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ABSTRACT

This paper presents a technique to detect inadequate (i.e., missing
or ambiguous) diagnostic messages for configuration errors issued
by a configurable software system.

The technique injects configuration errors into the software under
test, monitors the software outcomes under the injected configu-
ration errors, and uses natural language processing to analyze the
output diagnostic message caused by each configuration error. The
technique reports diagnostic messages that may be unhelpful in
diagnosing a configuration error.

We implemented the technique for Java in a tool, ConfDiagDetec-
tor. In an evaluation on 4 real-world, mature configurable systems,
ConfDiagDetector reported 43 distinct inadequate diagnostic mes-
sages (25 missing and 18 ambiguous). 30 of the detected messages
have been confirmed by their developers, and 12 more have been
identified as inadequate by users in a user study. On average, Conf-
DiagDetector required 5 minutes of programmer time and 3 minutes
of compute time to detect each inadequate diagnostic message.

Categories and Subject Descriptors: D.2.5 [Software Engineer-
ing]: Testing and Debugging.
General Terms: Reliability, Experimentation.
Keywords: Software configuration errors, diagnostic messages,
empirical studies.

1. INTRODUCTION
Software configuration errors (also known as misconfigurations)

are errors in which the software code and the input are correct, but
the software does not behave as desired because an incorrect value
is used for a configuration option [55, 60, 62, 67]. Such errors can
manifest themselves as crashes, erroneous output, hangs, or silent
failures. In practice, software configuration errors have a significant
impact on software reliability.

Software configuration errors are pervasive. They accounted
for the majority of user-visible failures in Yahoo’s mission-critical
Zookeeper service [45] and caused about 31% of all failures at
a commercial storage company [62]. At Google, a considerable
amount of production failures arise not due to bugs in the software,
but bugs in the configuration settings (i.e., configuration errors) that
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control the software [16]. Even worse, software configuration errors
can have serious impacts. For example, an incorrect configuration
value left Facebook inaccessible for about 2 hours [15]. The entire
.se domain of Sweden was unavailable for about 1 hour, due to
a DNS misconfiguration problem [42]. A misconfiguration made
Microsoft’s Azure platform unavailable for about 2.5 hours [35].
Each of these incidents affected millions of users.

Unfortunately, software configuration errors are difficult to debug
and fix. Fixing a configuration error, or even understanding how a
configuration error arises, is often a non-trivial task. For example,
troubleshooting a configuration error in the CentOS kernel requires
the user to gain deep understanding about the exhibited symptom,
and to re-install kernel modules and also modify configuration op-
tion values in several places to get it to work [62]. Techniques to
help escape from “configuration hell” are in high demand [16].

1.1 Detection of Inadequate Diagnostic Messages
Good diagnostic messages are essential in improving software

reliability and diagnosability. In many cases, diagnostic messages
are the sole data source available to understand an exhibited error.
Developers often attempt to map diagnostic message content to
source code statements and work backwards to infer what possible
conditions might have led to the error. Diagnostic messages are
also important for software users, who depend on the symptom
described in a diagnostic message when devising solutions. When
software misconfiguration happens, the software system should
provide a clear diagnostic message relevant to the root cause —
the misconfigured option. A diagnostic message that pinpoints the
misconfigured option would be best.

Unfortunately, many configurable software systems lack adequate
diagnostic messages. When a software system issues a diagnostic
message, it is often cryptic, hard to understand, or even mislead-
ing [25, 62]. A field study indicated that up to 25% of a software
maintainer’s time is spent following blind alleys suggested by poorly
constructed and unclear messages [5].

Our technique, called ConfDiagDetector, helps software develop-

ers improve the diagnosability of a configurable software system.
ConfDiagDetector is not a configuration error detection or debug-
ging tool. It takes a radically different approach than prior configu-
ration management and troubleshooting techniques [2–4, 13, 20, 49,
55, 61, 63, 63, 65–67]. Instead of debugging an exhibited configu-
ration error, ConfDiagDetector proactively detects inadequate (i.e.,
missing or ambiguous) diagnostic messages for potential software
configuration errors at development time, before they actually occur
in the field. Each detected message, if issued by the software, is
likely to be unhelpful to diagnose the exhibited configuration error.

ConfDiagDetector embodies two key ideas: configuration muta-
tion and NLP text analysis. ConfDiagDetector works by injecting
configuration errors into a configurable system, observing the re-



/*

* Variable howToSave stores the value of the

* jmeter.save.saveservice.output_format configuration option.

* XML and CSV are two constants: XML = "XML" and CSV = "CSV"

* If _xml = true, JMeter later saves its result as an XML file.

* Otherwise, it saves saves the result as a CSV file.

*/

if (XML.equals(howToSave)) {

_xml = true

} else {

+ if(!CSV.equals(howToSave)) {

+ log.warn(OUTPUT_FORMAT_PROP + " has unexepected value: ’"

+ + howToSave + "’ - assuming ’csv’ format");

+ }

_xml = false;

}

Figure 1: A missing diagnostic message detected by Conf-

DiagDetector in JMeter 2.9. Lines starting with “+” are

the improved diagnostic message added by the JMeter

developers. The report generated by ConfDiagDetector

for this missing diagnostic message is shown in Figure 2,

and the submitted issue report and fixes are available at

https://issues.apache.org/bugzilla/show_bug.cgi?id=55623.

Note that ConfDiagDetector does not require or work on

source code; the source code above is only for illustrative

purposes.

Injected configuration error:

jmeter.save.saveservice.output_format = TXT

Test case:

jmeter -n -t ../threadgroup.jmx -l ../output.jtl -j ../test.log

Diagnostic message: N/A

Manual description for the jmeter.save.saveservice.output_format option:

Help determine how result data will be saved. Legitimate values:

xml, csv, db. Only xml and csv are currently supported

Figure 2: The report generated by ConfDiagDetector for the

missing diagnostic message in JMeter 2.9, shown in Figure 1.

sulting failures, and using NLP text analysis to check whether the
software issues an informative diagnostic message relevant to the
root-cause configuration option. If not, ConfDiagDetector reports
the diagnostic message as inadequate.

Figure 1 shows a real-world missing diagnostic message de-
tected by ConfDiagDetector. JMeter provides a configuration option,
named jmeter.save.saveservice.output_format, for users to spec-
ify the output file format. The valid values are “XML” and “CSV”.
When a JMeter user provides an unsupported value, such as “TXT”,
for jmeter.save.saveservice.output_format, JMeter treats the un-
supported value as the default value (i.e., “CSV”) without notifying
the user. This behavior silently violates the user’s intention and
expectations, and the system does not give any useful feedback.
Upon receiving ConfDiagDetector’s report (Figure 2), the JMe-
ter developers improved this inadequate diagnostic message: they
added an additional check with an informative message that logs the
configuration name and its value.

Figure 3 shows a real-world ambiguous diagnostic message de-
tected by ConfDiagDetector in Apache Derby [12]. When a user
provides an incorrect value, such as “hello”, for the derby.stream
.error.method configuration option, the Derby database system
crashes. The stacktrace contains an obscure diagnostic message,
“Unable to establish connection”, that is not obviously related to the
root-cause option. A user may be misled to think about other pos-
sible failure causes. Our ConfDiagDetector technique uses natural
language processing (Section 2.3) to determine that the diagnostic
message is unrelated to the documentation for the configuration
option, and it generates the error report in Figure 3.

Injected configuration error:

derby.stream.error.method = hello

Test case:

java -jar derbyrun.jar ij query_example.sql

Diagnostic message:

IJ ERROR: Unable to establish connection

Manual description for the derby.stream.error.method option:

Specifies a static method that returns a stream to which the

Derby error log is written.

Figure 3: A report generated by ConfDiagDetector for an am-

biguous diagnostic message detected in Apache Derby [12]. The

Derby developers have confirmed this issue.

...

jmeter.save.saveservice.output_format=csv

httpclient3.retrycount=1

jmeter.save.saveservice.label=true

...

Figure 4: Part of an example configuration for JMeter 2.9.

In JMeter, all configuration options are specified as key–value

pairs in a configuration file (jmeter.properties). ConfDiag-

Detector parses this configuration file and injects configuration

errors into it by repeatedly modifying each configuration op-

tion’s value.

1.2 ConfDiagDetector’s Design
ConfDiagDetector is designed to help software developers im-

prove configuration error reporting for configurable software sys-
tems. ConfDiagDetector operates in three steps (illustrated in Fig-
ure 5) to find missing and ambiguous diagnostic messages:

• Configuration Mutation. ConfDiagDetector first infers the
likely data type of each configuration option from an existing,
well-formed example configuration such as shown in Figure 4.
Then, it mutates the existing configuration by repeatedly replac-
ing the value of each option with random values or values from a
pre-defined pool, as detailed in Section 2.1.
For the JMeter example in Figure 1, ConfDiagDetector inferred
the data type of configuration option jmeter.save.saveservice.-
output_format as File Type1, and then replaced its existing value
(i.e., “CSV”) with a different one, “TXT”, that was randomly se-
lected from a pre-defined value pool.

• Execution Observation. ConfDiagDetector uses system tests to
determine the software’s behavior. After applying each mutated
configuration (containing exactly one modified configuration
option value) to the software, ConfDiagDetector executes system
tests one by one and monitors the test result and the system
output. For each test failure as determined by its testing oracle,
ConfDiagDetector collects the issued diagnostic message from
the console or logs. The ConfDiagDetector report (Figures 2
and 3) shows how to run the error-triggering test.
For our experiments (Section 4.2), we converted each usage
example in the software user manual into a runnable system test.

• Diagnostic Message Analysis. For each failed test, if a diagnos-
tic message is missing, ConfDiagDetector generates a report for
developers, such as the JMeter example shown in Figure 2.
Otherwise, ConfDiagDetector determines the message’s ade-
quacy by using a natural language processing technique [33]
to analyze the issued diagnostic message and the user manual.
Specifically, ConfDiagDetector checks whether the issued mes-
sage has a similar semantic meaning to the description of the
modified configuration option in the user manual. If not, Conf-
DiagDetector generates a report, such as the example shown in
Figure 3, containing the mutated configuration option value, how

1The set of data types ConfDiagDetector infers is shown in Figure 6.



to run the test, the output diagnostic message, and the configura-
tion option description in the user manual.

ConfDiagDetector’s report (Figures 2 and 3) is a good starting
point for developers to improve a configurable software system’s
diagnosability. Developers can reproduce the software behavior,
understand which configuration errors caused which problems, and
choose to improve the diagnostic message or the user manual de-
scription.

1.3 Comparison with Existing Techniques
Many techniques have been developed to troubleshoot anomalies

caused by configuration errors [4, 61, 65], diagnose certain types of
configuration errors [2, 3], automate configuration tasks [30, 66, 67],
and suggest fixes for a configuration error [49, 59], but none of
them helps developers identify inadequate diagnostic messages for
software configuration errors. While previous research has miti-
gated the impact of configuration errors, the best way to help users
troubleshoot a misconfiguration is for the software to issue a helpful
error report. Following this principle, ConfDiagDetector improves
the error diagnosability of a configurable software system by detect-
ing the potentially inadequate diagnostic messages. It differs from
previous techniques in four key aspects:

• Goal: it detects inadequate diagnostic messages. Most ex-
isting techniques assist developers in diagnosing an exhibited

configuration error [3, 49, 66, 67]. By contrast, ConfDiagDetec-
tor proactively detects inadequate diagnostic messages before a
configuration error actually arises in the field.

• Analysis: it analyzes diagnostic messages in natural language.

Existing configuration management and troubleshooting tech-
niques primarily focus on analyzing source code [61] or exe-
cution traces [66,67]. By contrast, ConfDiagDetector analyzes
diagnostic messages and evaluates their adequacy using natural
language processing techniques.

• Requirements: it requires no source code or prior informa-

tion. Most existing configuration management, error detection,
and troubleshooting techniques require source code [61], a com-
prehensive defect history [51], or a large set of usage data [65].
By contrast, ConfDiagDetector eliminates these requirements
and operates on a single binary version, together with a well-
formed example configuration and test cases. Test cases can be
created from examples in the manual, if they are not already
available.

• Portability: it requires no OS-level support. ConfDiagDetec-
tor requires no modifications to the JVM or OS. This makes Conf-
DiagDetector more portable and easier to apply than competing
techniques such as OS-level configuration management [49, 55].

1.4 Evaluation of ConfDiagDetector
We implemented ConfDiagDetector and evaluated it on 4 real-

world, mature configurable software systems written in Java. Conf-
DiagDetector’s injected configuration errors triggered many soft-
ware failures, which it automatically grouped into 50 equivalence
classes: in 25 classes, the failure produced a diagnostic message,
and in 25 classes, the failure produced no diagnostic message. Conf-
DiagDetector classified 7 messages as adequate and the other 43
messages as inadequate (18 ambiguous and 25 missing). We also
conducted a user study to determine the adequacy of each message
flagged by ConfDiagDetector. The 3 study participants labeled 42
messages as inadequate (all but one message classified by ConfDi-
agDetector as inadequate) and 8 messages as adequate, showing
ConfDiagDetector’s high accuracy (2% false positive rate and no
false negatives).

We reported all 43 detected inadequate diagnostic messages to the
software developers. As of Aug. 2014, the developers had confirmed
30 of them.

We compared ConfDiagDetector with an alternative approach that
does not use natural language processing techniques; it had a much
higher false positive rate (16%, vs. 2% for ConfDiagDetector). We
also compared ConfDiagDetector with an approach that determines
the adequacy of a diagnostic message based on a Google search.
ConfDiagDetector has higher accuracy (12% vs. 2% false positive
rate).

ConfDiagDetector is fast enough for practical use, taking 5 min-
utes of developer time and 3 minutes of compute time, on average,
to detect each inadequate diagnostic message.

1.5 Contributions
The main contributions of this paper are:

• Technique. We present a technique to proactively detect inade-
quate messages for software configuration errors. Our technique
uses configuration mutation, dynamic monitoring, and natural
language processing techniques to identify such messages (Sec-
tion 2).

• Tool. We implemented our proposed technique in a tool, called
ConfDiagDetector, for Java software (Section 3).

• Evaluation. We applied ConfDiagDetector to 4 configurable
software systems, and compared it with two alternative tech-
niques. The results show the accuracy and efficiency of ConfDi-
agDetector (Section 4).

2. TECHNIQUE
Figure 5 sketches the high-level workflow of ConfDiagDetector.

ConfDiagDetector operates in three steps: Configuration Mutation
(Section 2.1), Execution Observation (Section 2.2), and Diagnostic
Message Analysis (Section 2.3).

2.1 Configuration Mutation
ConfDiagDetector uses two substeps to mutate a configuration.

First, it infers the likely data type of each configuration option
(Section 2.1.1). Second, it replaces the value of each configuration
option with random values (Section 2.1.2).

2.1.1 Inferring Configuration Option Type

Inferring likely types for each configuration option helps the
replacement values generated in the next substep bypass simple
checks in a program (e.g., checking that a port number option has
an integer type). ConfDiagDetector does not assume the availability
of source code nor historical usage data [61, 65].

Figure 6 lists the data types that ConfDiagDetector infers. Each
data type has an associated regular expression for syntactic matching.
For each configuration option, ConfDiagDetector first matches the
value in the example configuration against each regular expression.
For each match, ConfDiagDetector validates the concrete option
value to verify the guessed type. For example, by regular expression
matching, a string starting with “http” or “https” or “www” is a
potential URL type. ConfDiagDetector further validates the concrete
value (such as “www.google.com”) by verifying the existence of the
corresponding website.

If multiple data types are inferred, ConfDiagDetector uses the
more specific property. For example, being a String is logically
implied by being of URL type, so if a configuration option value is of
both URL and String types, ConfDiagDetector uses URL. If there are
multiple inferred data types but no subsumption exists among them,
ConfDiagDetector uses the least upper bound in the lattice as the
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Figure 5: ConfDiagDetector’s workflow. The “Configuration Mutation” step is described in Section 2.1, the “Execution Observation”

step is described in Section 2.2, and the “Diagnostic Message Analysis” step is described in Section 2.3.

Data Type Example Configurations (taken from JMeter 2.9)

Integer summariser.interval = 180
Float http.version = 2.0
Boolean sampleresult.timestamp.start = true
File Path upgrade_properties = /bin/upgrade.properties
Java Class xml.parser = org.apache.xerces.parsers.SAXParser
File Type output_format = XML
URL ns = http://biz.aol.com/schema/2006-12-18
IP Address remote_hosts = 127.0.0.1
Charset sampleresult.default.encoding = ISO-8859-1
Language locales.add = en
String summariser.name = summary

Figure 6: Data types supported by ConfDiagDetector.

Example
Configuration Mutation Rule Before After

Delete the existing value format = XML format =

Randomly select values of the same format = XML format = TXT
data type from a pre-defined pool

Randomly select values of a differ- format = XML format = 123
ent data type from a pre-defined pool

Randomly inject spelling mistakes format = XML format = XLL

Change the case of text format = XML format = xml

Figure 7: Rules ConfDiagDetector uses modify a configuration

option.

inferred type. For example, “nic.py” can be either a URL or a File
Path, but neither type implies the other, so ConfDiagDetector uses
String.

2.1.2 Modifying Configuration Options

ConfDiagDetector modifies an existing, well-formed configura-
tion to create new configurations. Each new configuration includes
exactly one added or modified configuration option.

For each option in the well-formed configuration, ConfDiag-
Detector replaces the value with a different value (see Figure 7).
ConfDiagDetector applies the first, fourth, and fifth rules of Fig-
ure 7 once and applies the second and third rules k times (k is
user-settable, default: 3). ConfDiagDetector also adds a new, unsup-
ported configuration option with a contrived option value, such as
unsupported_option=contrived_value.

Given an existing, well-formed configuration containing n config-
uration options, ConfDiagDetector generates n× (2k+3)+1 new
configurations, each a potential misconfiguration.

2.2 Execution Observation
ConfDiagDetector checks a software system’s behavior using its

system tests. For each mutated configuration (containing exactly
one modified configuration option), ConfDiagDetector executes
the system tests. ConfDiagDetector ignores all passing tests. For
each failing test, ConfDiagDetector collects the diagnostic message

from the console output and/or system logs. Section 3 discusses
implementation details.

2.3 Diagnostic Message Analysis
If a test fails without issuing any diagnostic message, ConfDi-

agDetector immediately generates an error report such as the one
shown in Figure 2.

Otherwise, ConfDiagDetector analyzes the diagnostic message
using a natural language processing technique. The goal is to deter-
mine whether the message is informative enough to guide a user to
the root cause (i.e., the modified configuration option).

1. If a diagnostic message contains the modified configuration op-
tion name or the value, ConfDiagDetector treats the message as
adequate.

2. If a software user manual is available and the diagnostic mes-
sage has a similar semantic meaning to the manual description
of the modified configuration option, ConfDiagDetector treats
the message as adequate, since the user can find the root-cause
configuration option in the user manual based on the message
content.

3. Otherwise, ConfDiagDetector generates an error report such as
the one shown in Figure 3.

Checking the first case is straightforward. The rest of this section
focuses on the second case, assuming a diagnostic message and a
software user manual are available.

2.3.1 Natural Language Processing Preliminaries

It is challenging to convert natural-language text such as diagnos-
tic messages and user manuals into unambiguous specifications that
computers can process. Recent research techniques in the area of
natural language processing (NLP) show promise in “understanding”
the semantic meaning of natural-language text. We next briefly
introduce the key NLP techniques used in ConfDiagDetector.

Phrase and Clause Parsing. Also known as chunking, this tech-
nique enhances the syntax of a sentence by dividing it into a con-
stituent set of words (or phrases) that logically belong together. For
example, the phrase “goes wrong” in the sentence “the program

goes wrong” is an atomic logical unit. Current state-of-the-art ap-
proaches can classify phrases and clauses with about 90% accuracy
in well-written documents [48].

Bag-of-Words Model. A text such as a sentence or a document is
represented as the bag (multiset) of its words/phrases, disregarding
grammar and even word order but keeping multiplicity. The bag-of-
words model is a common representation in document classification,
where the frequency of occurrence of each word is used as a feature
to distinguish a document.

Lexical Similarity. A straightforward way to determine the se-
mantic similarity of two sentences is to measure the distance be-
tween two vectors converted from the bag-of-words model, where



the vector distance reflects the number of lexical units that occur
in both input sentences. However, such a lexical similarity method
may under- or over-estimate the semantic similarity of the texts.
For instance, there is an obvious similarity between the sentences
“the program goes wrong” and “the software fails”, but a lexical
similarity method would fail to identify any relationship between
them.

2.3.2 Checking Semantic Similarity

ConfDiagDetector employs a method developed in the NLP com-
munity [33] for measuring the semantic similarity of texts by ex-
ploiting the information that can be drawn from the similarity of the
component words/phrases. Given two input text sentences, Conf-
DiagDetector first measures the similarity between each individual
word/phrase. We denote the similarity between two words w1 and
w2 as word_sim(w1,w2).

Then, ConfDiagDetector takes into account the specificity of
words. It gives a higher weight to a semantic matching identified
between two specific words (e.g., fail and go wrong), than between
generic concepts (e.g., get and become). ConfDiagDetector mea-
sures word specificity with a corpus-based measurement, where
the corpus is the user manual description for all configuration op-
tions. ConfDiagDetector weights words using the well-established
inverse document frequency (idf ), defined as the total number of
documents that include that word. We selected the idf measure
based on previous work that theoretically proved its effectiveness in
weighting [46]. In our context, a document is the manual description
for one configuration option, and the total number of documents is
the number of all configuration options.

Given a metric for word-to-word similarity (i.e., word_sim(w1,w2))
and a measure of word specificity (using idf [46]), ConfDiagDetec-
tor uses the following metric to measure the similarity of two texts
T1 and T2:

sim(T1,T2) =
1
2 (sim′(T1,T2)+ sim′(T2,T1))

where

sim′(T1,T2) =
∑w1∈T1

maxSim(w1,T2)× idf (w1)

∑w1∈T1
idf (w1)

maxSim(w1,T2) = max
w2∈T2

word_sim(w1,w2)

maxSim computes the semantic similarity of a word with its best
match (highest semantic similarity) in another text. sim′ combines
these similarities for all the words of a text, using the idf weighting
and normalizing for the length and words in each sentence. sim

combines those similarities with a simple average; thus, each word
of each text is compared with all words of the other text.

The ConfDiagDetector technique can be instantiated using any
word similarity measurement technique [6, 7, 17]. Our current im-
plementation uses WordNet [57], a publicly-available library that
encodes relations between words or concepts.

In our implementation, word_sim(w1,w2) = 1 if w1 and w2 are
encoded as synonyms in WordNet; otherwise, word_sim(w1,w2) =
0. The sim similarity score has a value between 0 and 1. Identical
text segments have a score of 1, and a score of 0 indicates no
semantic overlap between the two texts. ConfDiagDetector treats
two sentences T1 and T2 as having similar semantic meaning if
sim(T1,T2) ≥ δ. (δ is user-settable. Our experiments use 0.4 as the
default value.)

2.3.3 Determining Message Adequacy

ConfDiagDetector generates an error report for each configuration
error that leads to a test failure where the issued diagnostic message
is inadequate.

ConfDiagDetector considers a diagnostic message to be adequate
if either of the following is true:

1. The diagnostic message’s semantic similarity to the root-cause
configuration option description is greater than the pre-defined
threshold δ, or

2. The diagnostic message has greater semantic similarity to the
root-cause configuration option description than to any other
configuration option’s description.

2.3.4 Generating an Error Report

Two example reports generated by ConfDiagDetector are shown
in Figures 2 and 3. Each generated report contains four parts: (1)
the injected configuration error, (2) the failed test case, (3) the
issued diagnostic message, and (4) the user manual description of
the misconfigured option.

ConfDiagDetector clusters all generated reports based on the mis-
configured option and the diagnostic message content, and shows
only one error report from each cluster to developers. That is, if mul-
tiple misconfigurations from changing the same configuration option
cause the same diagnostic message, ConfDiagDetector only shows
one misconfiguration and the corresponding diagnostic message.

2.4 Discussion
We next discuss some design choices and limitations.

What if system tests are not available? Our approach requires an
example configuration and system tests. Most realistic software con-
tains these and/or a user manual from which they can be generated.
For example, the manual usually gives examples of how to use the
software. In our experiments (Section 4.2), we converted such usage
examples into system tests, demonstrating that even a small number
of usage examples worked well for detecting inadequate messages.

Why not use unit tests? ConfDiagDetector uses system tests to
observe a software system’s behavior from the main method. Conf-
DiagDetector does not use unit tests, which check the correctness of
a single program component, may not be representative of the whole
program behavior under a misconfiguration, and may not even read
configuration options. However, the main execution path reads most
configuration options.

Why not statically extract all diagnostic messages that might be

issued at run time? Several factors make it infeasible to perform
text analysis statically. Diagnostic messages are often dynamically
assembled at run time. Configuration options are often read from
files or strings, set via reflection, or use other code patterns that are
challenging for a static analysis. Thus, it is difficult to determine
exactly which configuration options correspond to which messages
and link messages to root-cause configuration errors. Furthermore,
a static analysis may overestimate the diagnostic messages that are
ever produced at run time. By contrast, ConfDiagDetector uses
a dynamic approach to inject real configuration errors, executes
the program, and observes its test outcomes to precisely analyze
diagnostic messages and detect inadequate ones.

Why not apply fault injection and text analysis to detecting diag-

nostic messages caused by other types of software errors? It would
be interesting for future work to apply our technique to detecting
inadequate diagnostic messages caused by other software errors,
such as program input errors. We started with the more tractable
problem of detecting inadequate diagnostic messages related to soft-
ware misconfigurations. Software configuration input formats tend



to be simpler (e.g., key–value pairs) and better-documented than
other parts of program input, making it easier to generate plausible
misconfigurations. For example, to detect inadequate diagnostic
messages caused by illegal program input, ConfDiagDetector would
need to know a program’s input format (e.g., the structure of an
image file for an image processing program along with an English
description of each part in the user manual) and the proper ways to
modify a given input (e.g., which bits of the input can be modified
and how). An equally important issue is the need for an accurate
behavioral specification. Configuration options usually have small,
localized descriptions in a single part of the user manual. By con-
trast, general program specifications (needed to detect errors or
incorrect behavior) are usually absent, and inferring them for realis-
tic software systems is still beyond the state of the art [14, 32, 70].
When such specification inference techniques or tools improve, we
could integrate them into ConfDiagDetector, enabling it to detect
inadequate diagnostic messages caused by other types of errors.

Limitations. Our technique is neither complete nor sound. It is
incomplete (it does not detect every inadequate diagnostic message
produced by a software system) because the injected configuration
errors do not exhaust all possible errors a user may encounter; fur-
thermore, some misconfigurations it produces may be unlikely in
practice. Another source of incompleteness is that ConfDiagDetec-
tor ignores non-failing test executions, even though there might have
been invisible errors or an incorrect mutated configuration value
might have been silently changed to a default value.

It is unsound (not every message flagged by ConfDiagDetector
is necessarily inadequate) because the employed natural language
processing technique uses heuristics to decide the adequacy of a
diagnostic message. However, each misconfiguration detected by
our technique is real and fully reproducible. ConfDiagDetector
is useful in practice: it detected 43 distinct inadequate diagnostic
messages in 4 real-world, mature configurable systems, of which 42
messages have been confirmed as inadequate by their developers or
in our user study (Section 4).

Our technique examines a limited number of executions, both be-
cause it relies on existing system tests to run the target program and
because it does not generate all possible misconfigurations. Thus,
ConfDiagDetector does not cover all possible program behaviors
nor detect all inadequate diagnostic messages.

It is possible that the unintended software behavior caused by
one misconfigured option can be fixed by changing the value of
another option, or one configuration option’s behavior may de-
pend on another option. (For example, consider Figure 9. The
value of derby.stream.error.rollingFile.count matters only if
derby.stream.error.style=rollingFile.) ConfDiagDetector in-
jects one mis-configured option at a time, so it has no special treat-
ment for such cases. A possible way to address this limitation is
incorporating a feature model [24] that encodes the relationship
between configuration options. Doing so might enable ConfDiag-
Detector to detect even more inadequate diagnostic messages.

3. IMPLEMENTATION
ConfDiagDetector supports configurations specified as a set of

key–value pairs, where the keys are strings and the values have
arbitrary type. ConfDiagDetector uses the java.util.Properties

API to parse and set such configurations.
ConfDiagDetector uses the Stanford Parser [48] to perform phrase

and clause parsing and the WordNet library [57] to measure similar-
ity between two words. We enhanced WordNet by adding computer
science glossaries [11]. This enhancement is a one-time effort and
we did not tune ConfDiagDetector to specific programs. Before

Program Version Lines of Code Options System Tests

Weka 3.6.11 274,448 125 16
JMeter 2.9 91,979 212 5
Jetty 9.2.1 123,028 23 7
Derby 10.10.1.1 645,017 56 7

Figure 8: Subject programs used in the evaluation. Column

“Lines of Code” shows the number of non-blank, non-comment

lines of code as counted by CLOC [9]. Column “Options”

shows the number of configuration options supported by the

evaluated program version. Column “System Tests” shows the

number of system tests converted from the usage examples in

each program’s user manual.

checking the semantic similarity between two sentences, ConfDiag-
Detector discards stop words (such as a and the).

Given a Java application, ConfDiagDetector provides two modes
to launch it: reflectively executing its main method, or executing a
provided script. In either case, ConfDiagDetector redirects Java’s
standard error stream to a file, and then analyzes the produced di-
agnostic message in the file. If an application writes diagnostic
messages to standard output or log files rather than the error stream,
ConfDiagDetector requires users to provide a regular expression
to extract the diagnostic message. To increase robustness, ConfDi-
agDetector spawns a thread for each test execution, and monitors
its execution. If it hangs (e.g., an infinite loop caused by a config-
uration error) after the user-specified time (default: 25 seconds),
ConfDiagDetector spawns a new thread to execute the next test.

4. EVALUATION
We evaluated the effectiveness of our inadequate diagnositic mes-

sage detection technique by answering these research questions:

1. How accurate is ConfDiagDetector in detecting inadequate diag-
nostic messages (Section 4.3.1)?

2. How long does it take for ConfDiagDetector to detect inadequate
diagnostic messages (Section 4.3.2)?

3. How does ConfDiagDetector’s effectiveness compare to an ap-
proach without using natural language processing techniques
(Section 4.3.3)?

4. How does ConfDiagDetector’s effectiveness compare to an ap-
proach based on Google search (Section 4.3.4)?

4.1 Subject Programs
We evaluated ConfDiagDetector on 4 mature Java programs listed

in Figure 8. Weka [54] is a toolkit that implements machine learn-
ing algorithms. JMeter [28] is a tool for measuring performance.
Jetty [27] is an HTTP server and servlet container for serving static
and dynamic content. Derby [12] is a relational database system.
These programs are configurable, have user manuals, are actively
maintained, and have been developed for a long time (5–18 years).

4.2 Evaluation Procedure
If a program’s diagnostic messages are mixed with other output,

ConfDiagDetector uses a user-specified regular expression to ex-
tract issued diagnostic messages from the program’s logs. For our
evaluation, we spent less than 10 minutes in total to write one regu-
lar expression for each subject program. Specifically, a diagnostic
message in Weka always starts with “Weka exception”; a diagnostic
message in Derby always starts with “IJ ERROR” or “JAVA ER-
ROR”; and a diagnostic message in Jetty or JMeter is always issued
along with a stack trace.

ConfDiagDetector takes as input the user manual description for
each configuration option. Due to our unfamiliarity with the subject



...

derby.stream.error.method

The derby.stream.error.method property specifies a static method

that returns a stream to which the Derby error log is written.

derby.stream.error.rollingFile.count

The derby.stream.error.rollingFile.count property specifies the

number of rolling log files to permit before deleting the oldest

file when rolling to the next file, if derby.stream.error.style

is set to rollingFile.

derby.stream.error.style

The derby.stream.error.style property specifies that the Derby

log file should be rolled over when it reaches a certain size.

...

Figure 9: A partial list of configuration options and their de-

scriptions extracted from Derby’s user manual.

1. public void testOutputFormat() {

2. String inputFile = "../threadgroup.jmx";

3. String configFile = ... ;

4. File f = ReflectionExecutor.execute(

org.apache.jmeter.NewDriver.class,

inputFile, configFile);

5. assertTrue(isXMLFile(f));

6. }

Figure 10: An example system test converted from the JMeter

usage example shown in Figure 2. The configFile variable at

line 3 points to the path of JMeter’s configuration file part of

which is shown in Figure 4, ReflectionExecutor.execute is

a helper method that reflectively runs JMeter’s main method

with the given input and configuration, and the isXMLFile

method at line 5 checks whether the content of a given file is

in XML format.

programs and their manuals, we spent 1.5 hours in total to extract the
configuration option descriptions from the user manuals. Figure 9
shows an example. Future work could automate parsing the user
manual.

A user of ConfDiagDetector would already have a suite of system
tests available. However, each of our subject programs only has
a unit test suite. Therefore, we generated a system test suite by
converting each usage example in the user manuals (35 in all, see
Figure 8) into a system test consisting of configuration settings,
input data, and expected results. This manual process took about 2
hours in total. Figure 10 shows an example system test converted
from the JMeter usage example in Figure 2.

In our experiments, the manual effort was less than 1 hour on
average per subject program, or 5 minutes per detected inadequate
diagnostic message. We believe this manual cost is reasonable,
especially considering our unfamiliarity with these large, complex
subject programs.

To evaluate ConfDiagDetector we need a human’s judgment about
whether each issued diagnostic message is adequate or not. To ob-
tain the ground truth, we conducted a user study in Section 4.3.1,
asking three participants to manually label each non-empty diagnos-
tic message as “adequate” or “ambiguous”.

4.3 Results
Figures 11, 13, 14, and 15 show the experimental results.

4.3.1 Detected Inadequate Diagnostic Messages

As shown in Figure 11, ConfDiagDetector detected previously
unknown inadequate diagnostic messages in every subject program.
ConfDiagDetector triggered 25 empty diagnostic messages for dif-
ferent configuration options and 25 distinct non-empty diagnostic
messages, and classified 43 messages as inadequate (25 missing and
18 ambiguous) and 7 messages as adequate. ConfDiagDetector is

Diagnostic Messages
Program Total Missing Ambiguous Adequate FP FN

Weka 14 0 6 7 1 0
JMeter 12 7 5 0 0 0
Jetty 10 9 1 0 0 0
Derby 14 9 5 0 0 0

Total 50 25 17 7 1 0

Figure 11: ConfDiagDetector caused the subject programs to

issue 25 empty diagnostic messages for distinct configuration

options (column “Missing”) and 25 distinct non-empty diagnos-

tic messages. ConfDiagDetector classified 43 of the messages

as inadequate. ConfDiagDetector’s classification had only one

false positive and no false negatives.

very accurate — our user study confirmed that 42 (out of the 43
messages flagged as inadequate by ConfDiagDetector) messages are
actually inadequate, for a false positive rate of 2%. All 7 messages
flagged as adequate by ConfDiagDetector are actually adequate, for
a false negative rate of 0%.

In Figure 11, ConfDiagDetector detected missing diagnostic mes-
sages for 25 configuration options. The root cause of these missing
messages is that the program silently ignores invalid configuration
option values. In three programs, when an invalid value is found,
the program silently replaces the invalid value by a default value,
as in Figure 1. ConfDiagDetector also detected 17 inadequate mes-
sages. These messages arise because of improper handling of invalid
configuration option values. All 4 subject programs fail to check
the validity of some configuration option values when the program
is launched; instead, the invalid value propagates in the program
and finally causes a crash or erroneous output. Often, a diagnostic
message issued at the crash site only reflects the current program
state, rather than the root cause.

The only incorrectly-classified diagnostic message is from Weka.
When ConfDiagDetector used an invalid value (such as 67) for
the configuration option split-percentage, Weka issued a message
“Percentage split cannot be used in conjunction with cross-validation
(’-x’).” The issued diagnostic message has a quite different semantic
meaning from the root-cause option’s manual description, but the
manual suggests a valid way to correct the exhibited configuration
error by changing the value of a different option (i.e., the option
x). ConfDiagDetector does not consider relations between different
options and thus incorrectly flagged this message as inadequate. One
way to address this limitation is to incorporate a feature model [24]
that encodes such a relation across different options.

User Study We conducted a user study to determine the ground truth
of whether a diagnostic message is adequate or not. The participants
were 3 graduate students majoring in computer science. On average,
they had 10 years of programming experience, but none of them
was familiar with the subject programs.

We gave each participant the diagnostic messages and the user
manuals. For each diagnostic message, we asked each participant to
list all configuration options they might change to fix the exhibited
error, based on the message content and the user manual.

Each diagnostic message was examined by three participants. We
treated a message as adequate if at least two participants correctly
identified the root-cause configuration option. In the user study, for
a diagnostic message, each user reported 1.5 configuration options
on average. As shown in Figure 11, our user study participants con-
curred with ConfDiagDetector on 49 (out of 50) messages, showing
ConfDiagDetector’s high accuracy (2% false positive rate and no
false negatives).



An ambiguous diagnostic message issued by JMeter, caused by
jmeter.save.saveservice.timestamp_format=XYZ:

An error occurred: null

errorlevel=1

Press any key to continue . . .

The manual’s description:

jmeter.save.saveservice.timestamp_format

Timestamp format - this only affects CSV output files.

An adequate diagnostic message issued by Weka, caused by x=-1:

Number of folds must be greater than 1

The manual’s description:

x

Sets number of folds for cross-validation.

Figure 12: Two example diagnostic messages. The top message

is an ambiguous one, and the bottom message is an adequate

one. ConfDiagDetector correctly classifies both messages. An

approach that does not use natural language processing tech-

niques (Section 4.3.3) incorrectly classifies the bottom one as

an inadequate message.

Time Cost (seconds)
Program Mutation Execution Checking Total

Weka 1 10 3 14
JMeter 1 2803 8 2812
Jetty 1 1945 1 1947
Derby 1 2880 9 2890

Figure 13: ConfDiagDetector’s performance. Column “Muta-

tion” shows the time to perform configuration mutation (Sec-

tion 2.1), column “Execution” shows the time to execute the

tests (Section 2.2) using all mutated configurations, and column

“Checking” shows the time to check the adequacy of all trig-

gered diagnostic messages (Section 2.3). Our experiments were

run on a 2.67GHz Intel Core PC with 4GB physical memory,

running Windows 7.

Examples Figure 12 shows two example diagnostic messages trig-
gered by ConfDiagDetector. The first diagnostic message, produced
by JMeter, is correctly classified as ambiguous by ConfDiagDetector,
since its content is so different from the user manual description and
is unlikely to be unhelpful in error diagnosis. The second diagnostic
message is correctly classified as adequate by ConfDiagDetector,
since the content has a very similar semantic meaning as the user
manual description, even though the message itself does not pinpoint
the root-cause option. For both messages, our user study confirmed
ConfDiagDetector’s judgment.

Feedback from Developers We sent the detected inadequate mes-
sages to the developers of the subject programs. As of Aug. 2014,
they had confirmed 30 of the 43 messages as inadequate.

We also received several pieces of positive feedback from the
developers. For example, Derby developer Rick Hillegas noted
the pervasiveness of the problems: “Connection attributes have
similar problems [to those reported by ConfDiagDetector] involving
silent swallowing of validation errors. This can be particularly
problematic if the attributes/properties are attempting to configure
security mechanisms.”

4.3.2 Time Cost

Figure 13 shows the run-time performance of ConfDiagDetector.
On average, ConfDiagDetector took 182 seconds to detect each
inadequate diagnostic message.

For each subject program, ConfDiagDetector creates 208–1908
mutated configurations based on the number of available configu-

ConfDiagDetector No Text Analysis
Program Ambiguous Adequate FP FN Ambiguous Adequate FP FN

Weka 6 7 1 0 6 0 8 0
JMeter 5 0 0 0 5 0 0 0
Jetty 1 0 0 0 1 0 0 0
Derby 5 0 0 0 5 0 0 0

Total 17 7 1 0 17 0 8 0

Figure 14: Comparison of ConfDiagDetector with a variant

that does not use text analysis. Columns are as in Figure 11.

Both techniques analyzed the same number of diagnostic mes-

sages, and both detected the same 25 missing diagnostic mes-

sages as in Figure 11, but the No Text Analysis variant assessed

every non-empty diagnostic message as ambiguous, which is 7

additional false positives.

ration options and their types. For the 416 configuration options
listed in Figure 8, ConfDiagDetector infers correct data types for
311 (75%) options, incorrect types for 11 (3%) options, and im-
precise types for 94 (22%) options. Incorrect types are inferred
because these options have enum types, which are not supported in
ConfDiagDetector. Imprecise types are inferred primarily because
these options have empty values in the example configuration.

The “Mutation” and “Checking” steps are cheap, while the “Ex-
ecution” step largely depends on the given test. For instance, one
test in Derby launches a database server, connects to it, and issues a
database query. Running this test took 3 seconds on average, and
ConfDiagDetector created over 500 different mutated configurations
(after modifying an existing, well-formed configuration) for this test.

4.3.3 Comparison with Approach that Does No Text
Analysis

A straightforward approach to determine the adequacy of a di-
agnostic message is checking whether the message contains the
misconfigured option’s name or value. This approach handles the
first case of the “Diagnostic Message Analysis” step in ConfDiag-
Detector (Section 2.3), and has been used in two testing techniques,
ConfErr [29] and Spex-INJ [61].

To demonstrate the need for text analysis, we evaluated a variant
of ConfDiagDetector by removing the text analysis phase. Like
ConfErr and Spex-INJ, this variant simply treats a diagnostic mes-
sage as inadequate if the message does not contain the misconfigured
option’s name or value. We used our own implementation of the
technique. We were unable to use ConfErr and Spex-INJ because
they do not detect inadequate diagnostic messages. Further, ConfErr
assumes the availability of the configuration feature model for the
tested software, and Spex-INJ assumes the availability of source
code and only works for C programs.

The experimental results are shown in the “No Text Analysis”
column of Figure 14. The variant without text analysis incorrectly
flagged 7 more adequate diagnostic messages in Weka as inadequate
than ConfDiagDetector, and increased the overall false positive rate
from 2% to 16%. Figure 12 shows an example. These messages
do not directly pinpoint the root-cause option, but their content
is close enough to the user manual description. Our user study
confirmed that a user can identify the root-cause option by reading
the message and the user manual. By contrast, ConfDiagDetector
uses a natural language processing technique to “understand” such
messages, reducing the overall false positive rate to 2%.

ConfDiagDetector’s text analysis was extremely useful for the
Weka subject program, but it did not affect the results for the other
3 subject programs. Text analysis was not necessary in the 71% of
cases when the diagnostic message named the root-cause configura-
tion option. Ideally, each diagnostic message would explicitly list



ConfDiagDetector Internet Search Technique
Program Ambiguous Adequate FP FN Ambiguous Adequate FP FN

Weka 6 7 1 0 6 2 6 0
JMeter 5 0 0 0 5 0 0 0
Jetty 1 0 0 0 1 0 0 0
Derby 5 0 0 0 5 0 0 0

Total 17 7 1 0 17 2 6 0

Figure 15: Comparison of ConfDiagDetector with an Internet-

search-based technique (Section 4.3.4). Columns are as in Fig-

ure 11. Both techniques analyzed the same number of diagnos-

tic messages, and both detected the same 25 missing diagnostic

messages as in Figure 11, but the search-based technique as-

sessed all but 2 diagnostic messages as inadequate, which is 5

additional false positives.

every possible contributing configuration option, because that makes
diagnosis easiest for a user. However, that may not always be possi-
ble, and thus it remains valuable to use text analysis to filter out false
positive reports that might discourage a user of ConfDiagDetector.

4.3.4 Comparison with Internet Search

A common way for users to diagnose an error is performing a
search on the Internet to find the solution, using the program name
plus the diagnostic message content as search terms.

We evaluated a search-based approach to determine the adequacy
of a diagnostic message. This approach treats a message as adequate
if the root-cause configuration option appears in the top-N entries
returned by Google. Our evaluation used N=10, which is the default
number of entries Google displays on the first page and is also the
maximum number of entries a typical user would inspect [56].

Figure 15 shows the experimental results. Compared to ConfDi-
agDetector, this Internet-search-based technique incorrectly flagged
5 more adequate diagnostic messages in Weka as inadequate, and
yielded an overall false positive rate 12% (ConfDiagDetector’s false
positive rate is 2%). This is primarily because the words used in a
diagnostic message are also used elsewhere on the Internet, making
a search engine return information that is not related to the root-
cause configuration option. This experiment suggests that focusing
on the configuration option description in a user manual rather than
searching the Internet is a better way to evaluate the adequacy of
diagnostic messages.

We also evaluated another variant that employs Google to search
the just the user manual, using the message content as a search key-
word. This variant achieved the same results as shown in Figure 15.

4.4 Discussion

Implications for Designing Good Configuration Error Handling

Mechanisms. Many configuration errors in our evaluation stem
from improper configuration error handling. Our findings suggest
some good practices in designing good configuration error handling
mechanisms. (1) Check configuration option values early, ideally
immediately after the program is launched. Otherwise, an exhibited
configuration error manifests far from the an erroneous program
point and becomes difficult to diagnose. (2) Never ignore an invalid
configuration option value or override it with a default. Rather, the
program should notify its users or at least log the invalid value. (3)

Keep diagnostic messages consistent with the user manual descrip-
tion.

Threats to Validity. There are several major threats to the valid-
ity of our evaluation. (1) The subject programs, though large and
mature, may not be representative. However, these are the first
4 subject programs we tried, and the fact that ConfDiagDetector

found inadequate diagnostic messages in all of them is suggestive.
(2) ConfDiagDetector assumes the user manual correctly describes
the usage of each configuration option. It may produce different re-
sults if the user manual is out of date or erroneous. (3) The generality
of our user study is limited: this was a small task, a small sample of
people, and unfamiliar code. (4) We only considered configuration
options used in the example configuration file. There might be other
configuration options, even hidden ones not described in the manual.
However, such configuration options are often experimental or used
only for debugging or in other specific situations.

Experimental Conclusions. We have two chief findings. (1) The
technique of mutating configurations is an effective and efficient
way to proactively detect inadequate diagnostic messages. Usage
examples found in practice work well even if no test suite targets
configuration options. (2) Text analysis based on natural language
processing reduces the number of false positives in the detected
inadequate diagnostic messages. It is more accurate in determining
the adequacy of a diagnostic message than using an Internet search.
Text analysis is not necessary if the diagnostic message is empty or
if it explicitly names the root-cause configuration option.

5. RELATED WORK
The most closely related work falls into four main categories: (1)

configuration error detection and diagnosis techniques; (2) configu-
ration analysis and testing techniques; (3) software error reporting
mechanisms; and (4) text analysis for software engineering tasks.

5.1 Configuration Error Detection & Diagnosis
Designing techniques to detect and diagnose software configu-

ration errors has gained increasing attention in both the software
engineering and systems communities. Generally speaking, prior
techniques falls into two categories: white-box approaches [2–4, 13,
39, 61, 66, 67] and black-box approaches [49, 51, 53, 55, 63, 65].

The white-box approaches use program analyses to reason about
a configurable system’s behavior and identify potential configura-
tion problems and their root causes. For example, ConfAid [4] and
X-Ray [2] use dynamic information flow analysis to detect con-
figuration errors by monitoring causality within the program as it
executes. ConfAnalyzer [39] uses static information flow analy-
sis to precompute possible configuration error diagnoses for every
possible crashing point in a program. Our previous work, ConfDiag-
noser [66] and ConfSuggester [67], analyze the dynamic execution
traces in a program to find the root-cause configuration options.

Chronus [55], AutoBash [49], Strider [53], PeerPressure [51],
and EnCore [65] are five representative black-box approaches for
configuration error detection. Chronus [55] relies on a user-provided
testing oracle to check the behavior of the system, and uses binary
search to find the point in time where the program started to misbe-
have. Strider uses manually-labeled working/failing configuration
cases as prior knowledge to filter the suspicious entries [53]. Auto-
Bash [49] detects and fixes a misconfiguration by using OS-level
speculative execution to try possible configurations, examines their
effects, and rolls them back when necessary. PeerPressure [51] uses
statistical methods to compare configuration states in the Windows
Registry on different machines. When a registry entry value on a
machine exhibiting erroneous behavior differs from the value usu-
ally chosen by other machines, PeerPressure flags the value as a
potential error. EnCore learns configuration rules from a given set
of sample configurations to identify a set of configuration anomalies
that deviate from the vast majority [65].

Significantly different from existing techniques above, ConfDiag-
Detector is not a configuration error detection and diagnosis tool. It



does not debug an exhibited configuration error nor help developers
find the best location for a fix; rather, it uses configuration mutation
to proactively create potential configuration errors before they actu-
ally occur in the field. ConfDiagDetector’s text analysis to detect
inadequate diagnostic messages is also novel. ConfDiagDetector is
a black-box approach that requires no source code. Compared to
some related techniques, ConfDiagDetector does not require OS-
level support as Chronus [55], Strider [53], and AutoBash [49] do.
Further, unlike EnCore [65] and PeerPressure [51], ConfDiagDetec-
tor requires no prior information (such as training data) nor domain
knowledge about how the software behaved in the past.

5.2 Configuration Analysis and Testing
A number of analysis and testing techniques and tools have been

developed to improve quality of a configurable software system. For
example, Rabkin et al. [40] proposed a method to statically extract
and document software system configurations, but their approach re-
quires source code and cannot detect inadequate configuration-error-
related messages. The testing community has demonstrated the need
for configuration-aware testing techniques [38] and methods for sam-
pling and prioritizing the configuration space [10]. Recent work uses
configurability as a way to avoid failures through self-adaption [18]
based on a known configuration model. Unlike ConfDiagDetector,
these efforts focus on finding configuration errors earlier rather than
analyzing the diagnostic messages.

Configuration testing tools, such as SPEX [61] and ConfErr [29],
can be used to generate realistic, high-coverage test cases to defend
a system against misconfigurations. Those tools have a different
focus than ConfDiagDetector: they aim to improve configuration
testing coverage rather than evaluating diagnostic messages. Even
when a configuration error has been triggered by a generated test
input, those tools do not provide support to check its validity and
diagnosability. Thus, the error checking phase still remains manual.
By contrast, ConfDiagDetector automates this manual phase by
using NLP techniques for text analysis and determines whether an
output diagnostic message is adequate for error comprehension.

5.3 Software Error Reporting
Software errors degrade software reliability and usability, causing

high costs for system administration and maintenance. The cost
of maintaining a machine is surpassing the cost of the hardware
for modern computing systems [20]. To alleviate the impact of
software errors, many advanced error-reporting techniques have
been developed to reduce software development cost and improve
end-user satisfaction. We next discuss a few representative ones and
compare them with ConfDiagDetector.

Statistical debugging [31] correlates low-level application behav-
ior with application behavior and builds a model to predict likely er-
roneous code fragments. An invariant-based approach [21] relies on
dynamic program invariants to detect program behavioral anomalies
at run time. Source-code-based techniques, such as LogEnhancer,
improve software error reporting by automatically enhancing ex-
isting logging code to aid in future post-failure debugging [64]. It
analyzes the source code to reason about the information that pro-
grammers should have captured when writing log messages. The
additional log information provided by LogEnhancer can help nar-
row down the number of possible code paths and execution states for
developers to examine. Stack backtraces are widely used by many
remote diagnostic systems, such as Microsoft’s online crash analy-
sis [36], the DebugAdvisor system [1], GNOME’s bug-buddy [8],
and the Clarify diagnosis system [20]. Such systems aim to re-
duce the human effort needed to identify a reported problem from
different program executions.

By contrast, ConfDiagDetector is not a software error reporting
or debugging system. Instead, ConfDiagDetector focuses on finding
inadequate diagnostic messages in a configurable software system.
Error reporting tools are complementary to and can benefit from
ConfDiagDetector, since ConfDiagDetector offers a new way to
analyze a software system’s behavior and find scenarios in which
the error reporting mechanism should be improved.

5.4 Text Analysis for Software Engineering
Natural language processing (NLP) techniques are increasingly

applied to software engineering tasks. NLP techniques have been
shown to be useful in requirements engineering [19, 43, 44], us-
ability of API documents [69, 70], generation of program com-
ments [23,34,47], code completion [22,37,41], and other tasks [50].
For example, Zhong et al. [70] employed NLP and machine learning
(ML) techniques to infer resource specifications from API docu-
ments. Xiao et al. [58] used shallow parsing techniques to infer
Access Control Policy (ACP) rules from natural language text in use
cases. Tan et al. [50] applied an NLP- and ML-based approach to test
Javadoc comments against implementations. However, to the best
of our knowledge, none of the previous work analyzes software di-
agnostic messages caused by configuration errors nor evaluates their
adequacy. Our ConfDiagDetector technique applies NLP techniques
to a different problem domain by checking the semantic similarity
between two sentences (Section 2.3.1), rather than extracting useful
properties from natural language properties [19, 43, 44, 58].

6. CONCLUSION AND FUTURE WORK
This paper presented an approach to detecting inadequate diag-

nostic messages for software configuration errors. The approach
utilizes two key ideas: configuration mutation (creation of configura-
tions that cause a diagnostic message) and NLP text analysis of the
diagnostic messages. We demonstrated the accuracy and efficiency
of our ConfDiagDetector implementation via an evaluation on 4
real-world, mature configurable software systems.

Our future work will focus on the following two directions:

• Improving configuration mutation. ConfDiagDetector em-
ploys heuristics to inject configuration errors for inadequate
diagnostic message detection and may fail to detect diagnostic
messages that need to be triggered by a combination of multiple
modified options. We plan to investigate alternative strategies
in generating misconfigurations. One possible direction is to
employ advanced test generation techniques [26, 59] to guide the
creation of misconfigurations.

• Localizing relevant code fragments. ConfDiagDetector de-
tects inadequate diagnostic messages but does not identify the
relevant code fragments. We plan to develop techniques to pre-
cisely localize the code fragments that produce the identified
inadequate diagnostic messages, so that developers have better
guidance when improving them. One possible way is to leverage
recent advances in tainting analysis [52] and feature localization
techniques [68] to reason about the responsible code snippet.
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