
The Journal of Systems & Software 181 (2021) 111041

A

t
a
d
m
m
c
t
s
a
p
p
a
b
s
t
t

h
0
n

Contents lists available at ScienceDirect

The Journal of Systems & Software

journal homepage: www.elsevier.com/locate/jss

MeMo: Automatically identifyingmetamorphic relations in Javadoc
comments for test automation✩

rianna Blasi a,∗, Alessandra Gorla b, Michael D. Ernst c, Mauro Pezzè a,d,
Antonio Carzaniga a

a USI Università della Svizzera Italiana, Switzerland
b IMDEA Software Institute, Spain
c University of Washington, USA
d SIT Schaffhausen Institute of Technology, Switzerland

a r t i c l e i n f o

Article history:
Received 1 December 2020
Received in revised form 3 July 2021
Accepted 7 July 2021
Available online 15 July 2021

Keywords:
Software testing
Test oracle generation
Natural language processing

a b s t r a c t

Software testing depends on effective oracles. Implicit oracles, such as checks for program crashes, are
widely applicable but narrow in scope. Oracles based on formal specifications can reveal application-
specific failures, but specifications are expensive to obtain and maintain. Metamorphic oracles are
somewhere in-between. They test equivalence among different procedures to detect semantic failures.
Until now, the identification of metamorphic relations has been a manual and expensive process,
except for few specific domains where automation is possible. We present MeMo, a technique and
a tool to automatically derive metamorphic equivalence relations from natural language documenta-
tion, and we use such metamorphic relations as oracles in automatically generated test cases. Our
experimental evaluation demonstrates that 1) MeMo can effectively and precisely infer equivalence
metamorphic relations, 2) MeMo complements existing state-of-the-art techniques that are based on
dynamic program analysis, and 3) metamorphic relations discovered with MeMo effectively detect
defects when used as test oracles in automatically-generated or manually-written test cases.

© 2021 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Oracles are necessary in software testing to reveal implemen-
ation defects and errors. An ideal oracles would be complete
nd generic. Complete means that the oracle would reveal every
eviation from the desired application-specific behavior. Generic
eans that the oracle can be used with any test, including auto-
atically generated ones. However, there is a trade-off between
ost to generate oracles and their effectiveness. At one end of
he spectrum, there are implicit oracles that check basic con-
istency rules such as the dereference of null pointers. They
re cheap to obtain and totally generic, but are far from com-
lete, as they reveal only relatively simple, program-independent
roperties (Barr et al., 2015). At the other end of the spectrum
re application-specific oracles. These are often written manually
y developers for specific test cases. However, this requires a
ignificant effort and is not applicable to automatically generated
est suites (Fraser and Arcuri, 2013). Application-specific oracles
hat can be derived from formal specifications, but generating

✩ Editor: Raffaela Mirandola.
∗ Corresponding author.

E-mail address: arianna.blasi@usi.ch (A. Blasi).
ttps://doi.org/10.1016/j.jss.2021.111041
164-1212/© 2021 The Author(s). Published by Elsevier Inc. This is an open access a
c-nd/4.0/).
and maintaining formal specifications can be very expensive (Bal-
cer et al., 1989; Doong and Frankl, 1994), and is considered
cost-effective only in some domains.

Metamorphic and differential testing balance cost, complete-
ness, and genericity. Metamorphic testing oracles reveal failures
by checking metamorphic relations: application-specific symme-
tries and equivalences (Chen et al., 1998, 2003). For example,
an oracle for a commutative function sum(a, b) is the meta-
morphic relation sum(a, b) ≡ sum(b, a). Metamorphic relations
are partial specifications that are much less onerous to write
and maintain than full behavioral specifications. Metamorphic
oracles are generic, and yet they can detect application-specific
errors and therefore are complementary to the oracles generated
(along with test suites) by automatic test case generators such as
Randoop (Pacheco et al., 2007) and EvoSuite (Fraser and Arcuri,
2013). Such tools produce test suites that rely mainly on implicit
oracles or common contract violations,1 and generate regression
assertions, that is, oracles that detect differences from a previous
version of the software under test.

Metamorphic relations are particularly useful when correct-
ness might be hard to define at a higher level. Identifying meta-
morphic relations has been for a long time a largely manual task

1 https://randoop.github.io/randoop/manual/#kinds_of_errors.
rticle under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-

https://doi.org/10.1016/j.jss.2021.111041
http://www.elsevier.com/locate/jss
http://www.elsevier.com/locate/jss
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jss.2021.111041&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:arianna.blasi@usi.ch
https://randoop.github.io/randoop/manual/#kinds_of_errors
https://doi.org/10.1016/j.jss.2021.111041
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

A. Blasi, A. Gorla, M.D. Ernst et al. The Journal of Systems & Software 181 (2021) 111041

c
n
f
e
o
A
r
r
u
c
n
i

t
c
t
o
t
c
m

c
t
p
o
d
s
a

t
g
2
v
f

a
G
m
o

arried out by experts of the application domain. The few tech-
iques to automatically identify metamorphic relations either
ocus on specific domains, such as model transformations (Troya
t al., 2018), or work under strict assumptions, such as dealing
nly with functions with numeric parameters (Zhang et al., 2019).
few techniques automatically generate composite metamorphic
elations by combining simple manually-identified metamorphic
elations (Xiang et al., 2019; Liu et al., 2012). Other techniques
se either code structure information to train machine learning
lassifiers (Kanewala and Bieman, 2013; Kanewala, 2014) or dy-
amic analysis information (Su et al., 2015; Goffi et al., 2014) to
dentify metamorphic relations.

This paper presents MeMo, a technique and a tool to au-
omatically infer equivalence metamorphic relations from code
omments written in natural language. Of course, the quality of
he results strictly depends on the completeness and correctness
f the developers’ comments. The benefit lays in the fact that
hese relations can be readily used to generate test oracles: MeMo
an further reduce the cost and increase the effectiveness of
etamorphic testing.
The MeMo tool analyzes the Javadoc documentation of a Java

lass under test. MeMo produces equivalence metamorphic rela-
ions in the form of Java assertions that can be used as metamor-
hic oracles. MeMo consists of four components. The two core
nes are a MR finder whose task is to identify sentences that
escribe metamorphic relations, and a translator that translates
uch natural-language sentences into executable specifications, or
ssertions.
Previous techniques derive executable specifications from

echnical documentation in the form of structured natural lan-
uage (Tan et al., 2012; Pandita et al., 2012; Motwani and Brun,
019; Pandita et al., 2016). Some of the authors of this paper pre-
iously developed a framework to infer pre- and post-conditions
rom semi-structured Javadoc comments, such as the @param tag
that describes one parameter (Blasi et al., 2018; Goffi et al., 2016).
We observe that metamorphic relations tend to be described in
method summaries, that is, the unstructured portion of Javadoc
documentation. MeMo is the first approach that uses unstruc-
tured technical documentation in natural language to derive
metamorphic relations.

SBES (Goffi et al., 2014; Mattavelli et al., 2015) infers relations
in Java programs similar to the ones discovered by MeMo. SBES is
a dynamic analysis that formulates conditions based on observed
behaviors, and cannot distinguish between correct and incorrect
behaviors. By contrast, MeMo relies on static information (code
comments), which is more general than specific runtime behav-
iors and more likely to be correct. Our work combines the vision
of SBES (Goffi et al., 2014; Mattavelli et al., 2015) (automatically
inferring equivalence metamorphic relations), and the power of
natural language processing (Blasi et al., 2018; Goffi et al., 2016).

It may seem superfluous to extract metamorphic relations
from comments that are in principle already known to develop-
ers. MeMo automates the manually intensive process of translat-
ing this information into executable specifications that are usable
for tasks such as testing and automatic program repair (Carzaniga
et al., 2015, 2010, 2013, 2009) Moreover, MeMo can expose bugs
— documented relations that do not hold in practice — by trans-
lating and executing equivalence metamorphic relations during
testing.

We evaluated MeMo on nine mature open-source Java
projects, both in isolation to identify metamorphic relations, and
in a testing framework by using those relations as oracles. The
experimental results (Section 4) indicate that MeMo produces
Java executable specifications with a precision of 91% and a recall
of 69%. Furthermore, those specifications are useful as test oracles

when used in combination with EvoSuite and Randoop, and even

2

with manually-written assertions. MeMo identifies valid relations
that SBES does not find, and identifies relations that are generally
more complex than those found by SBES.

In summary, this paper makes the following contributions:

• We present a novel technique to automatically infer equiv-
alence metamorphic relations from natural-language sen-
tences found in code comments.

• We implemented our technique in a tool called MeMo.
• Experiments show that MeMo generates relations that can

effectively detect implementation defects when used in test
cases automatically generated by Randoop and EvoSuite,
and in test suites manually-written by developers.

The remainder of this paper is organized as follows. Section 2
describes the problem of deriving metamorphic relations from
code comments. Section 3 describes our solution, including the
high-level architecture of our MeMo tool and the technical details
of its components. Section 4 evaluates MeMo according to three
different criteria: (1) effectiveness in both identifying MRs in code
comments expressed in natural language and translating them to
executable specifications, (2) comparison with the state-of-the-
art SBES technique, and (3) detection of implementation defects
when using identified MRs as test oracles. Section 5 discusses
threats to the validity of our approach. Section 6 reviews related
work. Section 7 concludes.

2. Metamorphic relations in Javadoc

Metamorphic relations are properties of the intended behav-
ior of a software component or system. Equivalence relations
between operations are among the most studied metamorphic
relations (Chen et al., 2018).

Metamorphic relations can serve as oracles in software test-
ing. For instance, a sum operation representing a commutative
addition operation should produce the same result with any
permutation of the input parameters. The metamorphic rela-
tion sum(a,b) == sum(b,a) must hold for all values of the
parameters a and b.

Because these relations are important and informative, they
re often described in code comments. For example, the following
oogle Guava (guava, 2020) comment states that two different
ethod calls should have the same functional behavior on an
bject of class Iterables.

Listing 1: Equivalence relation in Guava method summary
/∗∗ Returns an iterable whose iterators cycle indefinitely over the

provided
elements.

After remove is invoked on a generated iterator, the removed
element will no

longer appear in either that iterator or any other iterator created
from the same

source iterable. That is, this method behaves exactly as
Iterables.cycle(Lists.newArrayList(elements)).
The iterator’s hasNext method returns true until all of the original

elements have
been removed.

Warning: Typical uses of the resulting iterator may produce an
infinite loop. You

should use an explicit break or be certain that you will
eventually remove all the elements.

To cycle over the elements n times,
use the following: Iterables.concat(Collections.nCopies(n,
Arrays.asList(elements))) ∗/

public static <T> Iterable<T> cycle(T... elements) { . . .

A. Blasi, A. Gorla, M.D. Ernst et al. The Journal of Systems & Software 181 (2021) 111041

w
‘
a
c
f

e

t
r
i
i

m
e

p

Method summaries are unstructured text. They use different
ordings to describe equivalence relations, with sentences like

‘. . . this method behaves exactly as. . . ’’ or ‘‘. . . it is identical to. . . ’’,
nd they mix in code fragments. The challenges that the two core
omponents of MeMo face for inference of equivalence relations
rom code comments are:

1. Identifying sentences that describe equivalent behaviors,
which may be embedded in large text blocks like the one
in Listing 1. This requires a technique that understands the
semantics of the natural language used by developers in
their comments.

2. Identifying the code elements involved in the metamor-
phic relation. Matching specific terms in the natural lan-
guage sentence to the corresponding code elements is com-
plicated by the fact that they may be lexically different,
and terms in comments may refer to code entities (i.e.
methods, classes, fields, and method parameters) from a
variety of foreign scopes. This matching is necessary to
translate metamorphic relations into valid Java executable
statements, so they can be used directly in Java code, for
instance as test oracles in unit testing methods.

To illustrate these challenges and our tool MeMo, we list some
xamples of Javadoc comments and MeMo’s output.

Documented method
/∗∗ Equivalent to newReentrantLock(lockName, false). ∗/
public ReentrantLock newReentrantLock(String lockName) { . . . }

MeMo output
methodResultID.equals(receiverObjectClone.newReentrantLock(args

[0], false))

In this simple example, the comment is a single sentence that
directly states an equivalence property. MeMo must distinguish
the English from the code snippet, interpret the English, and rec-
ognize that the first argument in the documentation refers to the
method’s only parameter, while the second argument is a Boolean
literal. In the output produced by MeMo, methodResultID refers
o the return value of the method call, receiverObjectClone
efers to a cloned instance of the object on which the method is
nvoked, and args[0] refers to the first actual argument for that
nvocation (more technical details in Section 3).

Resolving parameter names in the natural language comment
ay be less straightforward. This next example uses fields of
xternal classes:

Documented method
/∗∗ Calling this method is equivalent to call composeInverse(r,
RotationConvention.VECTOR_OPERATOR). ∗/
public
applyInverseTo(org.apache.commons.math3.geometry.euclidean.

threed.FieldRotation<T>
r) { . . .

MeMo output
methodResultID.equals(receiverObjectClone.composeInverse(args[0],
org.apache.commons.math3.geometry.euclidean.threed.

RotationConvention.VECTOR_OPERATOR))

Here is an example from Guava’s com.google.common.
rimitives.Shorts class

Documented method
/∗∗ Returns a fixed-size list backed by the specified array, similar to
Arrays#asList(Object[]). The list supports [...] ∗/
public static List<Short> asList(short... backingArray)
3

MeMo output
methodResultID.equals(java.util.Arrays.asList(args[0]))

MeMo recognizes that only the first sentence states an equiva-
lence relation, that Arrays comes from a different library (java.
util), and that short... is convertible to Object[].

Some methods do not return values that can be compared
with == or equals(). The following example from Guava class
LongAdder shows how MeMo handles methods with void re-
turn types.

Documented method
/∗∗ Equivalent to add(−1). ∗/
public void decrement() { . . . }

MeMo output
receiverObjectID.add(−1);
receiverObjectClone.decrement();
assert(receiverObjectClone.equals(receiverObjectID));

Through the receiverObjectClone, MeMo can compare the
states after two separate invocations of the methods involved in
the metamorphic relation.

When a metamorphic relation involves multiple methods,
MeMo combines them into either chains of method calls or nested
calls. Let us consider again the example in Listing 1:

Documented method
/∗∗ . . . this method behaves exactly as Iterables.cycle(Lists.

newArrayList(elements)). . . . ∗/

MeMo output
methodResultID.equals(Iterables.cycle(com.google.common.collect.

Lists.newArrayList(args[0])))

Code snippets in Javadoc comments may even include multi-
ple statements, and not only expressions:

Documented method
/∗∗ For each occurrence of an element e in occurrencesToRemove,
removes one occurrence of e in multisetToModify. Equivalently, this
method modifies multisetToModify so that multisetToModify.count(e

) is
set to Math.max(0, multisetToModify.count(e) −

occurrencesToRemove.count(e)). This is not the same as
multisetToModify. Multiset#removeAll removeAll(

occurrencesToRemove),
which removes all occurrences of elements that appear in
occurrencesToRemove. However, this operation is equivalent to,

albeit
sometimes more efficient than, the following: for (E e :
occurrencesToRemove) { multisetToModify.remove(e); } ∗/

MeMo output
methodResultID==[for (Object e : args[1]) { args[0].remove(e);}]

The above translation is a compact representation of the as-
sertions that MeMo produces in this case. In a nutshell, MeMo
declares a new method and includes the code statements in
squared parenthesis as its

Finally, some comments describe conditional equivalence, such
as the following comment in the com.google.common.collect
.Multisets class:

Documented method
/∗∗ Removes a number of occurrences of the specified element

from this
multiset. If the multiset contains fewer than this number of

occurrences to

A. Blasi, A. Gorla, M.D. Ernst et al. The Journal of Systems & Software 181 (2021) 111041

m

3

t
t

M
T
d
m
t
p
t
c
e
i
h

3

d
@
p
m
m
e
t
n
M

t
a
@
i
h
e
d

e
f

s
c
b
@
o
p

3

t
t
p
c
p

.

2
a
a
a
b
t

3

a
T
f
s
r
i
o
c
i
t

begin with, all occurrences will be removed. Note that if
occurrences == 1,

this is functionally equivalent to the call remove(element) ∗/

MeMo output
if (args[1] == 1)
assert(methodResultID==(receiverObjectClone.remove(args[0])));

We now describe how MeMo identifies and translates meta-
orphic equivalence relations into executable specifications.

. MeMo

MeMo discovers metamorphic relations in Javadoc documen-
ation. It produces executable Java assertions that can be used as
est oracles.

The MeMo architecture combines a comment processor, a
etamorphic Relations (MR) finder, a translator, and an executor.
he comment processor parses the input source code and pro-
uces a cleaned representation of the Javadoc comments of each
ethod. The MR finder identifies, among the extracted sentences,

he ones that mention a metamorphic relation. The translator
rocesses each sentence containing a metamorphic relation, in-
erpreting its natural-language parts as well as its embedded
ode to produce a metamorphic relation as a Java assertion. The
xecutor weaves the produced assertions into existing code (for
nstance, a test suite), to test whether the metamorphic relation
olds at run time.

.1. Comment processor

A Javadoc method comment consists of a free-text summary
escription followed by tag blocks (@param, @return, @throws,
since, @version, etc.). From our manual inspection of Java
rojects, most metamorphic properties appear in method sum-
aries. This intuition is supported by the official Oracle docu-
entation, which states that the summary should provide a gen-
ral description of the method, including any interesting seman-
ic property, while the tag blocks should convey more specific,
arrower information (Oracle, 2020). Based on this information,
eMo’s comment processor ignores tag blocks.
The comment processor also removes formatting informa-

ion such as HTML markup. It stores text marked with @code
nd @link inline tags for later analysis. Content enclosed in
code tags may identify a code snippet that MeMo needs later
n the translation process. Content inside @link tags may be
elpful in identifying external dependencies, which in turn are
ssential to resolve symbols and method calls referenced in the
ocumentation.
The comment processor splits the cleaned summary text of

ach method into sentences, and it forwards them to the MR
inder for further analysis.

Fig. 1 shows how the comment processor behaves on a code
nippet excerpted from the Google Guava API. The comment pro-
essor analyzes the documentation of method asList(short...
ackingArray) to identify and store information associated to
links and @code tags, information that MeMo uses in later steps
f the translation process. Then, the comment processor splits the
aragraph into sentences at full stops (periods).

.2. MR finder

The MR finder decides whether each sentence extracted with
he comment processor describes a metamorphic relation. It re-
urns true if the sentence contains one of a set of equivalence
hrases, or if the sentence is semantically similar to one that
ontains one of the equivalence phrases. Both tests require the
resence of a method signature in the sentence.
4

3.2.1. Equivalence phrase search
The equivalence phrase search uses a fixed set of ten equiva-

lence phrases mined from real-world Javadoc documentation. The
corpus is a set of 4741 Javadoc sentences randomly chosen from
the documentation of seven widely used Java projects: Apache
Commons Collections, Apache Commons Math, Apache Hadoop,
Apache Lucene, Eclipse Vert.x, Google Guava, and GWT.

We manually classified each sentence as expressing a meta-
morphic equivalence relation (positive examples) or not, and
further manually identified the relevant equivalence phrases used
to express the metamorphic relations. The resulting set of equiva-
lence phrases is: equivalent, similar, analog, like, identical, behaves
as, equal to, same as, alternative, replacement for.

Fig. 2 illustrates how the MR finder retains only one sentence
from the running-example of method asList from Fig. 1, that is,
the one containing one of the equivalence phrases followed by a
method signature.

3.2.2. Semantic expansion of MR equivalence phrases
Using just a predefined set of equivalence phrases to identify

sentences expressing metamorphic relations would limit MeMo’s
generalization capabilities, since developers’ jargon may vary
across projects. For instance, the set of manually-mined equiva-
lence phrases would not find the following equivalence in method
org.graphstream.graph#push of the Graphstream API:

Listing 2: Equivalence relation in Graphstream method
summary

/∗∗ A synonym for add(Edge). ∗/
void push(org.graphstream.graph.Edge edge) { . . .

The MR finder returns true if a sentence in a code comment
contains text that is semantically similar to one of the equivalence
phrases in Section 3.2.1. First, MR finder builds a normalized
version of the comment sentence by adding an explicit subject
when missing and substituting the method signature it refers
to with ‘‘that method’’. For comment 2 of Section 2, MR
finder normalizes the code comment sentence ‘‘A synonym for
add(Edge)’’ to ‘‘this method is a synonym for that method’’.
(MR finder adds the verb to be if there is no verb, as in this
case). Second, MeMo builds a dummy sentence for each equiv-
alence phrase in the form of: ‘‘method ⟨equivalence phrase⟩

that method’’. MeMo compares the normalized sentence to each
dummy sentence: ‘‘this method is equivalent to that method’’
. . ‘‘this method is same as that method’’.

The comparison uses Word Mover’s Distance (Kusner et al.,
015) to measure the semantic similarity between the sentences,
nd answer the question: ‘‘is the given sentence in the comment
lso expressing an equivalence?’’. The MR finder returns true if
ny of the Word Mover’s Distance computations returns a value
elow 20%, which means a similarity of at least 80%. We set the
hreshold via experimentation.

.3. Translator

For each sentence that the MR finder identifies as describing
metamorphic relation, the translator outputs a Java assertion.
he translator produces executable Java code that may use the
ollowing placeholders: (1) methodResultID represents the re-
ult of the documented method; (2) receiverObjectID is the
eceiver (the target object) on which the documented method
s called; (3) receiverObjectClone is a clone of the target
bject that may be used to invoke the equivalent method or
ode snippet. MeMo performs method calls only on the cloned
nstance, to avoid affecting the state of the original object. Also,
he cloned object is useful to compare side effects by comparing

A. Blasi, A. Gorla, M.D. Ernst et al. The Journal of Systems & Software 181 (2021) 111041

t
p

s
g

m
t
o
a

h
r
t
u
t

r
f
p

a
t
a
s
i
f
f
c
(
f

Fig. 1. Information retained by the comment processor.
Fig. 2. Sentence retained by the MR finder.
f
(

s
e
t

M
m

3

n
m
a

c
m
t
m
t
t
S
a
c
c

3

c
d
i
c
i
(
t
I
S
t
b
e
t
o

he observable state of the cloned and original objects. Section 2
resents examples of the use of all placeholders.
The translator must first identify and resolve all the method

ignatures mentioned in the sentence, whether in natural lan-
uage or in a code fragment.
Consider this example:
. . . equivalent to ByteBuffer.allocate(8).putLong(value).array().

There is no direct link to any ByteBuffer class in the com-
ent itself nor in the source code. The class this comment belongs

o does not use the library, which is mentioned in the comment
nly to highlight a MR. MeMo explores the other project packages
nd external dependencies to find the right match.
A signature in a comment may use different parameter values,

ard-coded or not: In the above example, 8 is hard-coded (MeMo
ecognizes it is a literal to be interpreted as an integer when
ranslated into code); value is the argument name of the doc-
mented method (MeMo employs a syntax match to recognize
he code element the comment is referring to).

When a comment uses a call chain (as in the above example)
ather than a single signature, multiple resolutions must be per-
ormed. For the above example, MeMo solves all these tasks to
roduce the final code translation:

methodResultID.equals(java.nio.ByteBuffer.allocate(8).putLong(args
[0]).array())

The next sections describe how MeMo deals with each challenge.

3.3.1. Resolving symbols
MeMo must resolve textual representations of symbols (meth-

ods, classes, variables, etc.) to generate code for them.
When processing qualified symbols such as ClassName.name

nd ClassName#name, MeMo first tries to find ClassName in
he same package, then within the whole project under analysis,
nd finally within external dependencies that appear as import
tatements. Fig. 3 shows an example of symbol resolution. After
dentifying java.util.Arrays.asList as the right candidate
rom the external dependencies on the left-hand side of the
igure, MeMo checks its arguments (second green check, in the
enter) and the return types of the two equivalent methods
third green check, on the right) for type compatibility. MeMo
inds a compatible match, and produces the final translation
5

or the sentence in the blue box: methodResultID.equals
java.util.Array.asList(arg[0])).
For unqualified symbols such as name or #name, MeMo

earches first in the class itself, then in supertypes, then in the
ntire package, then in the external dependencies. It matches
hem to method names, fields, formal parameters, and literals.

For chained method calls such as methodA().methodB(),
eMo resolves from left to right. It uses the return type of
ethodA() as the preferred scope in which to resolve methodB.

.3.2. Parsing non-trivial code fragments
So far, the examples focused mainly on single method sig-

atures or a chain of method calls. However, there are even
ore complex mentions inside documentation comments, such
s whole code snippets.
Non-trivial code fragments might contain expressions, nested

alls, and control structures (if, for, etc.). MeMo uses a prag-
atic approach to deal with non-trivial code. First, MeMo at-

empts to compile the code using an in-memory compiler (In
emory compiler, 2020). The compilation might fail because

he code refers to unknown symbols. In that case, MeMo reads
he compiler errors and tries to solve the missing symbols (see
ection 3.3.1). After solving all missing symbols, and in any case
t the end of the synthesis of the specification, MeMo runs the
ompiler again, to confirm that the output assertion is valid Java
ode.

.3.3. Translating conditional equivalence
A metamorphic property does not necessarily hold under all

ircumstances. A comment might express specific conditions un-
er which a property holds, in the following format: ‘‘if [or when,
n case, etc.] condition, then this call is equivalent to other method
all’’. The condition might be directly expressed with code (for
nstance, ‘‘if collection.isEmpty()’’) or in natural language
‘‘if collection is empty’’). In the first case, MeMo can parse
he code expressing the condition directly as with code snippets.
n the latter case, MeMo relies on natural language processing.
pecifically, MeMo uses the Stanford Parser (Marneffe et al., 2006)
o identify the subject and predicate of the condition. Then, since
oth subject and predicate must correspond to source code el-
ments, MeMo tries to find their name within the code. Once
ranslated the condition, MeMo proceeds by translating the rest
f the metamorphic property as usual.

A. Blasi, A. Gorla, M.D. Ernst et al. The Journal of Systems & Software 181 (2021) 111041

3

(
t
m
r

i
t
s
a
e
o
d

1
1

1
1

A
a
m
a

t
u
e

s
m
p
t
o

Fig. 3. Example of symbol resolution. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
w

C

M

W

S

t
s
e
1
W
t
e

.4. Executor

The translator output maps a single method to code fragments
simple method call, chain of calls, or code snippet) for which
he metamorphic relation is supposed to hold. Such translations
ay contain placeholders, which must be properly replaced at

un time depending on the scope and context.
MeMo uses aspect-oriented programming for this task. Specif-

cally, MeMo uses an aspect template with a join point around
he method call for which we have a translation. When a test
uite — whether manually or automatically generated — contains
method call for which MeMo is aware of a translation, the

xecutor triggers the aspect and compares the execution of the
riginal and supposedly equivalent code fragment declared in the
ocumentation.

Algorithm 1 Executor
1: /** Given the code translation of a metamorphic relation,

embeds it within the Aspect template to obtain an executable
assertion.*/

2: function populate-aspect-template(translation, receiverOb-
jectID)

3: if translation contains receiverObjectClone then
4: clone = generate receiver object

clone(receiverObjectID)
5: if translation contains code fragment then
6: embed code fragment in dummy method(code frag-

ment)
7: clone.dummy-method()
8: /** Call to the documented method already existing in the

test suite.*/
9: methodResultID = receiver-

ObjectID.documentedMethodCall()

0: if translation contains receiverObjectClone then
1: assert(receiverObjectClone.equals(receiverObjectID))

2: else if translation contains methodResultID then
3: assert(translation)

The executor in MeMo fulfills this task by populating the
spect template as shown in algorithm 1. Since MeMo uses an
round pointcut, it can perform some operations both before the
ethod invocation mentioned in the translation (before line 8)
nd after (from line 9).
If a translation contains object cloning, the clone must reflect

he state of the receiver object before the test invokes the doc-
mented method. On said clone, the code fragment can be then
xecuted.
After the test suite invokes the documented method, the re-

ults of the executions involved in the translation of the meta-
orphic relation can be compared. Since the comparison is ex-
ressed as an assertion (lines 11 and 13), the test case will pass if
he metamorphic relation does hold as documented, and will fail
therwise.
 d

6

4. Evaluation

Our experimental evaluation aims to answer the following
research questions:

• RQ1: effectiveness of MeMo. Can MeMo identify natural lan-
guage sentences that express metamorphic properties and
translate them into executable assertions?

• RQ2: comparison against state of the art. How does MeMo
compare with SBES in terms of identified equivalence rela-
tions?

• RQ3: usefulness of MeMo assertions as test oracles. Do
MeMo assertions improve testing when used as oracles?

4.1. Experimental setting

We evaluated MeMo on a benchmark of 113 classes randomly
selected from nine popular Java systems.

One author inspected all 7189 Javadoc sentences and manually
translated all those that express a metamorphic relation into a
code assertion. Table 1 reports statistics.

We computed precision and recall according to the following
formulas:

precision =
|Correct|

|Correct| + |Wrong| + |Spurious|

recall =
|Correct|

|Correct| + |Wrong| + |Missing|

here

orrect = true positive: MeMo’s output is non-empty and matches
the ground truth.

issing = false negative: MeMo’s output is empty but the ground
truth is not.

rong = non-empty false positive: MeMo’s output is non-empty
and does not match the ground truth.

purious = empty false positive: MeMo’s output is non-empty and
the ground truth is empty.

We addressed RQ1 by experimenting with all sentences in
he benchmark. We addressed RQ2 by experimenting with the
ubset of sentences that are used in the SBES paper (Mattavelli
t al., 2015), that is 792 sentences belonging to 220 methods of
6 classes of the collect package of the Google Guava library.
e addressed RQ3 by experimenting with the 1274 sentences of

he 27 Guava classes, to mitigate the effort required to manually
xclude false positives from the mutation analysis, as we further
iscuss in 4.4.

A. Blasi, A. Gorla, M.D. Ernst et al. The Journal of Systems & Software 181 (2021) 111041

J
t
p

d
p
G
A
c
.

t

Table 1
Ground truth: manually-identified metamorphic relations (MR).
Project URL Randomly selected

classes
Sentences MRs

Colt https://dst.lbl.gov/ACSSoftware/colt 9 477 19
ElasticSearch https://www.elastic.co 10 228 14
GWT http://www.gwtproject.org 17 448 44
GraphStream http://graphstream-project.org 3 126 11
Guava https://github.com/google/guava 33 1558 80
Hibernate https://github.com/hibernate 5 126 5
JDK https://github.com/openjdk/jdk 23 3381 72
Math https://github.com/apache/commons-math 9 653 30
Weka https://www.cs.waikato.ac.nz/ml/weka 4 192 6

Total 113 7189 281
Table 2
Effectiveness of MeMo on 7189 sentences from 113 classes.
Project Correct Missing Wrong Spurious Precision Recall

Colt 11 8 0 0 1.00 0.58
ElasticSearch 8 6 0 0 1.00 0.57
GWT 12 31 1 1 0.86 0.27
GraphStream 9 2 0 0 1.00 0.82
Guava 62 16 2 2 0.94 0.78
Hibernate 3 2 0 0 1.00 0.60
JDK 59 11 2 6 0.88 0.82
Math 26 4 0 2 0.93 0.87
Weka 3 1 2 0 0.60 0.50

Total 193 81 7 11 0.91 0.69

4.2. RQ1: Effectiveness of MeMo in translating Javadoc comments

Table 2 reports the effectiveness of MeMo in translating
avadoc comments to executable metamorphic relations. MeMo
ranslates JavaDoc sentences into executable assertions with a
recision of 91% and a recall of 69%.
Most missing translations of MeMo depend on comments that

escribe parameter values with complex natural language ex-
ressions and with little or no code. In Table 2, we see how
WT is the project on which MeMo achieves the poorest recall.
representative example of the reason why is the following

omment from method endsWithRtl of the com.google.gwt-
i18n.shared.BidiUtils class.

/∗∗ Like #endsWithLtr(String, boolean), but assumes str is not HTML
/

HTML−escaped. ∗/

hat can be translated to the assertion
methodResultID.equals(endsWithLtr(args[0], false))

where the false value for the second argument comes from
the intuition that ‘‘str is not HTML/HTML-escaped’’ refers to the
second parameter of method endsWithLtr, which is the boolean
variable isHtml. MeMo’s NLP techniques do not infer the infor-
mation required to translate this sentence, and GWT has many
comments similar to this one.

The spurious translations of MeMo depend on summaries that
encompass a considerable amount of information and typically
mix mathematical expressions with natural language and code.
For such summaries it is not always possible to write a trans-
lation, so our ground truth is empty. MeMo, nonetheless, de-
tects the presence of a MR and attempts a translation. A rep-
resentative example is the summary of method plus of class
java.time.YearMonth:

/∗∗ Returns a copy of this year−month with the specified amount
added.

This returns a YearMonth, based on this one, with the amount in
terms of the

unit added. If it is not possible to add the amount, because the unit
is not
7

supported or for some other reason, an exception is thrown.

If the field is a ChronoUnit then the addition is implemented here.
The supported

fields behave as follows:

MONTHS − Returns a YearMonth with the specified number of
months added.

This is equivalent to plusMonths(long).
YEARS − Returns a YearMonth with the specified number of years

added. This is
equivalent to plusYears(long).
DECADES − Returns a YearMonth with the specified number of

decades added.
This is equivalent to calling plusYears(long) with the amount

multiplied by 10.
CENTURIES − Returns a YearMonth with the specified number of

centuries added.
This is equivalent to calling plusYears(long) with the amount

multiplied by 100.
MILLENNIA − Returns a YearMonth with the specified number of

millennia added.
This is equivalent to calling plusYears(long) with the amount

multiplied by 1,000.
ERAS − Returns a YearMonth with the specified number of eras

added. Only two
eras are supported so the amount must be one, zero or minus one.

If the amount
is non−zero then the year is changed such that the year−of−era is

unchanged.
∗/

The few wrong translations of MeMo derive either from some
mixing between mathematical notations and code or from an
incomplete translation. A representative example is the follow-
ing comment taken from method forArray(T... array) of
com.google.common.collect.Iterators class:

/∗∗ The Iterable equivalent of this method is either
Arrays#asList(Object[]), ImmutableList#copyOf(Object[])},
or ImmutableList#of. ∗/

MeMo’s translator does not parse multiple metamorphic relations
in a single sentence, thus its output is incomplete:

methodResultID.equals(java.util.Arrays.asList(args[0]))

When identifying a metamorphic relation inside a comment,
the simple syntactic match against the hard-coded set of equiv-
alence phrases achieves a recall of 65% on our dataset. WMD
provides a boost of 4% in recall by retrieving further matches
(without losing precision). WMD can detect variations of the
equivalence phrases, e.g., going from behaves as to ‘‘...behaves
exactly as...’’, or from same as to ‘‘...has the same behavior...’’ and
to ‘‘...has the same effect as...’’, so that not every variation needs to
be hard-coded. WMD can also detect subtle similarities, like the
one shown in Listing 2 (i.e., ‘‘A synonym for...’’).

https://dst.lbl.gov/ACSSoftware/colt
https://www.elastic.co
http://www.gwtproject.org
http://graphstream-project.org
https://github.com/google/guava
https://github.com/hibernate
https://github.com/openjdk/jdk
https://github.com/apache/commons-math
https://www.cs.waikato.ac.nz/ml/weka

A. Blasi, A. Gorla, M.D. Ernst et al. The Journal of Systems & Software 181 (2021) 111041

4

(
a
c

4

t
t
t
s
b

5
s

4

e
m
t

d

a
o

i

s

i

i
V

m
s
f

c

.3. RQ2: Comparison with SBES

We compared MeMo with Search-Based Equivalent Synthesis
SBES) (Goffi et al., 2014; Mattavelli et al., 2015), a dynamic
nalysis technique that finds sequences of equivalent method
alls through a search-based algorithm.

.3.1. Comparison of the two techniques
MeMo deduces metamorphic relations from code documenta-

ion, and its output is as deterministic and sound as the documen-
ation written by developers. SBES infers relations from executing
he code. Its output depends on the initial test suite used in the
earch-based algorithm. SBES infers likely relations, which must
e manually confirmed by the user.
MeMo runs much faster than SBES. For example, SBES takes
h to analyze the class java.util.Stack. MeMo takes a few

econds.

.3.2. Experimental comparison between SBES15 and MeMo
We compared MeMo and SBES15 (Mattavelli et al., 2015) by

xecuting the corresponding tools on the SBES15 dataset, and by
anually intersecting the set of relations produced with the two

ools.
MeMo inferred six metamorphic relations from the SBES15

ataset.
MR 1 corresponds to the comment
/∗∗ . . . This method is equivalent to tailMultiset(lowerBound,

lowerBoundType).headMultiset(upperBound, upperBoundType)
. ∗/

in method TreeMultiset.subMultiset(). MeMo translates it
to

methodResultID.equals(receiverObjectID.tailMultiset(args[0],args[1]).
headMultiset(args[2],args[3]))

which states that the result of method subMultiset is the same
s calling method tailMultiset with the first two arguments
f subMultiset, followed by method headMultiset with the

last two arguments.
MR 2 corresponds to comment:
/∗∗ Equivalent to size() == 0, but can in some cases be more

efficient. ∗/

in ArrayListMultimap and 5 more classes regarding method
sEmpty() that MeMo translates as:

methodResultID == (receiverObjectID.size() == 0)

which means that the result of the documented method isEmpty
hould be the same of comparing the result of method size on
the receiver object to the value 0.

MR 3 corresponds to comment:
/∗∗ . . . Equivalent to (but expected to be more efficient than): for (V

value : values) { put(key, value); } ∗/

n ArrayListMultimap and 5 more classes on method
putAll() that MeMo translates as:

methodResultID==[for (V value : args[1]) { receiverObjectID.put(args
[0], value); }]

which means that the effect of invoking the documented method
putAll should be the same obtained by the code snippet in
squared parenthesis.

MR 4 corresponds to comment:
/∗∗ . . . If values is empty, this is equivalent to removeAll(key). ∗/

n class ArrayListMultimap and 5 more on method replace-
alues() that MeMo translates as:

if(!args[1].iterator().hasNext())
{methodResultID.equals(receiverObjectID.removeAll(args[0]))}
8

Table 3
MeMo’s performance on SBES15 dataset considering documented MR: Both
eans that such MRs are found by both MeMo and SBES15. SBES15-only means
uch MRs are found by SBES15 but missed by MeMo. MeMo-only are the MRs
ound by MeMo and missed by SBES15.
Discovered documented MRs

Both SBES15-only MeMo-only Total

8 5 20 33

MeMo understands that there is a condition that must hold for
the documented method replaceValues to be comparable to
calling method removeAll with the first argument. Notice that
the second argument, values, is an iterator, thus the emptiness
ondition is verified via !values.iterator().hasNext().
MR 5 corresponds to comment:
/∗∗ . . . Note that if occurrences == 1, this method has the identical

effect to #add(Object). This method is functionally equivalent (
except in the case of overflow) to the call addAll(Collections.
nCopies(element, occurrences)), which would presumably
perform much more poorly. ∗/

on ConcurrentHashMultiset and 4 more classes regarding
method add() that MeMo translates as:

if (args[1] == 1) {
receiverObjectID.add(args[0]);
receiverObjectClone.add(args[0],args[1]);
assert(receiverObjectClone.equals(receiverObjectID));

}
&&
methodResultID==(receiverObjectID.addAll(java.util.Collections.

nCopies(args[1],args[0])))

This is the most complicated MR for MeMo, as it combines dif-
ferent features explained in Section 3.2. MeMo uses && to com-
bine two metamorphic properties expressed in two different
sentences. The first property is conditional, similarly to relation 4.
The second property presents nested calls, with the innermost
being in a different system (Java standard library).

MR 6 corresponds to comment:
/∗∗ . . . Note that if occurrences == 1, this is functionally equivalent

to the call remove(element). ∗/

on ConcurrentHashMultiset and 4 more classes on method re-
move(), and MeMo translates it as follows:

if (args[1] == 1) {
receiverObjectID.remove(args[0]);
receiverObjectClone.remove(args[0],args[1]);
assert(receiverObjectClone.equals(receiverObjectID));

}

This case is similar to relation 4. The first difference is that the
condition is expressed as code inside the comment, rather than
in natural language. The second difference is that the result of
the documented method and the equivalent one are not directly
comparable, since one returns int and the other boolean. Thus,
the invocations must be done on two separate, cloned instances
of the same receiver object to later compare their statuses.

Comparing MeMo and SBES15 results. In comparing MeMo with
SBES15, we take into account that MeMo can only infer meta-
morphic relations that are documented. On the other hand, SBES
may infer properties that are not documented, while missing
those that are. Table 3 summarizes the results for the documented
relations.

As for Documented properties, that is, properties which MeMo
can actually identify and translate, we have:

Both : of the reported 8 equivalences found both by MeMo
and SBES15, five are instances of MR 4. SBES15, however,

A. Blasi, A. Gorla, M.D. Ernst et al. The Journal of Systems & Software 181 (2021) 111041

M

I
t
t
t
p

4

b
m
t
E
2

t
a
c
c
a

P
t
c
t
f
d
t
t
t
d
i
o

d
c

v
r
t

s
a
T
t
a
t

f
i

s

missed the same property on one class (ImmutableListMul-
tiMap). Two other sequences are instances of MR 6, which,
again, actually exists on multiple classes. By relying on the
static information of the Javadoc documentation, MeMo,
can synthesize the property correctly for all the classes
involved. The last sequence, instead, corresponds to the
first part of the composed MR 5. As in the case before,
SBES15 missed some classes for the first past, detecting it
only on one class. The second part of MR 5 was never found
by SBES15.

SBES-only : the reported 5 sequences refer to the same com-
ment: ...so, values().size() == size(). Differently from the
heuristics MeMo uses, this comment directly reports some
code without preceding it with any keyword that could
suggest the presence of an equivalence.

eMo-only : MeMo found 20 relations missed by SBES15. MR 1
(one instance), MR 3 (six instances), and MR 2 (six in-
stances) were never found by SBES15. The others (MR 4,
MR 5, and MR 6) were found only partially by SBES15.

Clearly, not all the MR of the SBES15 dataset are documented.
n total, SBES15 finds 188 true positive equivalent sequences. Of
hese, as per Table 3, 33 are documented: SBES15 found 40% of
hem, while MeMo 85%. This confirms our hypothesis that the
wo techniques complement each other, and the amount of true
ositives increases when they are used in combination.

.4. RQ3: Usefulness of MeMo assertions as test oracles

We measure the amount of mutants (artificial bugs) detected
y test cases augmented with MeMo assertions. This is a proxy
easure of the quality of the oracles (strength of the asser-

ions). We use test suites automatically generated with both
voSuite (Fraser and Arcuri, 2013) and Randoop (Pacheco et al.,
007), and the original developers’ test suite.
To mitigate the effort required to manually exclude false posi-

ives from the mutation analysis, our experiment uses only Guava
s the program under test. Guava represents 1/3 of MeMo’s
orrect translations, with few spurious results (Table 2). Guava
omes with a solid manually-written test suite of 5681 test cases,
challenging competitor for MeMo’s assertions.
The experiment proceeded in three phases:

hase 1: Generating test suites. We retrieved the developers’
est suite from GitHub and Maven2 repositories, and automati-
ally generated test suites with EvoSuite and Randoop. We use
he respective default timeout, that is, 60 s for EvoSuite and 100 s
or Randoop. Randoop and EvoSuite generate different test suites
epending on the initial seed. This paper reports the mean of
he results of three generations with different seeds. Our goal is
o compare the original Randoop and EvoSuite test suites with
he test suites augmented with MeMo oracles. We compare two
ifferent variants of each original test suite: test suites with only
mplicit oracles, and test suites with both implicit and regression
racles.
We discard classes for which the generator either cannot pro-

uce a test suite or does not contain method calls to which MeMo
an attach assertions via Aspects. For example, for class com-
.google.common.collect.ArrayListMultimap EvoSuite
only outputs 5 test cases, none of which covering methods for
which MeMo as assertions. For this evaluation. This leaves ten
classes for EvoSuite and ten for Randoop. The two sets of classes
are not the same. Only Randoop generates tests for com.google.

2 https://mvnrepository.com/artifact/com.google.guava/guava-tests/19.0.
9

collect.Multiset and com.google.collect.Multimap, and
only EvoSuite generates tests for com.google.concurrent
.RateLimiter and com.google.base.CharMatcher.

Phase 2: Enhancing test suites with MeMo assertions. We in-
oked MeMo on the subject classes to infer the metamorphic
elations and insert assertions within all test cases as additional
est oracles.

We executed the augmented test suites, and manually in-
pected each failing test case to discard any Aspect that raises
failure, to avoid biases in mutation analysis (the next phase).
o be clear, no test gets eliminated: We only prevent the at-
achment of faulty Aspects to them. In this way, we eliminate
ssertions leading to failures from the analysis, and we assure
hat subsequent failures are due to assertions that kill mutants.

A few failures are due to equality checks being too strict,
or instance, classes that do not override the default Java equal-
ty implemented by Object.equals(). These are false posi-
tives for our oracles. In some cases, test failures may reveal
information about the implementation that is not explicit from
the documentation. For example, the documentation of method
asList() implemented by most classes of primitives package
in Guava asserts the equivalence of method asList() to the
ame method implemented in class java.util.Arrays, but this
is true only under specific conditions: The implementations pro-
duce the same results when methods are invoked with parameter
vararg, but produce different data structures, albeit with the
same data, when invoked with an array. EvoSuite does not invoke
the methods using vararg parameters, while Randoop does.

Phase 3: Mutation analysis.We generated mutants for the classes
under test with Major (Just et al., 2011). We executed all Randoop
and EvoSuite test cases on the mutants with different oracles:
implicit oracles only, regression oracles, and both implicit and
regression oracles augmented with MeMo oracles. We performed
analogous steps with the developers’ test suite: we first ran the
test suite as-is (i.e., with developers’ manually written assertions),
and then augmented with MeMo assertions.

Our analysis considers only mutants relevant for the studied
assertions: That is, mutations of methods executed by at least one
test case that contains a MeMo assertion.

Fig. 4 presents the results of our experiments. MeMo’s au-
tomatically generated assertions complement both automatically
generated test suites and developers’ test suites.

Improvement over implicit oracles. MeMo’s automatically gener-
ated assertions are much more effective than implicit oracles:
automatically generated test suites reveal many more mutants
when augmented with MeMo assertions.

Improvement over developers’ oracles. Developers’ assertions
alone kill 269 mutants. MeMo kills 40 of these mutants. Most
importantly, 34 times MeMo assertions kill more mutants than
developers’ assertions. A total of 81 mutants survive both devel-
opers’ and MeMo assertions: Some may be equivalent mutants,
some others may be mutants that are not exercised by the test
suite, a few others may be defective mutants that do not compile.

Improvement over regression oracles. EvoSuite and Randoop kill
233 and 230 mutants, respectively, when executed with regres-
sion assertions. 67 and 69 of those mutants are killed equally well
by MeMo oracles, meaning that MeMo assertions are as effective
as EvoSuite and Randoop regression assertions in 29% and 30% of
the cases, respectively. Adding MeMo assertions to regression test
suites brings 25 additional kills to EvoSuite and 35 to Randoop.
Some mutants are not killed by either regression or MeMo oracles

(76 for EvoSuite and 112 for Randoop, on average).

https://mvnrepository.com/artifact/com.google.guava/guava-tests/19.0

A. Blasi, A. Gorla, M.D. Ernst et al. The Journal of Systems & Software 181 (2021) 111041

c
f
I
a
s

A
t
m

.

t
w

t
i
r
t
t
n
t

D

Fig. 4. Improvement in mutants killed with MeMo oracles. Each pair of bars
ompares a test suite without MeMo oracles to one with MeMo oracles. EI stands
or EvoSuite Implicit oracles, ER for EvoSuite Regression oracles, RI for Randoop
mplicit oracles and RR for Randoop Regression oracles. DA means developers’
ssertions, referring to the developers’ test suite. +M indicates augmented test
uites with MeMo oracles.

nalysis of MeMo’s kills. MeMo’s assertions kill not only mutants
hat affect the interface level, as may be expected, but also deeper
ethods under test, as illustrated by the following two examples.
The first example comes from method com.google.common-

primitives.Longs.fromByteArray:

Listing 3: Equivalence relation in
com.google.common.primitives.Longs method summary

/∗∗ Returns the long value whose byte representation is the given 8
bytes, in

big−endian order; equivalent to Longs.fromByteArray(new byte[] {
b1, b2, b3, b4,

b5, b6, b7, b8}). ∗/
static long fromBytes(byte b1, byte b2, byte b3, byte b4, byte b5,

byte b6, byte
b7, byte b8) { . . .

Method fromByteArray calls method fromBytes after spit-
ing the array into single bytes. Major mutates fromByteArray
ith the following mutant:
166:LVR:0:POS:com.google.common.primitives.

Longs@fromByteArray(byte[]):295:0
|==> 1

This mutant is killed by a developer test case augmented with
he assertion that MeMo automatically generates from the MR
nformally described in Listing 3: Returns the long value whose byte
epresentation is the given 8 bytes, in big-endian order; equivalent
o Longs.fromByteArray. The same test case does not, however, kill
he mutant without MeMo’s oracles. We observe that the bug is
ot a simple intra-method issue, but involves the invocation of
wo methods.

The second example comes from com.google.common.math.
oubleMath, a class with many dependencies. Major mutates

both the class itself and its dependencies. In particular, Ma-
jor seeds several bugs into class com.google.common.math-
.DoubleUtils.

MeMo correctly identifies the MR informally described in the
comment of method DoubleMath:
10
Listing 4: Equivalence relation in
com.google.common.math.DoubleMat method summary

/∗∗ . . . This is equivalent to, but not necessarily implemented as,
the

expression !Double.isNaN(x) && !Double.isInfinite(x) && x == Math.
rint(x). ∗/

public static boolean isMathematicalInteger(double x) { . . .

and produces an executable assertion. Method isMathemat-
icalInteger invokes some methods of class DoubleUtils,
such as isFinite(double). Major seeds bugs in the body of
the methods invoked in isMathematicalInteger leading to
several mutants like:

187:ROR:<=(int,int):==(int,int):com.google.common.math.
DoubleUtils@isFinite(double):75:getExponent(d)

<= MAX_EXPONENT |==> getExponent(d) == MAX_EXPONENT

that successfully get killed by MeMo’s assertion derived from
Listing 4.

These two examples illustrate how MeMo’s assertions can kill
mutants that alter both the interfaces and the intra-methods calls,
even ones that may survive developers’ oracles.

We conclude our analysis of MeMo’s kills, with some data
about the effectiveness of MeMo’s oracles for different kinds
of mutations. We inspected the mutants that tests do not kill
with either regression or developers’ oracles alone, but kill with
MeMo’s assertions, and classified them according to the mutation
operators. We observe that MeMo is particularly effective in
killing mutants generated with LVR (Literal Value Replacement)
and OR (Operator replacement) mutation operators,3 which con-
stitute 80% of MeMo’s mutants killing. The remaining 20% are
mutants generated with EVR (Expression Value Replacement) and
STD (Statement deletion) mutation operators.

5. Threats to validity

The manually-written ground truth may be prone to human
error. The translations targets nine different Java projects, coming
from different teams and companies to avoid overfitting the
capabilities of the translator on specific styles of comment.

The projects selected to extract the MR finder equivalence
phrases might not contain all the possible types of metamorphic
properties that can be expressed in Javadoc comments. In an
attempt to generalize as much as possible, we labeled more than
four thousand sentences belonging to seven different projects
from diverse ecosystems (Google, Apache, Eclipse), and then eval-
uated the same features on four more projects from yet different
ecosystems. The sentences might still not represent all the pos-
sible ways MRs are expressed in comments: MeMo’s MR Finder
semantic expansion aims to address this challenge. Manual la-
beling sentences can be prone to human error. However, the
high percentage of correct translations compared the relatively
low number of missing and spurious translations indicates that
possible errors are limited.

6. Related work

Test oracles from metamorphic relations. The very first intuition
of exploiting what we today call metamorphic properties is found
in the work of Davis and Weyuker (1981) and Weyuker (1982).
The authors proposed the idea of a pseudo-oracle to test pro-
grams for which a testing oracle is not available (for example,
because developers have only a vague idea of the correct result).
Essentially, a pseudo-oracle is an independent copy of the original
program; it is written in a different way, but according to the

3 http://mutation-testing.org/doc/major.pdf.

http://mutation-testing.org/doc/major.pdf

A. Blasi, A. Gorla, M.D. Ernst et al. The Journal of Systems & Software 181 (2021) 111041

s
v
t
I
m
a
w
T
t
t
a
e
e
X
e
2
a

t
(
a
s
t
t
c
c
p

p
s
b
t
f
t
l
e
p

O
d
k
d
f
m
k
o
d

J
i
(
p
(
a
l
v
a
M
r
a
n
w
e
c
a
a
l

A
t
s
2
u
h
E
a
t
s
n
2
a
R
G
H
f
t
o

7

s
J
s
G
P
r
u
r
m
m
l
w
l
b
o

p
g
f
M
t
t
a
t
8
t
u
o
o
M
t
o

a

D

c

ame specification. When the program and its independently de-
eloped copy are executed on the same inputs, the tester can infer
he correctness of the original program if their outputs coincide.
t is however with the work of Chen et al. (1998) that the term
etamorphic testing is introduced. The authors described the idea
s an approach to derive new test cases from other existing ones,
ith the aim to uncover errors that exist in similar applications.
he same authors later defined the concept of metamorphic rela-
ions, used to derive the new test cases (Chen et al., 2003). From
hat moment on, metamorphic testing started gaining popularity,
nd by today it has been applied in different contexts (Segura
t al., 2016; Chen et al., 2018), including debuggers (Tolksdorf
t al., 2019), machine learning algorithms (Murphy et al., 2008;
ie et al., 2011; Xu et al., 2018), optimization programs (Chen
t al., 2012; Merkel et al., 2011), image processing (Jameel et al.,
017), web search engines (Chen et al., 2012; Zhou et al., 2012),
nd embedded software (Chen et al., 2012; Kuo et al., 2011).
Approaches to automatically infer metamorphic relations aim

o reduce the effort required to derive them manually. Kanewala
2014) proposed the first attempt to automatically infer MRs, by
pplying machine learning prediction models in the context of
cientific software. Troya et al. (2018) implemented an approach
o automatically infer likely MRs for model transformations, in
he context of Model-Driven Engineering. Xiang and others re-
ently proposed an approach to combine simple MRs to derive
omplex and efficient MRs (Xiang et al., 2019) in the context of
rograms with numerical input values only.
SBES (Goffi et al., 2014), the technique to which we com-

are, automatically derives likely equivalent method calls in Java
ystems, useful in the scope of metamorphic testing. It is a search-
ased technique that executes multiple times all the methods in
he search space to first find candidate properties, and then con-
irm they hold. Other techniques can infer metamorphic proper-
ies dynamically for the use in specific domains (such as machine
earning algorithms Su et al., 2015 and numerical programs Zhang
t al., 2019), or dynamically infer specific kind of metamorphic
roperties (such as polynomial MP Zhang et al., 2014).

racles from natural language artifacts. Some previous research
erives via test oracles via natural language processing to some
ind of natural language documentation of the software un-
er test, although to the best of our knowledge, MeMo is the
irst to discover and translate metamorphic relations. It is worth
entioning that Monperrus et al. (2012), in their taxonomy of
nowledge embedded in API documents, report the existence
f ‘‘Alternative directives’’, which are a subset of the properties
iscovered by MeMo.
Similarly to MeMo, other work derives test oracles from

avadoc tags (@param, @return, @throws). Such work includes
nference of assertions about nullness of parameters by Tan et al.
2012) and derivation of executable specifications (preconditions,
ost-conditions, and exceptional post-condition) by Goffi et al.
2016) and Blasi et al. (2018). Motwani and Brun (2019) later
pplied the same ideas to the documentation of the JavaScript
anguage. Differently from MeMo, all these approaches take ad-
antage of structured natural language; none of them attempts to
nalyze more complex, unstructured text. A distinctive feature of
eMo is that it infers assertions from unstructured text, without

equiring the implicit information encoded in Javadoc tags, and
s such takes advantage of useful information that these tech-
iques cannot process to generate useful oracles. Pandita et al.’s
ork analyzes API documents to generate code contracts (Pandita
t al., 2012), and discovers temporal constraints using a ML
lassifier (Pandita et al., 2016). Differently from Pandita et al.’s
pproaches, MeMo infers test oracles in the form of executable
ssertions, and focuses on the discovery of metamorphic relations

everaging NLP and word embeddings. t

11
utomatically generated test oracles. Several techniques attempt
o automatically derive test oracles. The main approaches in the
tate of the art generate regression oracles (Fraser and Arcuri,
013), taking advantage of prevision versions of the program
nder test. Other techniques generate oracles according to some
euristics (Csallner and Smaragdakis, 2004, 2005; Pacheco and
rnst, 2005; Pacheco et al., 2007; Ma et al., 2015), for example
sserting that a NullPointerException without a null input is likely
o indicate a bug. Of course, oracles can be derived from formal
pecifications and similar artifacts. It is worth mentioning tech-
iques that exploit algebraic specifications (Antoy and Hamlet,
000; Gannon et al., 1981; Doong and Frankl, 1994), assertions
nd contracts (Araujo et al., 2011; Cheon, 2007; Meyer, 1988;
osenblum, 1995; Taylor, 1983), context-free grammars (Day and
annon, 1985), and finite state machines (Fujiwara et al., 1991).
owever, approaches like ours that exploit natural language arti-
acts pose a further challenge, since they have to deal with the
ranslation of a non-formal, non-standard specification into an
racle.

. Conclusions

MeMo derives metamorphic relations from natural language
pecification. MeMo generates Java executable assertions from
avadoc summaries that can act as oracles in the context of
oftware testing. Differently from previous work (Tan et al., 2012;
offi et al., 2016; Blasi et al., 2018; Motwani and Brun, 2019;
andita et al., 2012), MeMo focuses on equivalent metamorphic
elations and is not limited to semi-structured text, but analyzes
nstructured natural language text, thus facing the challenge of
ecognizing the right topic of a piece of text. MeMo works by
eans of two main components, a MR finder that recognizes
etamorphic properties inside Javadoc summaries, and a trans-

ator that produces executable Java assertions corresponding to
hat is expressed in the comment. MeMo properties are not

imited in the scope of the unit under test, but potentially involve
roader scopes such as the whole system under test or even units
f external dependencies.
MeMo proves to be accurate in synthesizing metamorphic

roperties, with a precision of 91% and a recall of 69% on a
round truth of 281 expected Java specifications. MeMo can in-
er specifications that the state of the art (Goffi et al., 2014;
attavelli et al., 2015) cannot discover. MeMo assertions prove

o be useful when applied to testing, by killing more mutants
han implicit oracles, regression oracles and developer-written
ssertions. Further improvements for MeMo are possible. While
he translator component is fairly precise, its recall suffers from
1 missing translations. As explained in Section 4, many missing
ranslations could only be addressed with a relatively advanced
nderstanding of the natural language. Also, the equality checks
f the executor component could be tailored on the specific
bjects’ fields, to make the aspects more reliable. In general,
eMo may benefit from special handling of peculiar implemen-

ation cases, such as when comparing computations performed
n varargs rather than on arrays (as explained in Section 4).
MeMo is open source and available at https://github.com/

riannab/MeMo

eclaration of competing interest

The authors declare that they have no known competing finan-
ial interests or personal relationships that could have appeared

o influence the work reported in this paper.

https://github.com/ariannab/MeMo
https://github.com/ariannab/MeMo
https://github.com/ariannab/MeMo

A. Blasi, A. Gorla, M.D. Ernst et al. The Journal of Systems & Software 181 (2021) 111041

A

A
p

R

A

A

B

B

B

C

C

C

C

C

C

C

C

C

C

C

D

D

D

F

F

G

G

cknowledgment

This work is partially supported by the Swiss SNF project
STERIx: Automatic System TEsting of InteRactive software ap-
lications (SNF 200021_178742).

eferences

ntoy, Sergio, Hamlet, Dick, 2000. Automatically checking an implementation
against its formal specification. IEEE Trans. Softw. Eng. 26 (1), 55–69, 2000.

raujo, Wladimir, Briand, Lionel C., Labiche, Yvan, 2011. Enabling the runtime
assertion checking of concurrent contracts for the java modeling language.
In: Proceedings of the International Conference on Software Engineering
(ICSE ’11), pp. 786–795.

alcer, Marc J., Hasling, William M., Ostrand, Thomas J., 1989. Automatic
generation of test scripts from formal test specifications. In: Proceedings of
the Symposium on Software Testing, Analysis, and Verification (TAV3 ’89).
ACM, pp. 210–218.

arr, Earl T., Harman, Mark, McMinn, Phi., Shahbaz, Muzammil, Yoo, Shin, 2015.
The oracle problem in software testing: A survey. IEEE Trans. Softw. Eng. 41
(5), 507–525, 2015.

lasi, Arianna, Goffi, Alberto, Kuznetsov, Konstantin, Gorla, Alessandra,
Ernst, Michael D., Pezzè, Mauro, 2018. Translating code comments to pro-
cedure specifications. In: Proceedings of the International Symposium on
Software Testing and Analysis (ISSTA ’18). ACM.

arzaniga, Antonio, Gorla, Alessandra, Mattavelli, Andrea, Pezzè, Mauro,
Perino, Nicolò, 2013. Automatic recovery from runtime failures. In: Proceed-
ings of the International Conference on Software Engineering (ICSE ’13). IEEE
Computer Society, pp. 782–791.

arzaniga, Antonio, Gorla, Alessandra, Perino, Nicolò, Pezzè, Mauro, 2010. Auto-
matic workarounds for web applications. In: Proceedings of the ACM SIGSOFT
International Symposium on Foundations of Software Engineering (FSE ’10).
ACM, pp. 237–246.

arzaniga, Antonio, Gorla, Alessandra, Perino, Nicolò, Pezzè, Mauro, 2015. Auto-
matic workarounds: Exploiting the intrinsic redundancy of web applications.
ACM Trans. Softw. Eng. Methodol. 24 (3), 16, 2015.

arzaniga, Antonio., Gorla, Alessandra., Pezzè, Mauro., 2009. Handling software
faults with redundancy. In: de Lemos, R., Fabre, J., Gacek, C., Gadducci, F., ter
Beek, M. (Eds.), Architecting Dependable Systems VI. Springer, pp. 148–171.

hen, Tsong Y., Cheung, Shing-Chi, Yiu, Shiu Ming, 1998. Metamorphic Testing: A
New Approach for Generating Next Test Cases. Technical Report, Department
of Computer Science, Hong Kong University of Science and Technology.

hen, Tsong Yueh, Kuo, Fei-Ching, Liu, Huai, Poon, Pak-Lok, Towey, Dave, Tse, TH,
Zhou, Zhi Quan, 2018. Metamorphic testing: A review of challenges and
opportunities. ACM Comput. Surv. 51 (1), 4, 2018.

hen, Tsong Yueh, Kuo, Fei-Ching, Towey, Dave, Zhou, Zhi Quan, 2012.
Metamorphic testing: Applications and integration with other methods:
Tutorial synopsis. In: Proceedings of the International Conference on Quality
Software. IEEE Computer Society, pp. 285–288.

hen, Tsong Y., Kuo, F.-C., Tse, T.H., Zhou, Zhi Quan, 2003. Metamorphic
testing and beyond. In: International Workshop on Software Technology and
Engineering Practice (STEP ’03). IEEE Computer Society, pp. 94–100.

heon, Yoonsik, 2007. Abstraction in assertion-based test oracles. In: Proceedings
of the International Conference on Quality Software (QSIC ’07), pp. 410–414.

sallner, Christoph, Smaragdakis, Yannis, 2004. Jcrasher: an automatic robustness
tester for java. Softw. - Pract. Exp. 34 (11), 1025–1050, 2004.

sallner, Christoph, Smaragdakis, Yannis, 2005. Check ’n’ crash: Combining static
checking and testing. In: ICSE 2005: Proceedings of the 27th International
Conference on Software Engineering. St. Louis, MO, USA, pp. 422–431.

avis, Martin D., Weyuker, Elaine J., 1981. Pseudo-oracles for non-testable
programs. In: Proceedings of the ACM ’81 Conference (ACM ’81). ACM, pp.
254–257.

ay, J.D., Gannon, J.D., 1985. A test oracle based on formal specifications. In:
Proceedings of the Conference on Software Development Tools, Techniques,
and Alternatives (SOFTAIR ’85), pp. 126–130.

oong, Roong-Ko, Frankl, Phyllis G., 1994. The ASTOOT approach to testing
object-oriented programs. ACM Trans. Softw. Eng. Methodol. 3 (2), 101–130,
1994.

raser, Gordon, Arcuri, Andrea, 2013. Whole test suite generation. IEEE Trans.
Softw. Eng. 39 (2), 276–291, 2013.

ujiwara, Susumu, Bochmann, Gregor von, Khendek, Ferhat, Amalou, Mokhtar,
Ghedamsi, Abderrazak, 1991. Test selection based on finite state models. IEEE
Trans. Softw. Eng. 17 (6), 591–603, 1991.

annon, John, McMullin, Paul, Hamlet, Richard, 1981. Data abstraction, imple-
mentation, specification, and testing. ACM Trans. Program. Lang. Syst. 3 (3),
211–223, 1981.

offi, Alberto, Gorla, Alessandra, Ernst, Michael D., Pezzè, Mauro, 2016. Auto-
matic generation of oracles for exceptional behaviors. In: Proceedings of the
International Symposium on Software Testing and Analysis (ISSTA ’16). ACM,
pp. 213–224.
12
Goffi, Alberto, Gorla, Alessandra, Mattavelli, Andrea, Pezzè, Mauro, Tonella, Paolo,
2014. Search-based synthesis of equivalent method sequences. In: Pro-
ceedings of the ACM SIGSOFT International Symposium on Foundations of
Software Engineering (FSE ’14). ACM, pp. 366–376.

guava, 2020. Google guava project. https://github.com/google/guava.
In memory compiler, 2020. In memory compiler. https://github.com/trung/

InMemoryJavaCompiler.git.
Jameel, Tahir, Lin, Mengxiang, Chao, Liu, 2017. Metamorphic relations based test

oracles for image processing applications. pp. 892–906, 2017.
Just, René, Schweiggert, Franz, Kapfhammer, Gregory M., 2011. MAJOR: An

efficient and extensible tool for mutation analysis in a java compiler.
In: Proceedings of the International Conference on Automated Software
Engineering (ASE ’11). IEEE Computer Society, pp. 612–615.

Kanewala, Upulee, 2014. Techniques for automatic detection of metamorphic re-
lations. In: Proceedings of the International Conference on Software Testing,
Verification and Validation Workshop. IEEE Computer Society, pp. 237–238.

Kanewala, Upulee, Bieman, James M., 2013. Using machine learning techniques
to detect metamorphic relations for programs without test oracles. In: SSRE
(ISSRE ’13). IEEE Computer Society, pp. 1–10.

Kuo, Fei-Ching, Chen, Tsong Yueh, Tam, Wing K., 2011. Testing embedded
software by metamorphic testing: A wireless metering system case study. In:
Proceedings of the Conference on Local Computer Networks. IEEE Computer
Society, pp. 291–294.

Kusner, Matt J., Sun, Yu, Kolkin, Nicholas I., Weinberger, Kilian Q., 2015.
From word embeddings to document distances. In: Proceedings of the
International Conference on International Conference on Machine Learning
(ICML ’15), pp. 957–966.

Liu, Huai, Liu, Xuan, Chen, Tsong Yueh, 2012. A new method for constructing
metamorphic relations. In: Proceedings of the International Conference on
Quality Software (QSIC ’12). IEEE Computer Society, pp. 59–68.

Ma, Lei, Artho, Cyrille, Zhang, Cheng, Sato, Hiroyuki, Gmeiner, Johannes,
Ramler, Rudolf, 2015. GRT: Program-analysis-guided random testing. In: Pro-
ceedings of the International Conference on Automated Software Engineering
(ASE ’15). ACM, pp. 212–223.

Marneffe, Marie-Catherine, MacCartney, Bill, Manning, Christopher, 2006. Gener-
ating typed dependency parses from phrase structure parses. In: Proceedings
of the International Conference on Language Resources and Evaluation (LREC
’06). European Language Resources Association (ELRA), pp. 449–454.

Mattavelli, Andrea, Goffi, Alberto, Gorla, Alessandra, 2015. Synthesis of equiv-
alent method calls in guava. In: Proceedings of the 7th International
Symposium on Search-Based Software Engineering (SSBSE ’15). Springer, pp.
248–254.

Merkel, Robert, Wang, Daoming, Lin, Huimin, Chen, Tsong Yueh, 2011. Auto-
matic verification of optimization algorithms: a case study of a quadratic
assignment problem solver. Int. J. Softw. Eng. Knowl. Eng. 21 (11), 289–307,
2011.

Meyer, Bertrand, 1988. Object-Oriented Software Construction, first ed. Prentice
Hall.

Monperrus, Martin, Eichberg, Michael, Tekes, Elif, Mezini, Mira, 2012. What
should developers be aware of? An empirical study on the directives of API
documentation. Empir. Softw. Eng. 17 (6), 703–737.

Motwani, Manish, Brun, Yuriy, 2019. Automatically generating precise oracles
from structured natural language specifications. In: Proceedings of the
International Conference on Software Engineering. IEEE Computer Society,
pp. 188–199.

Murphy, Christian, Kaiser, Gail E., Hu, Lifeng, 2008. Properties of machine
learning applications for use in metamorphic testing. p. 867, 2008.

Oracle, 2020. Oracle java doocumentation. https://www.oracle.com/technetwork/
java/javase/documentation/index-137868.html#tag.

Pacheco, Carlos, Ernst, Michael D., 2005. Eclat: Automatic generation and
classification of test inputs. In: ECOOP 2005: the 19th European Conference
Object-Oriented Programming, Glasgow, Scotland, pp. 504–527.

Pacheco, Carlos, Lahiri, Shuvendu K., Ernst, Michael D., Ball, Thomas, 2007.
Feedback-directed random test generation. In: Proceedings of the In-
ternational Conference on Software Engineering (ICSE ’07). ACM, pp.
75–84.

Pandita, Rahul, Taneja, Kunal, Williams, Laurie, Tung, Teresa, 2016. ICON:
Inferring temporal constraints from natural language api descriptions. In:
Proceedings of the IEEE International Conference on Software Maintenance
and Evolution. IEEE Computer Society, pp. 378–388.

Pandita, Rahul, Xiao, Xusheng, Zhong, Hao, Xie, Tao, Oney, Stephen, Parad-
kar, Amit, 2012. Inferring method specifications from natural language API
descriptions. In: Proceedings of the International Conference on Software
Engineering (ICSE ’12). IEEE Computer Society, pp. 815–825.

Rosenblum, David S., 1995. A practical approach to programming with assertions.
IEEE Trans. Softw. Eng. 21 (1), 19–31, 1995.

Segura, Sergio, Fraser, Gordon, Sanchez, Ana B., Ruiz-Cortés, Antonio, 2016. A
survey on metamorphic testing. IEEE Trans. Softw. Eng. 42 (9), 805–824.

http://refhub.elsevier.com/S0164-1212(21)00138-2/sb1
http://refhub.elsevier.com/S0164-1212(21)00138-2/sb1
http://refhub.elsevier.com/S0164-1212(21)00138-2/sb1
http://refhub.elsevier.com/S0164-1212(21)00138-2/sb3
http://refhub.elsevier.com/S0164-1212(21)00138-2/sb3
http://refhub.elsevier.com/S0164-1212(21)00138-2/sb3
http://refhub.elsevier.com/S0164-1212(21)00138-2/sb3
http://refhub.elsevier.com/S0164-1212(21)00138-2/sb3
http://refhub.elsevier.com/S0164-1212(21)00138-2/sb3
http://refhub.elsevier.com/S0164-1212(21)00138-2/sb3
http://refhub.elsevier.com/S0164-1212(21)00138-2/sb4
http://refhub.elsevier.com/S0164-1212(21)00138-2/sb4
http://refhub.elsevier.com/S0164-1212(21)00138-2/sb4
http://refhub.elsevier.com/S0164-1212(21)00138-2/sb4
http://refhub.elsevier.com/S0164-1212(21)00138-2/sb4
http://refhub.elsevier.com/S0164-1212(21)00138-2/sb5
http://refhub.elsevier.com/S0164-1212(21)00138-2/sb5
http://refhub.elsevier.com/S0164-1212(21)00138-2/sb5
http://refhub.elsevier.com/S0164-1212(21)00138-2/sb5
http://refhub.elsevier.com/S0164-1212(21)00138-2/sb5
http://refhub.elsevier.com/S0164-1212(21)00138-2/sb5
http://refhub.elsevier.com/S0164-1212(21)00138-2/sb5
http://refhub.elsevier.com/S0164-1212(21)00138-2/sb6
http://refhub.elsevier.com/S0164-1212(21)00138-2/sb6
http://refhub.elsevier.com/S0164-1212(21)00138-2/sb6
http://refhub.elsevier.com/S0164-1212(21)00138-2/sb6
http://refhub.elsevier.com/S0164-1212(21)00138-2/sb6
http://refhub.elsevier.com/S0164-1212(21)00138-2/sb6
http://refhub.elsevier.com/S0164-1212(21)00138-2/sb6
http://refhub.elsevier.com/S0164-1212(21)00138-2/sb7
http://refhub.elsevier.com/S0164-1212(21)00138-2/sb7
http://refhub.elsevier.com/S0164-1212(21)00138-2/sb7
http://refhub.elsevier.com/S0164-1212(21)00138-2/sb7
http://refhub.elsevier.com/S0164-1212(21)00138-2/sb7
http://refhub.elsevier.com/S0164-1212(21)00138-2/sb7
http://refhub.elsevier.com/S0164-1212(21)00138-2/sb7
http://refhub.elsevier.com/S0164-1212(21)00138-2/sb8
http://refhub.elsevier.com/S0164-1212(21)00138-2/sb8
http://refhub.elsevier.com/S0164-1212(21)00138-2/sb8
http://refhub.elsevier.com/S0164-1212(21)00138-2/sb8
http://refhub.elsevier.com/S0164-1212(21)00138-2/sb8
http://refhub.elsevier.com/S0164-1212(21)00138-2/sb9
http://refhub.elsevier.com/S0164-1212(21)00138-2/sb9
http://refhub.elsevier.com/S0164-1212(21)00138-2/sb9
http://refhub.elsevier.com/S0164-1212(21)00138-2/sb9
http://refhub.elsevier.com/S0164-1212(21)00138-2/sb9
http://refhub.elsevier.com/S0164-1212(21)00138-2/sb10
http://refhub.elsevier.com/S0164-1212(21)00138-2/sb10
http://refhub.elsevier.com/S0164-1212(21)00138-2/sb10
http://refhub.elsevier.com/S0164-1212(21)00138-2/sb10
http://refhub.elsevier.com/S0164-1212(21)00138-2/sb10
http://refhub.elsevier.com/S0164-1212(21)00138-2/sb11
http://refhub.elsevier.com/S0164-1212(21)00138-2/sb11
http://refhub.elsevier.com/S0164-1212(21)00138-2/sb11
http://refhub.elsevier.com/S0164-1212(21)00138-2/sb11
http://refhub.elsevier.com/S0164-1212(21)00138-2/sb11
http://refhub.elsevier.com/S0164-1212(21)00138-2/sb12
http://refhub.elsevier.com/S0164-1212(21)00138-2/sb12
http://refhub.elsevier.com/S0164-1212(21)00138-2/sb12
http://refhub.elsevier.com/S0164-1212(21)00138-2/sb12
http://refhub.elsevier.com/S0164-1212(21)00138-2/sb12
http://refhub.elsevier.com/S0164-1212(21)00138-2/sb12
http://refhub.elsevier.com/S0164-1212(21)00138-2/sb12
http://refhub.elsevier.com/S0164-1212(21)00138-2/sb13
http://refhub.elsevier.com/S0164-1212(21)00138-2/sb13
http://refhub.elsevier.com/S0164-1212(21)00138-2/sb13
http://refhub.elsevier.com/S0164-1212(21)00138-2/sb13
http://refhub.elsevier.com/S0164-1212(21)00138-2/sb13
http://refhub.elsevier.com/S0164-1212(21)00138-2/sb15
http://refhub.elsevier.com/S0164-1212(21)00138-2/sb15
http://refhub.elsevier.com/S0164-1212(21)00138-2/sb15
http://refhub.elsevier.com/S0164-1212(21)00138-2/sb17
http://refhub.elsevier.com/S0164-1212(21)00138-2/sb17
http://refhub.elsevier.com/S0164-1212(21)00138-2/sb17
http://refhub.elsevier.com/S0164-1212(21)00138-2/sb17
http://refhub.elsevier.com/S0164-1212(21)00138-2/sb17
http://refhub.elsevier.com/S0164-1212(21)00138-2/sb19
http://refhub.elsevier.com/S0164-1212(21)00138-2/sb19
http://refhub.elsevier.com/S0164-1212(21)00138-2/sb19
http://refhub.elsevier.com/S0164-1212(21)00138-2/sb19
http://refhub.elsevier.com/S0164-1212(21)00138-2/sb19
http://refhub.elsevier.com/S0164-1212(21)00138-2/sb20
http://refhub.elsevier.com/S0164-1212(21)00138-2/sb20
http://refhub.elsevier.com/S0164-1212(21)00138-2/sb20
http://refhub.elsevier.com/S0164-1212(21)00138-2/sb21
http://refhub.elsevier.com/S0164-1212(21)00138-2/sb21
http://refhub.elsevier.com/S0164-1212(21)00138-2/sb21
http://refhub.elsevier.com/S0164-1212(21)00138-2/sb21
http://refhub.elsevier.com/S0164-1212(21)00138-2/sb21
http://refhub.elsevier.com/S0164-1212(21)00138-2/sb22
http://refhub.elsevier.com/S0164-1212(21)00138-2/sb22
http://refhub.elsevier.com/S0164-1212(21)00138-2/sb22
http://refhub.elsevier.com/S0164-1212(21)00138-2/sb22
http://refhub.elsevier.com/S0164-1212(21)00138-2/sb22
http://refhub.elsevier.com/S0164-1212(21)00138-2/sb23
http://refhub.elsevier.com/S0164-1212(21)00138-2/sb23
http://refhub.elsevier.com/S0164-1212(21)00138-2/sb23
http://refhub.elsevier.com/S0164-1212(21)00138-2/sb23
http://refhub.elsevier.com/S0164-1212(21)00138-2/sb23
http://refhub.elsevier.com/S0164-1212(21)00138-2/sb23
http://refhub.elsevier.com/S0164-1212(21)00138-2/sb23
http://refhub.elsevier.com/S0164-1212(21)00138-2/sb24
http://refhub.elsevier.com/S0164-1212(21)00138-2/sb24
http://refhub.elsevier.com/S0164-1212(21)00138-2/sb24
http://refhub.elsevier.com/S0164-1212(21)00138-2/sb24
http://refhub.elsevier.com/S0164-1212(21)00138-2/sb24
http://refhub.elsevier.com/S0164-1212(21)00138-2/sb24
http://refhub.elsevier.com/S0164-1212(21)00138-2/sb24
https://github.com/google/guava
https://github.com/trung/InMemoryJavaCompiler.git
https://github.com/trung/InMemoryJavaCompiler.git
https://github.com/trung/InMemoryJavaCompiler.git
http://refhub.elsevier.com/S0164-1212(21)00138-2/sb27
http://refhub.elsevier.com/S0164-1212(21)00138-2/sb27
http://refhub.elsevier.com/S0164-1212(21)00138-2/sb27
http://refhub.elsevier.com/S0164-1212(21)00138-2/sb28
http://refhub.elsevier.com/S0164-1212(21)00138-2/sb28
http://refhub.elsevier.com/S0164-1212(21)00138-2/sb28
http://refhub.elsevier.com/S0164-1212(21)00138-2/sb28
http://refhub.elsevier.com/S0164-1212(21)00138-2/sb28
http://refhub.elsevier.com/S0164-1212(21)00138-2/sb28
http://refhub.elsevier.com/S0164-1212(21)00138-2/sb28
http://refhub.elsevier.com/S0164-1212(21)00138-2/sb29
http://refhub.elsevier.com/S0164-1212(21)00138-2/sb29
http://refhub.elsevier.com/S0164-1212(21)00138-2/sb29
http://refhub.elsevier.com/S0164-1212(21)00138-2/sb29
http://refhub.elsevier.com/S0164-1212(21)00138-2/sb29
http://refhub.elsevier.com/S0164-1212(21)00138-2/sb30
http://refhub.elsevier.com/S0164-1212(21)00138-2/sb30
http://refhub.elsevier.com/S0164-1212(21)00138-2/sb30
http://refhub.elsevier.com/S0164-1212(21)00138-2/sb30
http://refhub.elsevier.com/S0164-1212(21)00138-2/sb30
http://refhub.elsevier.com/S0164-1212(21)00138-2/sb31
http://refhub.elsevier.com/S0164-1212(21)00138-2/sb31
http://refhub.elsevier.com/S0164-1212(21)00138-2/sb31
http://refhub.elsevier.com/S0164-1212(21)00138-2/sb31
http://refhub.elsevier.com/S0164-1212(21)00138-2/sb31
http://refhub.elsevier.com/S0164-1212(21)00138-2/sb31
http://refhub.elsevier.com/S0164-1212(21)00138-2/sb31
http://refhub.elsevier.com/S0164-1212(21)00138-2/sb33
http://refhub.elsevier.com/S0164-1212(21)00138-2/sb33
http://refhub.elsevier.com/S0164-1212(21)00138-2/sb33
http://refhub.elsevier.com/S0164-1212(21)00138-2/sb33
http://refhub.elsevier.com/S0164-1212(21)00138-2/sb33
http://refhub.elsevier.com/S0164-1212(21)00138-2/sb34
http://refhub.elsevier.com/S0164-1212(21)00138-2/sb34
http://refhub.elsevier.com/S0164-1212(21)00138-2/sb34
http://refhub.elsevier.com/S0164-1212(21)00138-2/sb34
http://refhub.elsevier.com/S0164-1212(21)00138-2/sb34
http://refhub.elsevier.com/S0164-1212(21)00138-2/sb34
http://refhub.elsevier.com/S0164-1212(21)00138-2/sb34
http://refhub.elsevier.com/S0164-1212(21)00138-2/sb35
http://refhub.elsevier.com/S0164-1212(21)00138-2/sb35
http://refhub.elsevier.com/S0164-1212(21)00138-2/sb35
http://refhub.elsevier.com/S0164-1212(21)00138-2/sb35
http://refhub.elsevier.com/S0164-1212(21)00138-2/sb35
http://refhub.elsevier.com/S0164-1212(21)00138-2/sb35
http://refhub.elsevier.com/S0164-1212(21)00138-2/sb35
http://refhub.elsevier.com/S0164-1212(21)00138-2/sb36
http://refhub.elsevier.com/S0164-1212(21)00138-2/sb36
http://refhub.elsevier.com/S0164-1212(21)00138-2/sb36
http://refhub.elsevier.com/S0164-1212(21)00138-2/sb36
http://refhub.elsevier.com/S0164-1212(21)00138-2/sb36
http://refhub.elsevier.com/S0164-1212(21)00138-2/sb36
http://refhub.elsevier.com/S0164-1212(21)00138-2/sb36
http://refhub.elsevier.com/S0164-1212(21)00138-2/sb37
http://refhub.elsevier.com/S0164-1212(21)00138-2/sb37
http://refhub.elsevier.com/S0164-1212(21)00138-2/sb37
http://refhub.elsevier.com/S0164-1212(21)00138-2/sb37
http://refhub.elsevier.com/S0164-1212(21)00138-2/sb37
http://refhub.elsevier.com/S0164-1212(21)00138-2/sb37
http://refhub.elsevier.com/S0164-1212(21)00138-2/sb37
http://refhub.elsevier.com/S0164-1212(21)00138-2/sb38
http://refhub.elsevier.com/S0164-1212(21)00138-2/sb38
http://refhub.elsevier.com/S0164-1212(21)00138-2/sb38
http://refhub.elsevier.com/S0164-1212(21)00138-2/sb39
http://refhub.elsevier.com/S0164-1212(21)00138-2/sb39
http://refhub.elsevier.com/S0164-1212(21)00138-2/sb39
http://refhub.elsevier.com/S0164-1212(21)00138-2/sb39
http://refhub.elsevier.com/S0164-1212(21)00138-2/sb39
http://refhub.elsevier.com/S0164-1212(21)00138-2/sb40
http://refhub.elsevier.com/S0164-1212(21)00138-2/sb40
http://refhub.elsevier.com/S0164-1212(21)00138-2/sb40
http://refhub.elsevier.com/S0164-1212(21)00138-2/sb40
http://refhub.elsevier.com/S0164-1212(21)00138-2/sb40
http://refhub.elsevier.com/S0164-1212(21)00138-2/sb40
http://refhub.elsevier.com/S0164-1212(21)00138-2/sb40
http://refhub.elsevier.com/S0164-1212(21)00138-2/sb41
http://refhub.elsevier.com/S0164-1212(21)00138-2/sb41
http://refhub.elsevier.com/S0164-1212(21)00138-2/sb41
https://www.oracle.com/technetwork/java/javase/documentation/index-137868.html#tag
https://www.oracle.com/technetwork/java/javase/documentation/index-137868.html#tag
https://www.oracle.com/technetwork/java/javase/documentation/index-137868.html#tag
http://refhub.elsevier.com/S0164-1212(21)00138-2/sb44
http://refhub.elsevier.com/S0164-1212(21)00138-2/sb44
http://refhub.elsevier.com/S0164-1212(21)00138-2/sb44
http://refhub.elsevier.com/S0164-1212(21)00138-2/sb44
http://refhub.elsevier.com/S0164-1212(21)00138-2/sb44
http://refhub.elsevier.com/S0164-1212(21)00138-2/sb44
http://refhub.elsevier.com/S0164-1212(21)00138-2/sb44
http://refhub.elsevier.com/S0164-1212(21)00138-2/sb45
http://refhub.elsevier.com/S0164-1212(21)00138-2/sb45
http://refhub.elsevier.com/S0164-1212(21)00138-2/sb45
http://refhub.elsevier.com/S0164-1212(21)00138-2/sb45
http://refhub.elsevier.com/S0164-1212(21)00138-2/sb45
http://refhub.elsevier.com/S0164-1212(21)00138-2/sb45
http://refhub.elsevier.com/S0164-1212(21)00138-2/sb45
http://refhub.elsevier.com/S0164-1212(21)00138-2/sb46
http://refhub.elsevier.com/S0164-1212(21)00138-2/sb46
http://refhub.elsevier.com/S0164-1212(21)00138-2/sb46
http://refhub.elsevier.com/S0164-1212(21)00138-2/sb46
http://refhub.elsevier.com/S0164-1212(21)00138-2/sb46
http://refhub.elsevier.com/S0164-1212(21)00138-2/sb46
http://refhub.elsevier.com/S0164-1212(21)00138-2/sb46
http://refhub.elsevier.com/S0164-1212(21)00138-2/sb47
http://refhub.elsevier.com/S0164-1212(21)00138-2/sb47
http://refhub.elsevier.com/S0164-1212(21)00138-2/sb47
http://refhub.elsevier.com/S0164-1212(21)00138-2/sb48
http://refhub.elsevier.com/S0164-1212(21)00138-2/sb48
http://refhub.elsevier.com/S0164-1212(21)00138-2/sb48

A. Blasi, A. Gorla, M.D. Ernst et al. The Journal of Systems & Software 181 (2021) 111041

S

T

T

T

T

W

X

u, Fang-Hsiang, Bell, Jonathan, Murphy, Christian, Kaiser, Gail E., 2015. Dynamic
inference of likely metamorphic properties to support differential testing.
In: Zhu, Hong, Hao, Dan, Mariani, Leonardo, Subramanyan, Rajesh (Eds.),
Proceedings of the International Workshop on Automation of Software Test.
IEEE Computer Society, pp. 55–59.

an, Shin Hwei, Marinov, Darko, Tan, Lin, Leavens, Gary T., 2012. @tcomment:
Testing javadoc comments to detect comment-code inconsistencies. In: ICST
2012: 5th International Conference on Software Testing, Verification and
Validation. Montreal, Canada, pp. 260–269. http://dx.doi.org/10.1109/ICST.
2012.106.

aylor, Richard N., 1983. An integrated verification and testing environment.
Softw. - Pract. Exp. 13 (8), 697–713, 1983.

olksdorf, Sandro, Lehmann, Daniel, Pradel, Michael, 2019. Interactive metamor-
phic testing of debuggers. In: Proceedings of the International Symposium
on Software Testing and Analysis (ISSTA ’19). ACM, pp. 273–283.

roya, Javier, Segura, Sergio, Ruiz-Cortés, Antonio, 2018. Automated inference of
likely metamorphic relations for model transformations. J. Syst. Softw. 136,
188–208, 2018.

eyuker, Elaine J., 1982. On testing non-testable programs. Comput. J. 25 (4),
465–470.

iang, Zhenglong, Wu, Hongrun, Yu, Fei, 2019. A genetic algorithm-based
approach for composite metamorphic relations construction. Information 10
(12), 392.
13
Xie, Xiaoyuan, Ho, Joshua WK., Murphy, Christian, Kaiser, Gail, Xu, Baowen,
Chen, Tsong Yueh, 2011. Testing and validating machine learning classifiers
by metamorphic testing. J. Syst. Softw. 84 (4), 544–558.

Xu, Liming, Towey, Dave, French, Andrew P., Benford, Steve, Zhou, Zhi Quan,
Chen, Tsong Yueh, 2018. Enhancing supervised classifications with metamor-
phic relations. In: Proceedings of the International Conference on Software
Engineering. ACM, pp. 46–53.

Zhang, Jie, Chen, Junjie, Hao, Dan, Xiong, Yingfei, Xie, Bing, Zhang, Lu, Mei, Hong,
2014. Search-based inference of polynomial metamorphic relations. In:
Crnkovic, Ivica, Chechik, Marsha, Grünbacher, Paul (Eds.), Proceedings of
the International Conference on Automated Software Engineering. ACM, pp.
701–712.

Zhang, Bo, Zhang, Hongyu, Chen, Junjie, Hao, Dan, Moscato, Pablo, 2019.
Automatic discovery and cleansing of numerical metamorphic relations. In:
Proceedings of the IEEE International Conference on Software Maintenance
and Evolution. IEEE Computer Society, pp. 235–245.

Zhou, Zhi Quan, Zhang, ShuJia, Hagenbuchner, Markus, Tse, T.H., Kuo, Fei-Ching,
Chen, Tsong Yueh, 2012. Automated functional testing of online search
services. Softw. Test. Verif. Reliab. 22 (4), 221–243, (6 2012).

http://refhub.elsevier.com/S0164-1212(21)00138-2/sb49
http://refhub.elsevier.com/S0164-1212(21)00138-2/sb49
http://refhub.elsevier.com/S0164-1212(21)00138-2/sb49
http://refhub.elsevier.com/S0164-1212(21)00138-2/sb49
http://refhub.elsevier.com/S0164-1212(21)00138-2/sb49
http://refhub.elsevier.com/S0164-1212(21)00138-2/sb49
http://refhub.elsevier.com/S0164-1212(21)00138-2/sb49
http://refhub.elsevier.com/S0164-1212(21)00138-2/sb49
http://refhub.elsevier.com/S0164-1212(21)00138-2/sb49
http://dx.doi.org/10.1109/ICST.2012.106
http://dx.doi.org/10.1109/ICST.2012.106
http://dx.doi.org/10.1109/ICST.2012.106
http://refhub.elsevier.com/S0164-1212(21)00138-2/sb51
http://refhub.elsevier.com/S0164-1212(21)00138-2/sb51
http://refhub.elsevier.com/S0164-1212(21)00138-2/sb51
http://refhub.elsevier.com/S0164-1212(21)00138-2/sb52
http://refhub.elsevier.com/S0164-1212(21)00138-2/sb52
http://refhub.elsevier.com/S0164-1212(21)00138-2/sb52
http://refhub.elsevier.com/S0164-1212(21)00138-2/sb52
http://refhub.elsevier.com/S0164-1212(21)00138-2/sb52
http://refhub.elsevier.com/S0164-1212(21)00138-2/sb53
http://refhub.elsevier.com/S0164-1212(21)00138-2/sb53
http://refhub.elsevier.com/S0164-1212(21)00138-2/sb53
http://refhub.elsevier.com/S0164-1212(21)00138-2/sb53
http://refhub.elsevier.com/S0164-1212(21)00138-2/sb53
http://refhub.elsevier.com/S0164-1212(21)00138-2/sb54
http://refhub.elsevier.com/S0164-1212(21)00138-2/sb54
http://refhub.elsevier.com/S0164-1212(21)00138-2/sb54
http://refhub.elsevier.com/S0164-1212(21)00138-2/sb55
http://refhub.elsevier.com/S0164-1212(21)00138-2/sb55
http://refhub.elsevier.com/S0164-1212(21)00138-2/sb55
http://refhub.elsevier.com/S0164-1212(21)00138-2/sb55
http://refhub.elsevier.com/S0164-1212(21)00138-2/sb55
http://refhub.elsevier.com/S0164-1212(21)00138-2/sb56
http://refhub.elsevier.com/S0164-1212(21)00138-2/sb56
http://refhub.elsevier.com/S0164-1212(21)00138-2/sb56
http://refhub.elsevier.com/S0164-1212(21)00138-2/sb56
http://refhub.elsevier.com/S0164-1212(21)00138-2/sb56
http://refhub.elsevier.com/S0164-1212(21)00138-2/sb57
http://refhub.elsevier.com/S0164-1212(21)00138-2/sb57
http://refhub.elsevier.com/S0164-1212(21)00138-2/sb57
http://refhub.elsevier.com/S0164-1212(21)00138-2/sb57
http://refhub.elsevier.com/S0164-1212(21)00138-2/sb57
http://refhub.elsevier.com/S0164-1212(21)00138-2/sb57
http://refhub.elsevier.com/S0164-1212(21)00138-2/sb57
http://refhub.elsevier.com/S0164-1212(21)00138-2/sb58
http://refhub.elsevier.com/S0164-1212(21)00138-2/sb58
http://refhub.elsevier.com/S0164-1212(21)00138-2/sb58
http://refhub.elsevier.com/S0164-1212(21)00138-2/sb58
http://refhub.elsevier.com/S0164-1212(21)00138-2/sb58
http://refhub.elsevier.com/S0164-1212(21)00138-2/sb58
http://refhub.elsevier.com/S0164-1212(21)00138-2/sb58
http://refhub.elsevier.com/S0164-1212(21)00138-2/sb58
http://refhub.elsevier.com/S0164-1212(21)00138-2/sb58
http://refhub.elsevier.com/S0164-1212(21)00138-2/sb59
http://refhub.elsevier.com/S0164-1212(21)00138-2/sb59
http://refhub.elsevier.com/S0164-1212(21)00138-2/sb59
http://refhub.elsevier.com/S0164-1212(21)00138-2/sb59
http://refhub.elsevier.com/S0164-1212(21)00138-2/sb59
http://refhub.elsevier.com/S0164-1212(21)00138-2/sb59
http://refhub.elsevier.com/S0164-1212(21)00138-2/sb59
http://refhub.elsevier.com/S0164-1212(21)00138-2/sb60
http://refhub.elsevier.com/S0164-1212(21)00138-2/sb60
http://refhub.elsevier.com/S0164-1212(21)00138-2/sb60
http://refhub.elsevier.com/S0164-1212(21)00138-2/sb60
http://refhub.elsevier.com/S0164-1212(21)00138-2/sb60

	MeMo: Automatically identifying metamorphic relations in Javadoc comments for test automation
	Introduction
	Metamorphic relations in Javadoc
	MeMo
	Comment processor
	MR finder
	Equivalence phrase search
	Semantic expansion of MR equivalence phrases

	Translator
	Resolving symbols
	Parsing non-trivial code fragments
	Translating conditional equivalence

	Executor

	Evaluation
	Experimental setting
	RQ1: Effectiveness of MeMo in translating Javadoc comments
	RQ2: Comparison with SBES
	Comparison of the two techniques
	Experimental comparison between SBES15 and MeMo

	RQ3: Usefulness of MeMo assertions as test oracles

	Threats to validity
	Related work
	Conclusions
	Declaration of competing interest
	Acknowledgment
	References

