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Abstract—Development histories can simplify some software
engineering tasks, but different tasks require different history
granularities. For example, a history that includes every edit
that resulted in compiling code is needed when searching for the
cause of a regression, whereas a history that contains only changes
relevant to a feature is needed for understanding the evolution of
the feature. Unfortunately, today, both manual and automated
history generation result in a single-granularity history. This
paper introduces the concept of multi-grained development history
views and the architecture of Codebase Manipulation, a tool
that automatically records a fine-grained history and manages
its granularity by applying granularity transformations.

I. INTRODUCTION

Most software development uses version control to enable
collaboration and to create a development history. The version
control history is useful for many tasks, such as localizing
changes that caused regression failures, identifying developers
responsible for specific code, and manually examining recent
changes. However, each of these tasks is best performed at
a different granularity of history. For example, finding the
cause of a regression failure is best performed on a history
of all points during development at which the code compiled,
studying fine-grained change patterns [34] or backtracking [46]
requires the finest possible granularity, and understanding how
a bug was fixed requires seeing one snapshot before the bug
repair began and one snapshot after the repair completed.

Unfortunately, today’s approaches generate inflexible histo-
ries, each of which works well for only a subset of software
engineering tasks. Manually-managed histories tend to be
too coarse-grained, while automatically-recorded histories are
too fine-grained. Specifically, manually-managed histories’
coarse granularity causes them to omit many points during
development at which the code compiled, necessary for
localizing the cause of a regression. It is virtually impossible
to manually create the fine-grained history necessary for
studying change patterns [34] and backtracking [46]. And a
manually-managed history is unlikely to contain the snapshots
right before and after a repair. Manually-managed histories
are suboptimal for development tasks not just because they
fail to include important moments during development, but
also because manual version control checkpoints often tangle
changes made for multiple development tasks, such as fixing a
bug and refactoring code. By contrast, automatically-managed
approaches record all developer actions [24], [35], [45] and
lead to fine-grained histories that are well-suited to studying
developer behavior [34], [42] but poorly-suited to manual
examination and for analyses that rely on semantic checkpoints.

Even if a history can be created at an ideal granularity
for a specific task, no single way of recording the history
can satisfy all tasks, because different development tasks
require different granularities. Additionally, development tasks

sometimes require the development history to be restructured.
For example, one way to understand a bug fix is to reordering
the history to move away any unrelated changes that were
performed during the fix, so the developer can focus on the
relevant changes.

We argue that since different development tasks require
accessing the development history at different granularities, and
that the histories produced using today’s methods are inflexible
and offer no tools to change history granularity [24], [35], [45],
a new approach is needed. We posit that the development history
should not be restricted to a single granularity. Instead, the
history should be recorded automatically in a way that allows
its granularity to be transformed into the one best suited for the
particular development task at hand. To that end, we designed
Codebase Manipulation to mitigate the inflexibility of current
development histories by (1) automatically recording a fine-
grained development history and (2) providing the developer
with tools to manipulate the granularity and the order of
the history. Codebase Manipulation allows the developer to
change the history granularity repeatedly, and all its history
manipulations are reversible. This supports development tasks
that require the developer to view the history at multiple
granularities.

This paper presents a set of primitive manipulation trans-
formations that can be combined to manage history granularity.
We demonstrate powerful granularity transformations that can
be composed of these primitives and design an architecture
for a tool that automatically records and manages development
history granularity.

The three history-transforming primitives from which all
necessary transformations can be composed are COLLAPSE
for combining several edits into a single edit, EXPAND for
splitting a previously collapsed edit into its parts, and MOVE for
reordering edits. These primitives are sufficient, for example, to
transform a fine-grained development history into granularities
such as all file-level changes, all compilable code, and all
collocated edits. In turn, this supports activities such as finding
the cause of a regression and separating distinct development
tasks into separate revisions.

The rest of the paper is organized as follows. Section II
formally defines Codebase Manipulation concepts and primitive
transformations. Section III shows that powerful granularity
transformations can be composed of these primitives. Section IV
proposes an architecture for a Codebase Manipulation imple-
mentation. Finally, Section V places our work in the context of
related research, and Section VI summarizes our contributions.

II. DEFINITIONS
Our goal is to improve the usability of development histories
by automatically recording a fine-grained version control history
and by providing automated granularity transformations to make
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the history available at multiple granularities. To that end, we de-
sign Codebase Manipulation. To aid in understanding Codebase
Manipulation’s high-level granularity transformations, we first
explain how Codebase Manipulation represents the development
history and how Codebase Manipulation’s primitives operate
on that history.

This section defines the representation and primitives, and
Section III specifies the high-level granularity transformation
algorithms. For brevity, the definitions ignore file creation and
deletion; they can be extended to handle these actions.

Definition 1 (Snapshot). A snapshot s is a single developer’s
view of a program at a point in time, including the current
contents of unsaved editor buffers. Unsaved editor buffers have
priority: if a file on disk differs from the editor buffer for that
file, the snapshot contains the contents of the editor buffer.

An edit can either be atomic or compound. An atomic edit
encodes replacement of one chunk of text in a file by another
chunk; either the original or the final chunk of text may be
empty. A compound edit is a sequence of edits, each of which
is either atomic or compound. A development history is an edit
that can be applied to the empty snapshot, 0. Two development
histories are views of each other if when applied to 0, they
produce the same snapshot.

Definition 2 (Edit). An edit may be atomic or compound.
(Atomic edit). Let S be the set of all snapshots. An atomic edit
is a 4-tuple r = (filepath, offset, length, text). We treat r as
a function: r: S — S. r(s) is the same as s except that in r(s),
the length characters in s in the file filepath starting at position
offset are replaced by fext.!

(Compound edit). Let S be the set of all snapshots. For
all n > 0, a compound edit is a sequence of edits e =
(e1,e2,...,en). We treat e as a function e: S — S such that

e(s) = en(en1(... (e2(e1(5)))))-

For example, the atomic edit e; = (foo.txt, 0, 0, “public”)
adds the word “public” at the beginning of foo.txt. After that,
the atomic edit e; = <f00.txt, 1, 5, “rivate”> replaces “ublic”
with “rivate”, constructing the word “private”; and after that, the
atomic edit e3 = (foo.txt, 0, 7, “) deletes the word “private”.
Example compound edits are {(e},ez,e3) and (e1, (ez,e3)).

Definition 3 (Applicability). Let S be the set of all snapshots.
An atomic edit r = (filepath, offset, length, text) is applicable
to a snapshot s € S if the file filepath has at least offset + length
characters. A compound edit e = (e, es,...,e,) is applicable
to a snapshot s € S if e1,e3,...,e, can be applied in sequence
to 5. More formally, e is applicable to s iff e; is applicable
to s, ey is applicable to ej(s), ..., and e, is applicable to
en—1(en—2(...(e2(e1(s))))).

If an edit e is not applicable to a snapshot s, e(s) is
undefined.

Definition 4 (Development history). A development history is
a compound edit that is applicable to the empty snapshot, 0.

Definition 5 (Development history view). Let &, i’ be two
development histories. We call /' a view of & (and h a view
of ') iff h(0) =K (0).

1Other definitions for the atomic edit are possible. For example, instead of
using character offsets to indicate where to change the text, an atomic edit
could specify the surrounding text.

There are three history manipulation primitives: COLLAPSE,
EXPAND, and MOVE. Collapse replaces a sequence of edits
by a compound edit that consists of that sequence. Expand is
the reverse of collapse; it replaces a non-top-level compound
edit by the sequence of its component parts. Move moves the
location of an edit within the history. These three primitives are
sufficient to express all of Codebase Manipulation’s high-level
granularity transformations.

Definition 6 (COLLAPSE). For all compound edits e = (e,
., €i_1, €, ..., €j, €ji1, ...), COLLAPSE(e,i, j) returns

<6(), ey €1, <6‘,’, ceey €j>, €jtly +--)-

For example, collapse(<e0, er, ez>,0, )= <<€0, el>, ez>
and collapse({eo, 1, €2, €3, es, e5),{(0,1),(3,5)}) = {{eo,
er), ez, {e3, es, es)).

Definition 7 (EXPAND). For all compound edits e = (eg, ...,
ei—1, €, €1, ...), where ¢; is a compound edit {e;, , e;,,
€iy, -5 €y )» EXPAND(e,i) returns (e, ...
€izy ooy €y Citly - >

Definition 8 (MOVE). For all development histories
h = {ep,ei,...,ei_1,¢€,...,ej,...), move(h,i,j) returns
(eo,el,...,ei_l,e:-H,...,e’jf],eg,ej..) if the resulting
sequence of edits is applicable to an empty snapshot 0;
otherwise, it returns 4 unmodified. The edits between the
reordered edits (ei,...7e’j_1) might need to be modified to
ensure that the resulting history reaches the same snapshot.
The operational transform [41] defines how two adjacent edits
should modified to have their positions swapped.

y €i—15 €ijy €y,

Definition 9 (Granularity transformation). Let H be the set
of all development histories. A granularity transformation is a
function g: H — H that applies a series of collapse, expand,
and move transformations. In other words, g is a sequence of
history manipulation primitives. Granularity transformations
may be parameterized. That is, their domain may be H X P,
where P is a set of parameters, such as starting and ending
edits in the history to which the transformation should apply.

For simplicity of exposition, this paper gives algorithms
for development histories with a single linear branch of
development. Our work generalizes to multiple developers
working concurrently and to using branches.

III. DEVELOPMENT HISTORY GRANULARITY
TRANSFORMATIONS

This section describes powerful granularity transformations
that can be composed of the three primitive transformations,
COLLAPSE, EXPAND, and MOVE. Using the algorithms de-
scribed in this section, a developer who wishes to find the cause
of a regression failure can convert an automatically-recorded
history into one consisting of every compilable edit then use
history bisection on that ideal-granularity history. To manually
inspect how a code element has evolved (e.g., which developer
added a class and which other developers helped repair bugs
related to the class), the developer can convert the history into
one that groups together changes based on the files they affect.
Finally, to better understand a set of changes made over time
to a part of a class, the developer can group all collocated edits
together.

We first define two fundamental granularity transformations,
COLLAPSEBYGROUP and REORDERBYGROUP, and then



show how these two transformations can be serve as a basis
for other transformations. Both COLLAPSEBYGROUP and
REORDERBYGROUP are composed entirely of the primitives
defined in Section II. These transformations allow regrouping
and reordering edits. To direct these transformations, the the
GROUPNAME interface, specifies relationships between edits.
An implementation of this interface map each edit in a history
to a name string; edits that are related map to the same name.
For example, an implementation of GROUPNAME can return
a single name for: all edits related to a feature, all edits to
the same file, or all edits by the same developer. If an edit
is compound and composed of edits with different names,
GROUPNAME throws the multiplegroups exception, which could
prompt the algorithm using GROUPNAME to, for example,
consider these edits individually, fail, or use an alternate
method to classify the compound edit. Some GROUPNAME
implementations may be project-specific (e.g., the same feature
example), while others are general (e.g., the same file or same
developer examples).

GROUPNAME:

Input: history / and edit e in h

Output: The name of the group to which the edit belongs
Throws a multiplegroups exception if e is compound and the edits
making up e belong to more than one group.

In all algorithms that follow that use GROUPNAME, an
implicit preprocessing step is to recursively EXPAND edits for
which GROUPNAME throws the multiplegroups exception.

The COLLAPSEBYGROUP algorithm COLLAPSEs consecu-
tive edits with the same name without reordering the history.
An implementation of the GROUPNAME interface specifies
which consecutive edits should be COLLAPSEd.

COLLAPSEBYGROUP:

Input: history 4, two edit indices start and end in h, and an

implementation of GROUPNAME

Output: A view of h consisting of (eq,..., €sar—1, €as €ps

..), where:

<estart7estart+l g aea>5 eg = <eu+l yeee s€h>’ ey =
<eb+17'~'766>7 s € = <eZ+]7"'7eend>’

o forall é € {eq,ep,ey,...,eq}, for all e,e’ €@,
GROUPNAME(e) = GROUPNAME(¢'), and

e GROUPNAME(e,) # GROUPNAME(e,+1),
GROUPNAME(ep) # GROUPNAME(ep 1),

e'Y7"'7e(l]7eend+la'
° ¢y =

GROUPNAME(e;) # GROUPNAME(e, ).

The REORDERB YGROUP algorithm enables history reorder-
ing. An implementation of the GROUPNAME interface specifies
which edits should be MOVEd to be together.

REORDERBYGROUP:

Input: history A, two edit indices start and end in h, and an
implementation of GROUPNAME

Output: A view of h produced only by MOVEing edits in 4, such
that for all start <1i, j < end, GROUPNAME(¢;) = GROUPNAME(e )
<= for all i < k < j, GROUPNAME(e;) = GROUPNAME(e;).

REORDERBYGROUP and COLLAPSEBYGROUP are power-
ful and enable expressing interesting history transformations,
including producing the following histories:

Compilable code. A compilable code history consists only
of edits that produce compiling snapshots. This history view is
useful for analyses, such as history bisection of test failures,
that only apply to compilable code and benefit from having

access to every compilable snapshot that occurred during
development. GROUPCOMPILABLE COLLAPSES consecutive
edits of a history into a compilable code history. By default,
GROUPCOMPILABLE has a preprocessing step of recursively
EXPANDing all edits, but this step is optional. Without prepro-
cessing, GROUPCOMPILABLE can preserve a custom history
granularity and select only the edits in the history’s current
granularity that produce compiling snapshots.

GROUPCOMPILABLE:

Input: history A, two edit indices start and end in h, and a

procedure COMPILE whose input is a snapshot and output is true

if that snapshot compiles, and false otherwise

Output: A view of h produced only by COLLAPSEing

consecutive edits in A, such that the view consists of

<607 -y Cstart—1 ae(X7eB7e"{7 - €5 Cend+1, - '>7 where:

° SnapShOtS <607 - Cstart—1 -,e()(,> (0)7 <607 -« Cstart—1 aea7eﬁ>(®)’

. <e0,...,emn,l,ea,eﬁ,e%...,em>(®) all COMPILE, and

e For all & € {eq,ep,ey,..-,eq}, there does not exist an edit e € ¢

such that the snapshot (e, ...,e)(0) COMPILEs.

File-level. A file-level change history reorders all of each
file’s edits to be adjacent in the history, and keeps the edits to
different files separate. This history view is useful for manual
inspection and analyses that are limited to individual files.
Many version control systems already provide diff commands
that allow developers to view all the changes made to a single
file, and other commands to view the history of a single file,
e.g., git log filename. GROUPFILES rewrites a history into a
file-level change history.

GROUPFILES:

Input: history 4, and two edit indices start and end in h
Output: A view of h, transformed by REORDERBYGROUP where
the implementation of GROUPNAME returns the file(s) in which
the edit was made.

Collocated edit. A sequence of consecutive edits in a
history is collocated if each edit in the sequence touches at
least one character that is either touched by or is adjacent to
a character touched by a previous edit in the sequence (see
Definition 10). Such a sequence represents a series of edits in
the same place in the codebase. For example, if a developer
types a line of text at the start in a file, edits parts of that line,
types another line right after the first, makes more edits to the
first line, and then moves on either to a distant part of the
file or to another file, the creation of and edits to the first two
lines would all be considered collocated. If the developer later
returned to edit the first two lines after making the changes
elsewhere, these new edits would not be collocated with the
original ones. GROUPCOLLOCATED rewrites a history into
a collocated edit change history, which COLLAPSESs together
maximal sequences of collocated edits (Definition 11). The
preprocessing step of recursively EXPANDing all edits is
optional. This history view is useful when a developer wants
to manually examine a set of changes related to a particular
piece of code, or partially rollback some changes to a piece of
code.

Definition 10 (First maximal sequence of collocated edits).
For all sequences of edits eg,eq,ez,...,e;, the first maximal
sequence of collocated edits is ey,...,e; , such that k is the
largest value such that either k =0 or for all 0 <i <k, there
exists 0 < j < i such that e¢; touches at least one character
touched by e;.



Definition 11 (Grouping of maximal collocated edits).

For all sequences of edits eg,eq,e2,...,e;, the group-
ing of maximal collocated edits is eq,ep,ey,...,eq =
(€0,---r€a),(€at1s---s€b),. .-, (€y+1,-..,€z), such that:
o (ep,...,eq) is the first maximal sequence of collocated
edits of eg,e1,e2,...,¢e;,
e {(e,41,...,ep) is the first maximal sequence of collocated
edits of e441,€442,- .-, €z,
e ..., and
® (eyi1,...,e;) is the first sequence of collocated edits of
€y+1,€y42;--+,€z.
GROUPCOLLOCATED:
Input: history A, and two edit indices start and end in h
Output: A view of & consisting of
(€05 -+ €star—15€as €3, €ys - - - € €end+ 15 - - -)» Where eq,ep, ey, ... e
is the grouping of maximal collocated edits of
Cstart; Cstart+15- -+ Cend-

IV. CODEBASE MANIPULATION ARCHITECTURE

This section describes an architecture for a Codebase
Manipulation implementation for the Eclipse IDE. Codebase
Manipulation automatically records a fine-grained development
history and enables the developer to modify the granularity
of that history and access the resulting history as a typical
version control repository. Codebase Manipulation removes
the burden of manual development history creation, improves
existing historical analyses, and simplifies the implementation
of new historical analyses. Our Codebase Manipulation design
aims to satisfy the following requirements (although evaluating
that our design meets the requirements is outside of the scope
of this paper):

Complete history: Codebase Manipulation records every
developer action (including ones that the developer undoes)
and the resultant code changes.

Easy-to-use history: Codebase Manipulation’s history views
are easy to use by the developer, and by automated analysis
tools.

Unobtrusive recording: Codebase Manipulation does not
interfere with existing development tools. It neither slows down
the developer’s IDE nor affects manually-managed version
control histories.

Codebase Manipulation automatically records the fine-
grained history into a Git repository. Each developer action,
even ones that do not alter the source code, results in a commit,
with the log message storing information on the action itself. Do
do this, Codebase Manipulation is built on top of Solstice [31],
an Eclipse plug-in that enables Codebase Replication [29], [30]
and facilitates IDE interactions (Figure 1). Solstice maintains a
copy of the developer’s code in parallel to the developer’s work,
detects all code changes, and provides Codebase Manipulation
with observer patterns for the changes.

Codebase Manipulation satisfies the complete-history re-
quirement by detecting every developer action within Eclipse
via the Eclipse’s API, and recording all such actions and every
textual change to the source code.

Codebase Manipulation satisfies the easy-to-use require-
ment by providing a history manipulation framework to
automatically transform the recorded development history into
coarser granularities. The converted histories are themselves
Git repositories, which can be inspected manually and interface
with automated tools. Future work will evaluate how well
Codebase Manipulation satisfies this requirement.

File-level changes Compilable code

O [ History manipulation framework |

[s] ]

Fine-grained
°°c El history

Developer’s Codebase

Solstice

IDE Manipulation

A

IDE Developer actions Developer edits

Fig. 1: Codebase Manipulation architecture. Codebase Manipulation
(blue) extends Solstice (black) to automatically maintain the fine-
grained development history, which the manipulation framework
transforms into views of other granularities.

Finally, Codebase Manipulation satisfies the unobtrusive-
recording requirement by storing its fine-grained Git repository
in a unique folder on the filesystem. The developer may
continue to use any version control system, including Git,
to create a manual history in parallel, and tools can access both
the codebase and the manual history. We believe Git to be fast
enough for Codebase Manipulation’s overhead to be negligible.
Future work will evaluate how well Codebase Manipulation
satisfies this requirement.

Codebase Manipulation architecture limitations. Code-
base Manipulation is susceptible to Solstice’s design limitations.
Solstice detects source code changes through the IDE API; if the
source code is changed outside the IDE, Codebase Manipulation
will not record these changes immediately. Developers rarely
edit outside of their preferred IDE, but to mitigate this limitation,
each time the IDE is opened, Codebase Manipulation checks for
any changes to the source code that may have taken place and
creates an edit containing these external changes. Codebase
Manipulation could avoid this limitation by using OS-level
file-system listeners to detect changes to the source code.
However, this approach would prevent Codebase Manipulation
from detecting changes that are not written to the file system,
such as unsaved changes in editor buffers. Future work will
investigate how these external edits affect information retrieval.
Additionally, Solstice detects some developer actions initiated
via tools as typing actions, and therefore Codebase Manipulation
records them as such. For example, Codebase Manipulation
records Eclipse refactorings as a series of text replace operations
to the source code. Thus, Codebase Manipulation is complete in
its recording, but inherits Solstice’s limitations in recognizing
how some actions are initiated. Improvements to Solstice would
be immediately reflected in Codebase Manipulation.

V. RELATED WORK

The typical way to create development histories is by
using version control systems (VCSs), such as Subversion [7],
Mercurial [26], and Git [10]. Unlike Codebase Manipulation,
these systems are manual and the history they provide has a
fixed, typically coarse granularity. Developers may change the
filesystem state to earlier snapshots in the history, and may
compare the differences between two snapshots, but cannot
easily alter the history to suit particular development tasks.



VCSs require the developer to manually create each
snapshot. Developers frequently forget to create snapshots,
or simply do not know the best time to to so. As a result, the
development history is often coarse-grained or incomplete. For
example, a single edit may include changes relevant to multiple
development tasks, and changes developers make but overwrite
before creating a snapshot are lost. This makes VCS histories
suboptimal for many analyses or manual inspection. Codebase
Manipulation addresses these limitations by automatically
recording the history of all edits and providing the framework
for rewriting this history into custom granularities better suited
for development tasks.

Some VCSs allow limited history rewriting [14], [27].
For example, git rebase can collapse, expand, move, and
remove edits [15]. However, these tools are complex, prevent
collaboration because rewriting a shared history prevents
subsequent sharing, and are irreversible and lead to further
history information loss. By contrast, Codebase Manipulation
history transformations are high-level, which hides all internal
complexity, reversible, and keep intact the recorded history’s
integrity to enable collaboration.

Fine-grained version control can simplify merging and
improve collaboration [23], [36]. Development histories can
also be created automatically by recording developer actions.
Fluorite [45] stores fine-grained edits to visualize, replay,
and query the development history, and implements fine-
grained selective undo [5]. Built on Fluorite, Azurite studies
developers’ backtracking patterns [46] and also enables selective
undo [47]. Azurite also introduces change summarization with
collapse levels [44]: changes can be displayed at the raw
(fine-grained) level, parsable by the compiler level, method
level, and type level. Users reported wanting to see changes
at higher-levels than the fine granularity, e.g., at the level
of the method [44], so these collapse levels, similar to
views presented in this paper, are likely to be useful in
practice. Changing between these levels is similar to change
summarization [19], [38], and tools that summarize changes,
or select which changes belong to the same summary (e.g.,
semantic version history slicing [21]) are complementary to
Codebase Manipulation, which enacts collapsing, expanding,
or moving changes. Additionally, choice calculus can be
used to map features to implementation elements [43], which,
again, can select which changes Codebase Manipulation should
collapse. CodingSpectator [35] and CodingTracker record and
use the fine-grained development history to study refactoring
practices [42], development practices [35], and fine-grained
change patterns [34]. Storyteller VCS uses the fine-grained
history to transfer knowledge from an experienced developer
to an inexperienced one [24]. IDE++ [16], [17] maintains
a fine-grained development history to improve development
by analyzing fine-grained code changes. Each of these tools
focuses on particular development tasks or research goals. As
a result, these automatically-recorded fine-grained histories are
inflexible and only suitable for the tasks that require their
particular granularity. By contrast, Codebase Manipulation is
applicable to many tasks because it records a flexible history
whose granularity can be transformed to match each particular
task.

To aid understanding how a history should be rewritten,
heuristics can detect related changes to help identify which
changes in a large edit may need to be untangled. These
heuristics include historical code change patterns [20] and

change couplings, data dependencies, and code metrics[18].
These approaches focus on detangling large edits, which is
a problem of manually-recorded histories. Meanwhile change
distilling can difference changes made in parallel on projects
sharing code [8], which can suggest edit patterns. Codebase Ma-
nipulation provides access to overwritten changes, potentially
improving the effectiveness of these tools.

Visualization is also an important part of history under-
standing and many repository hosting services (e.g., GitHub
and Bitbucket) include visualization tools. Azurite visualizes
edits on a timeline at different collapse levels [44] and research
has argued that visualizations of changes relevant to bug fixes
are useful for understanding the state of development [9].

Development histories simplify some software engineering
tasks. For example, git’s annotate [11] and blame [13] commands
can help understand the context of an earlier change, and
test bisection [12] and delta debugging [48], [49] can help
find the cause of a regression failure. However, the history’s
granularity affects the effectiveness of these tools. Codebase
Manipulation is complementary to these tools and can improve
their effectiveness by transforming the granularity into one most
suitable for the task. Further, because Codebase Manipulation
automatically records every developer edit, it can create richer
history views of more granularities than is possible with
manually-created histories, further improving tool effectiveness.

Mining software repositories research uses development
histories to understand development practices [3], [4], [50],
to localize bugs [33], [22], [32], [37], [28], [25], and to help
collaborative teams work together [1]. However, performing
analyses on manually-recorded histories may lead to incorrect
conclusions [2]. A history created by recording the edits at each
save operation can be used to visualize the development and
create development summaries [6] and to study the evolution of
students’ projects [39]. These repositories are finer-grained and
more complete than manually-created ones and research on such
repositories has, for example, identified a correlation between
static analysis warnings and test failures [40]. The histories
created by Codebase Manipulation are finer-grained, richer in
terms of containing information about developer actions, and
more complete, as they include edits a developer may overwrite
before saving a file. This potentially creates better data sets for
mining software repositories research.

VI. CONTRIBUTIONS

Development histories are necessary for software engineer-
ing tasks, but their inflexible granularity hinders their utility.
We have presented Codebase Manipulation to automatically
record a fine-grained history of all developer actions and
to provide high-level history transformations to rewrite the
history’s granularity to make it more suitable for specific
tasks. We have identified COLLAPSE, EXPAND, and MOVE
as three primitive transformations that can be combined to
construct powerful high-level history transformations and
shown how two such transformations, COLLAPSEBYGROUP
and REORDERBYGROUP, can be used to create histories
of many useful granularities. Finally, we have designed a
Codebase Manipulation architecture that enable it to record a
complete history of development, produce easy-to-use history
views at multiple granularities, and function unobtrusively,
without affective the developer’s workflow. Overall, Codebase
Manipulation shows promise for automating version control
and improving the utility of development histories.
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