.

[35] M. Vaziri, F. Tip, J. Dolby, C. Hammer, and J. Vitek. A type
system for data-centric synchronization. In ECOOP, pages
304–328, 2010.

[36] H. Xu, C. J. F. Pickett, and C. Verbrugge. Dynamic purity
analysis for Java programs. In PASTE, pages 75–82, 2007.

[37] J. Zhao, I. Rogers, and C. Kirkham. Pure method analysis
within Jikes RVM. In ICOOOLPS, 2008.

[38] Y. Zibin, A. Potanin, M. Ali, S. Artzi, A. Kieżun, and M. D.
Ernst. Object and reference immutability using Java generics.
In ESEC/FSE, pages 75–84, Sept. 2007.

[39] Y. Zibin, A. Potanin, P. Li, M. Ali, and M. D. Ernst. Ownership
and immutability in generic Java. In OOPSLA, pages 598–617,
Oct. 2010.

	Introduction
	ReIm Reference Immutability Types
	Immutability Qualifiers
	Context Sensitivity
	Typing Rules
	Type Inference

	Method Purity
	Experiments
	Benchmarks
	Reference Immutability Inference
	Inference output
	Timing results
	Correctness and precision evaluation

	Purity Inference
	Comparison with JPPA
	Comparison with JPure

	Related Work
	Comparison with Javari
	Comparison with Javarifier
	Purity
	Other Related Work

	Conclusion

