Object and Reference Immutability

!'_ using Java Generics

Yoav Zibin, Alex Potanin(*), Mahmood Alj,
Shay Artzi, Adam Kiezun, and Michael D. Ernst

MIT Computer Science and Artificial Intelligence Lab, USA
* Victoria University of Wellington, New Zealand

i Immutability — What for?

Program
comprehension

Verification

Compile- & run-time
optimizations

Invariant detection

Refactoring
Test input generation

Regression oracle
creation

Specification mining
Modelling

2/23

i Immutability varieties

= Class immutability

= No instance of an immutable class can be mutated
after creation (e.g., String, Integer)

= Object immutability

= The same class may have both mutable and
immutable instances

= Reference immutability

= A particular reference cannot be used to mutate its
referent (but other aliases might cause mutations)

3/23

i Previous work

= Access rights
= Java with Access-Control (JAC)

= readnothing < readimmutable < readonly < writeable

= Capabilities for sharing

= Lower-level rights that can be enforced at compile- or
run- time

= Reference immutability:

= Universes (ownership + reference immutability)
s C++'s const

= Javari

4/23

i 1G] - Immutability Generic Java

= Class immutability

= All instances are immutable objects
= Object immutability:

= An object: mutable or immutable

= Reference immutability:
= A reference: mutable, immutable, or readonly

5/23

i IGJ syntax

. // An immutable reference to an immutable date;

Date<Immutable> immutD = new Date<Immutable>() ;

2: /) A mutable reference to a mutable date;
// Mutating the referent is permitted, via this or any other reference.
Date<Mutable> mutD = new Date<Mutable> () ;

3: // A readonly reference to any date;
// Mutating the referent is prohibited via this reference.
Date<ReadOnly> roD = ... ? immutD : mutD;

// Mutating the referent is prohibited, via this or any other reference.

Java syntax is not modified:
= One new generic parameter was added
= Some method annotations were added (shown later)

6/23

i IGJ design principles

= [ransitivity

= Transitive (deep) immutability protects the entire abstract
state from mutation

= Mutable fields are excluded from the abstract state

s Static
= No runtime representation for immutability

= Polymorphism
= Abstracting over immutability without code duplication

= Simplicity

= No change to Java’s syntax; a small set of typing rules

7/23

i Hierarchies in IGJ

ReadOnly

Immutability parameters

Object<ReadOnly>
Object<Mutable> Object<Immutable>

hierarchy
object
"~ pate

The subclass hierarch The subtype hierarchy
for Object and Date Y for Object and Date

8/23

Covariance problem and immutability

void foo (ArrayList<Object> a) { .. }
foo (new ArrayList<Object>()); //OK
foo (new ArrayList<String>()); // Compilation error!

void foo (Object[] a) { a[0] = new Integer(l); }
foo (new Object[42]); // OK, stores an Integer in an Object array
foo (new String[42]) ; // Causes ArrayStoreException at runtime

s IGJ’s Solution:

= ReadOnly, Immutable — allow covariance
= Mutable — disallow covariance

9/23

i IG] typing rules

= There are several typing rules
(next slides)

= Field assignment
« Immutability of this

=« Method invocation
= Let 1 (x) denote the immutability of x

=« Example:
Date<Mutable> d;

I(d) IS Mutable

11/23

* Field assignment rule

Example:
Employee<ReadOnly> roE = ..;

roE.address = ..; [/ Compilation error!

12/23

i Immutability of this

= this immutability is indicated by a
method annotation

= @ReadOnly, @Mutable, @Immutable

= We write I (m. this) to show the context
of this

= Example:
= @Mutable void m() {... this ...}
= I(m.this) = Mutable

13/23

* Method invocation rule

o & W DN =

: Employee<Mutable> mutE = ...;

: mutE.setAddress(...); //OK

: mutE.getAddress() ; /) OK

: Employee<ReadOnly> roE = mutE;

: roE.setAddress(...); // Compilation error!

14/23

‘L Reference immutability (ReadOnly)

/i class Edge<I extends ReadOnly> ({
2 long id;
3 @Mutable Edge(long id) { this.setId(id); }
4 @Mutable void setId(long id) { this.id = id; }
5 @ReadOnly long getId() { return this.id; }
6 @ReadOnly Edge<I> copy () { return new Edge<I>(this.id); }
7 static void print (Edge<ReadOnly> e) {... }
8 : }

10: class Graph<I extends ReadOnly> ({

11: List<TI,Edge<I>> edges;

12: @Mutable Graph (List<I,Edge<I>> edges) { this.edges = edges; }
13: @Mutable void addEdge (Edge<Mutable> e) { this.edges.add(e) ;}
14: static <X extends ReadOnly>

15: Edge<X> findEdge (Graph<X> g, long id) { ... }

15/23

‘L Object immutability: Motivation

= Compile- & run-time optimizations
= Program comprehension

= Verification

= Invariant detection

= [est input generation

= Example: Immutable objects need no synchronization

@ReadOnly synchronized long getId() { return id; }
@Immutable long getIdImmutable() { return id; }

16/23

Object immutability: Challenge

1l: class Edge<I extends ReadOnly> ({

2 private long id;

3 @??272?2272?2?2?2?2?2?? Edge(long id) { this.setId(id), }

4 @Mutable void setId(long id) { this.id = id; }

= Challenge: How should the constructor be annotated?

[@Mutable 7
= A mutable alias for this might escape

= @Immutable Or @ReadOnly ?
= Cannot assign to any field, nor call this.setId

17/23

Object immutability: Solution

: class Edge<I extends ReadOnly> {

private long id;

@AssignsFields Edge (long id) { this.setId(id), }
@AssignsFields void setId(long id) { this.id = id; }
Edge<I> e;

@Mutable void foo(long id) { this.e.id = id; }

o U1l dWN B

ReadOnly

m @AssignsFields

= Can only assign to the fields of this,
l.e., it is not transitive

= Private: cannot write Date<AssignsFields>
= Conclusion: this can only escape as ReadOnly

18/23

i Case studies

= IGJ compiler
= Small and simple extension of javac

= Using the visitor pattern for the AST

= Modified isSubType according to IG]’s
covariant subtyping

s Case studies:

» Jolden benchmark, htmlparser, svn client
= 328 classes (106 KLOC)
=« 113 JDK classes and interfaces

20/23

i Case studies conclusions

= Representation exposure errors

= In htmlparser: constructor takes an array and

assigns it to a field, without copying; an accessor
method also returns that array

= Conceptual problems

= In Jolden: an immutable object is mutated only once
immediately after it creation.
We refactored the code, inserting the mutation to the
constructor

= Found both immutable classes and objects
= Date, SVNURL, lists

21/23

i See the paper for ...

= CoVariant and NoVariant type parameters
= Method overriding

= Mutable and assignable fields

= Inner classes

= Circular immmutable data-structures
= Formal proof (Featherweight I1GJ)

22/23

i Conclusions

= Immutability Generic Java (IGJ)
= Both reference, object, and class immutability
= Simple, intuitive, small, no syntax changes
= Static — no runtime penalties (like generics)
= Backward compatible, no JVM changes

= High degree of polymorphism using generics
and safe covariant subtyping

= Case study proving usefulness
= Formal proof of soundness

23/23

‘L Future work

= Add default immutability

‘class Graph<I extends ReadOnly default Mutable> I

= An alternative syntax
(in JSR 308 for Java 7)

‘new @mutable ArraylList<@immutable Edge>(...) I

= Runtime support (e.g. down-cast)

24/23

