
Inference and Checking
of Object Ownership

Wei Huang1, Werner Dietl2,

Ana Milanova1, Michael D. Ernst2

1Rensselaer Polytechnic Institute
2University of Washington

1

Ownership Types

� Owner-as-Modifier (OaM)

◦ Universe Types (UT)

� Owner-as-Dominator (OaD)

◦ Ownership Types (OT)

2

ListList

NodeNode

OaD
ListList

NodeNode

OaM

read access write access

✓ ✓ ✓ ✓✗ ✗ ✓ ✓ ✓ ✓✗✗

1 class Link {
2 Link next; X data;
3 Link(X inData) {
4 next = null;
5 data = inData;
6 }
7 }
8 class XStack {
9 Link top;
10 void push(X data) {
11 Link newTop;
12 newTop = new Link(data);
13 newTop.next = top;
14 top = newTop;
15 }
16 X pop() {
17 Link oldTop = top;
18 top = oldTop.next;
19 return oldTop.data;
20 }
21 boolean isEmpty() {
22 return top == null; }
23 public static void

main(String[] args) {
24 XStack s;
25 s = new XStack();
26 X x = new X();
27 s.push(x);
28 x = s.pop();
29 }
30 }

1 class Link {
2 <rep|p> Link next; <p|p> X data;
3 Link(<p|p> X inData) {
4 next = null;
5 data = inData;
6 }
7 }
8 class XStack {
9 <rep|p> Link top;
10 void push(<p|p> X data) {
11 <rep|p> Link newTop;
12 newTop = new <rep|p> Link(data);
13 newTop.next = top;
14 top = newTop;
15 }
16 <p|p> X pop() {
17 <rep|p> Link oldTop = top;
18 top = oldTop.next;
19 return oldTop.data;
20 }
21 boolean isEmpty() {
22 return top == null; }
23 public static void main(String[]

args) {
24 <rep|rep> XStack s;
25 s = new <rep|rep> XStack();
26 <rep|rep> X x = new <rep|rep> X();
27 s.push(x);
28 x = s.pop();
29 }
30 }

Annotation Burden is High

13 annotations
are used in this
small program!

3

Ownership Type Inference

� Transforms un-annotated or partially-
annotated programs into fully annotated
ones

◦ Facilitates practical adoption of ownership
types

◦ Reveals how ownership concepts are
expressed in existing programs

4

Many Valid Typings!

�Goal: Infer the “best” typing

◦ The typing that gives rise to the deepest tree

rootroot

ListList NodeNode DataData

rootroot

ListList

NodeNode

DataData

5

Flatter tree Deeper tree

Contributions

� Unified typing rules

◦ Universe Types (UT)

◦ Ownership Types (OT)

� Unified inference approach

�Notion of “best” typing

� Implementation and evaluation

◦ Results for UT and OT

◦ Comparison of UT and OT

6

Universe Types [Dietl & Müller JOT’05]

root

List

Data1

Node1

Node2

Data2

rep

rep

rep

peer

any

any

rep>peer=rep

7

this
owned by
this

has same
owner as this arbitrary

ownership
arbitrary
ownership

??

Ownership Types [Clark et al. OOPSLA’98]

root

List

Data1

Node1

Node2

Data2

<rep|_>

<own|_>

<p|_>

<rep|_>

<rep|_>

<p|_>

rep _ > own _ = rep _

8

owned by
this

owned by
this

has same
owner as this
has same

owner as this owned by ownership
parameter

owned by ownership
parameter

ownerowner
ownership
parameter
ownership
parameter

??

10 qq

Architecture

Unifie

Rules

Unifie
d

Typing
Rules

Q Type qualifiers

<: Subtyping relation

> Viewpoint adaptation

β Additional constraints

Source CodeSource Code

based Set-based
Solver

Extrac

Typing

Extrac
t

“Best”
Typing

Preference Ranking
over Qualifiers

Preference Ranking
over Qualifiers

Type

g

Type
Checkin
g

Set-

Solution

Set-
based
Solution

Maximal
Typing

Manual
Annotations
Manual

Annotations

Instantiate
d Rules

9

Fail

Succeed

“Best”
Typing

Outline

� Unified typing rules

� Unified inference approach

�Notion of “best” typing

� Implementation and evaluation

10

Typing Rule (TWRITE): x.f = y

This image cannot currently be displayed.

OT: (TWRITE)

Γ(x) = qx Γ(y) = qy typeof (f) = qf

qy <:qx > qf

Γ x.f = y

11

UT: (TWRITE)

Γ(x) = qx Γ(y) = qy typeof (f) = qf

qy <: qx > qf qx ≠ any qx > qf ≠ lost

Γ x.f = yT

UT: (TWRITE)

Γ(x) = qx Γ(y) = qy typeof (f) = qf

qy <: qx > qf qx ≠ any qx > qf ≠ lost

Γ x.f = yT T

OT: (TWRITE)

Γ(x) = qx Γ(y) = qy typeof (f) = qf

qy <:qx > qf

Γ x.f = yT

Unified: (TWRITE)
Γ(x) = qx Γ(y) = qy typeof (f) = qf

qy <:qx > qf β(TWRITE)

Γ x.f = yT

UT Adaptations:

rep>peer=rep

peer >peer=peer

L

OT Adaptations:

rep p > own p = rep p

own p > own p = own p

L

Outline

� Unified typing rules

� Unified inference approach

�Notion of “best” typing

� Implementation and evaluation

12

Set-based Solver

� Set Mapping S: variable � {possible qualifiers}

◦ e.g. S(x) = {any, rep, peer}

� Iterates over statements s

◦ Applies the function fs
◦ fs removes infeasible qualifiers for each variable
in s according to the instantiated rules

� Until

◦ Reaches a fixpoint, or

◦ Assigns the empty set to a variable

13

Example
1 class XStack {

2 Link top;

3 void push(X d) {

4 Link newTop;

5 newTop = new Link();

6 newTop.init(d);

7 ...

8 }

9 }

10 class Link {

11 ...

12 void init(X inData) {

13 ...

14 }

15 }

{any, rep, peer}

{any, rep, peer}
{any, rep, peer}

{any, rep, peer}

{any, rep, peer}

14

First Iteration
1 class XStack {

2 Link top;

3 void push(X d) {

4 Link newTop;

5 newTop = new Link();

6 newTop.init(d);

7 ...

8 }

9 }

10 class Link {

11 ...

12 void init(X inData) {

13 ...

14 }

15 }

{any, rep, peer}

{any, rep, peer}
{any, rep, peer}

{any, rep, peer}

{any, rep, peer}

15

First Iteration
1 class XStack {

2 Link top;

3 void push(X d) {

4 Link newTop;

5 newTop = new Link();

6 newTop.init(d);

7 ...

8 }

9 }

10 class Link {

11 ...

12 void init(X inData) {

13 ...

14 }

15 }

{any, rep, peer}

{any, rep, peer}
{any, rep, peer}

{any, rep, peer}

{any, rep, peer}

16

Final Result: A Set-based Solution
1 class XStack {

2 Link top;

3 void push(X d) {

4 Link newTop;

5 newTop = new Link();

6 newTop.init(d);

7 ...

8 }

9 }

10 class Link {

11 ...

12 void init(X inData) {

13 ...

14 }

15 }

{any, rep, peer}

{any, rep, peer}
{any, rep, peer}

{any, rep, peer}

{any, rep, peer}

17

Outline

� Unified typing rules

� Unified inference approach

�Notion of “best” typing

� Implementation and evaluation

18

Set-based Solution

�Many valid typings can be extracted from
the solution

�Which one is the “best”?

◦ Deeper ownership tree has better encapsulation

Flatter tree Deeper tree

rootroot

ListList NodeNode DataData

rootroot

ListList

NodeNode

DataData

19

Notion of “Best” Typing

� Objective functions rank valid typings

� is a valid typing

ranks UT typings; a proxy for deep UT tree

ranks OT typings; a proxy for deep OT tree

� “Best” typing maximizes objective function

oUT (T)= (T
−1(any) , T −1(rep) , T −1(peer))

oOT (T) = (T
−1(rep _) , T −1(own _) , T −1(p _))

20

T

Maximal Typing

�Maximal typing assigns to each variable x
the maximally preferred qualifier from S(x)

◦ Preference ranking over qualifiers

� UT:

� OT:

� Theorem: If the maximal typing type-checks,
then it maximizes the objective function

◦ UT: the maximal typing always type-checks

◦ OT: it does not always type-check

any > rep > peer
rep _ > own _ > p _

21

UT: Maximal Typing Always Type Checks
1 class XStack {

2 Link top;

3 void push(X d) {

4 Link newTop;

5 newTop = new Link();

6 newTop.init(d);

7 ...

8 }

9 }

10 class Link {

11 ...

12 void init(X inData) {

13 ...

14 }

15 }

{any, rep, peer}

{any, rep, peer}
{any, rep, peer}

{any, rep, peer}

{any, rep, peer}

22

OT: Maximal Typing Does Not Always
Type Check
� Conflict: picking the maximal qualifiers
doesn’t type-check

� Prompts user for manual annotations

23

own _ , p _{ }
rep _ , own _{ }class A {

C f;

}

x=new A();

y=new C();

x.f=y;
own _

rep _ > own _ = rep _ ≠ own _
x . f = y

Outline

� Unified typing rules

� Unified inference approach

�Notion of “best” typing

� Implementation and evaluation

24

Implementation

� Built on top of the Checker Framework (CF)
[Papi et al. ISSTA’08, Dietl et al. ICSE’11]

� Extends the CF to specify:

◦ Preference ranking over qualifiers

◦ Viewpoint adaptation function

◦ Additional constraints

� Publicly available at

◦ http://www.cs.rpi.edu/~huangw5/cf-inference

25

Benchmarks

Benchmark #Line Description

javad 4,207 Java class file disassembler

jdepend 4,351 Java package dependency analyzer

JOlden 6,223 Benchmark suite of 10 small programs

classycle 8,972
Java class and package dependency
analyzer

SPECjbb 12,076
SPEC's benchmark for evaluating server
side Java

tinySQL 31,980 Database engine

htmlparser 62,627 HTML parser

ejc 110,822 Java compiler of the Eclipse IDE

26

UT Result

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

any rep peer

27

rep = encapsulation

OT Result

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

<rep|_> <own|_> <p|_>

28

<rep|_> = encapsulation

Owner-as-Modifier vs
Owner-as-Dominator
� UT gives rise to a deeper tree
when access to object e from x is readonly

Object Graph OT Tree

rootroot

xx

iicc ee

UT Tree

rootroot

xx

ii

cc

ee

rootroot

xx

iicc

ee

29

Owner-as-Modifier vs
Owner-as-Dominator
�OT gives rise to a deeper tree

when object j modifies object k from an

enclosing context

Object Graph

rootroot

ii kk

jj

OT Tree

rootroot

ii kkjj

UT Tree

rootroot

ii kk

jj

30

Allocation Sites

31

OT: rep 40%

UT: rep 14%

OT has deeper tree: Modification to objects
from enclosing context happens more often

rep 9%
UT&OT:
rep 9%

UT and OT give rise to different ownership trees

Summary of Results

�Manual annotations

◦ UT: 0 annotations

◦ OT: 6 annotations per 1 kLOC

� Programs can be refactored to have better
OaM or OaD structure

� UT requires no manual annotations;
annotations are easy to interpret

�OT requires manual annotations;
annotations are hard to interpret

32

Related Work

� Tip et al. [TOPLAS’11]
◦ Similar algorithm: starts with all possible answers
and iteratively removes infeasible elements
◦ We also use qualifier preference ranking

� Dietl et al. [ECOOP’11]
◦ Tunable Inference for Generic Universe Types
◦ Encodes type constraints and solved by Max-SAT
solver

� Sergey & Clark [ESOP’12]
◦ Gradual Ownership Types
◦ Requires both static and dynamic analyses
◦ Analyzes 8,200 lines of code in total

33

Conclusions

� An inference framework for ownership-
like type systems

�Definition of “best” typing

� Evaluation on 241 kLOC

� Publicly available at

◦ http://www.cs.rpi.edu/~huangw5/cf-inference

34

Conclusions

� An inference framework for ownership-
like type systems

�Definition of “best” typing

� Evaluation on 241 kLOC

� Publicly available at

◦ http://www.cs.rpi.edu/~huangw5/cf-inference

35

Typing Rule (TCALL): x = y.m(z)
UT: (TCALL)

typeof (m) = qp → qret

Γ(x) = qx Γ(y) = qy typeof (z) = qz

qz <:qy > qp qy > qret <:qx

qy > qp ≠ lost impure(m)⇒ qy ≠ any

Γa x = y.m(z)

OT: (TWRITE)

Unified: (TWRITE)

36

UT Result
Benchmark TotalVar any rep peer #Manual Time(s)

JOlden 685 227 71 387 0 11.3

tinySQL 2711 630 104 1977 0 18.2

htmlparser 3269 426 153 2690 0 22.9

ejc 10957 1897 122 8938 0 119.7

javad 249 31 11 207 0 4.1

SPECjbb 1066 295 74 697 0 13.6

jdepend 542 95 14 433 0 7.2

classycle 946 87 11 848 0 9.9

� Running times range from 4 sec. to 120
sec.

� Zero manual annotations are required

Delelte

37

OT Result
Benchmark TotalVar #Manual Time(s)

JOlden 685 67 497 24 97 13(2/KLOC) 10.3

tinySQL 2711 224 530 5 1952 215(7/KLOC) 18.4

htmlparser 3269 330 629 36 2274 200(3/KLOC) 33.6

ejc 10957 467 1768 50 8672 592(5/KLOC) 122.4

javad 249 44 27 74 104 46(10/KLOC) 5.5

SPECjbb 1066 166 141 71 688 73(6/KLOC) 17.1

jdepend 542 130 156 128 128 26(6/KLOC) 13.7

classycle 946 153 173 28 592 90(10/KLOC) 11.7

rep # own _ # p _ # norep _

� Running times range from 4 sec. to 120 sec.

� 6/KLOC manual annotations on average

Delelte

38

Allocation Sites in All Benchmarks

OT: rep 40%

OT: not rep 60%

UT: not rep 86%

UT: rep 14%

Modification of objects from enclosing context happens
more often than readonly exposure

39

Universe Types

�Owner-as-Modifier encapsulation (OaM)

� Type qualifiers:

◦ rep: owned by this

◦ peer: has same owner as this

◦ any: arbitrary ownership

40

Classical Ownership Types

�Owner-as-Dominator encapsulation (OaD)

� Type qualifier

◦ is the owner of the object

◦ is the ownership parameter

◦ rep: owned by this

◦ own: has same owner as this

◦ p: owned by the ownership parameter

10 qq

0q

1q

41

Owner-as-Modifier vs
Owner-as-Dominator
�Goal: compare UT (OaM) to OT (OaD)

� In certain cases, UT gives rise to a deeper
tree than OT

� In other cases, OT gives rise to a deeper
tree

�Does UT or OT has deeper trees?

�Do UT and OT give rise to different trees?

42

Architecture

Unified
Typing Rules

Q Type qualifiers

<: Subtyping relation

> Viewpoint adaptation

β Additional constraints

Source CodeSource Code
Set-based
Solver

Extract “Best”
Typing

Preference Ranking
over Qualifiers

Preference Ranking
over Qualifiers

Type
Checking

Set-based Solution

Maximal Typing

Manual
Annotations
Manual

Annotations

Instantiated Rules

43

Fail

Succeed

“Best” Typing

44

4.1 7.2 11.3 9.9 13.6 18.2 22.9

119.7

 Time in seconds

5.5
13.7 10.3 11.7

17.1 18.4

33.6

122.4

 Time in seconds

46 26 13

90 73

215 200

592

Manual annotations

Summary of Results

� Many objects are owned (encapsulated)
◦ UT: 14% of allocation sites are rep (upper bound!)

◦ OT: 40% of allocation sites are rep (close to upper
bound!)

� UT requires no manual annotations
◦ Programs can be refactored to have better OaM
structure

� OT requires manual annotations
◦ Annotations are hard to understand

45

Allocation Sites

46

OT: rep 40%

UT: rep 14%

often
Modification from external context happens more
often

rep 9%
UT&OT:
rep 9%

UT and OT give rise to different ownership trees

Running Time and Manual Annotation

47

� Zero manual annotation for UT

� 6 manual annotations per kLOC on average

Benchmark #Line
Running Time (s) Manual Annotations

UT OT UT OT

javad 4,207 4.1 5.5 0 46

jdepend 4,351 7.2 13.7 0 26

JOlden 6,223 11.3 10.3 0 13

classycle 8,972 9.9 11.7 0 90

SPECjbb 12,076 13.6 17.1 0 73

tinySQL 31,980 18.2 18.4 0 215

htmlparser 62,627 22.9 33.6 0 200

ejc 110,822 119.7 122.4 0 592

Notion of “Best” Typing

�Objective functions rank valid typings

� is a valid typing

� ranks UT typings

◦ Maximizes number of allocation sites typed rep

� ranks OT typings

◦ Maximizes number of object graph edges typed
with owner rep

48

oUT (T)

T

oOT (T)

Outline

� Unified typing rules

� Unified inference approach

�Notion of “best” typing

� Implementation and evaluation

49

Ownership Types

�Owner-as-Modifier

�Owner-as-Dominator

50

ListList

NodeNode

OaM

ListList

NodeNode

OaD

read write

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓✗ ✗ ✗✗

Summary of Results

�Many objects are owned (encapsulated)
◦ UT: 14% of allocation sites are rep (upper
bound!)

◦ OT: 40% of allocation sites are rep (close to
upper bound!)

� UT requires no manual annotations;
annotations are easy to interpret

�OT requires manual annotations;
annotations are hard to interpret

51

