

Finding Errors in Multithreaded GUI

Applications

Sai Zhang

University of Washington

Joint work with: Hao Lu, Michael D. Ernst

GUIs are everywhere in modern software

2

Multithreading in GUI applications

3

A GUI Application

UI event 1

UI event 2

UI thread

The Single-GUI-Thread Rule

• Required by:

4

All GUI objects must be exclusively

accessed by the UI thread

A GUI Application UI thread

UI event 1

This non-UI thread must not access any GUI objects

…

Violation of the Single-GUI-Thread rule

• Triggers an “Invalid Thread Access Error”

• May abort the whole application

5

SWT / Eclipse plugin

Swing

Android

public void setText(String) {

 checkThread();

 ...

}

An Example Violation

6

Finished Run Task

public void runTask() {

 Runnable r = new Runnable() {

 public void run() {

 … //do some lengthy computation
 button.setText(“Finished”);

 }

 };

 new thread(r).start();

}

button’s event handler:

Create a new, non-UI thread

Access the button object to set text

Trigger an invalid-thread-access-error

//GUI framework code

Do some computation,

and update the UI.

UI thread

runTask()

a non-UI thread

button.setText(“.”)

checkThread()

Invalid Thread Access Errors in practice

• Pervasive

– One of the top 3 bug categories in SWT [Shanmugam 2010]

– A Google search returns 11800+ entries (bug reports, FAQs, etc.)

– In Eclipse

• 2732 bug reports

• 156 confirmed bugs in 20+ projects, 40+ components

• Severe

– Often aborts the whole application

• Hard to debug

– Non-trivial effort to fix (e.g., 2 years to resolve one bug in Eclipse)

7

Why the Single-GUI-Thread Rule?

• Simpler programming

– No datarace nor deadlock on GUI objects

• Less overhead

– No locking when accessing GUI objects

• A single event queue can dispatch UI events

– Easy event processing, program comprehension, and testing

8

9

Our Error Detection Technique

1. Call graph construction

2. Error detection

3. Error filtering

Warnings

Bugs

False

Positives

A GUI

Application

Static Analyses

-Automated: no need for a test harness

-General: instantiated it for 4 GUI frameworks:

-Scalable: evaluated on 9 applications, over 1.4 M LOC with lib code

-Practical: found 10 bugs with 10 false positives

9 applications

from 4 supported

GUI frameworks

Less than 5 mins

per application

5 hours human

inspection

10 false positives

10 bugs

20 warnings

Existing Solutions for this Problem

• Testing

– Misses many corner cases in practice

• Stylized programming rules

public void runTask() {

 Runnable r = new Runnable() {

 public void run() {

 … //do some lengthy computation

 button.setText(“Finished”);

 }

 };

 new thread(r).start();

}

Display.asyncExec(new Runnable(){

 public void run() {

 button.setText(“Finished”);

 }

};

Requiring Wrappers

- Unnecessary: if already on

the UI thread

- Dangerous: may introduce

new concurrency errors

#Warnings #Bugs

Requiring Wrappers 6393 ?

Our technique 20 10

Results on 9 evaluation programs

UI thread

runTask()

a non-UI thread

setText(“…”)

asyncExec

Outline

• Problem

• Error detection technique

• Implementation

• Experiments

• Related work

• Conclusion and future work

11

Terminology

• UI thread:

 a single special thread to handle UI events

• Non-UI thread: other threads

• UI-accessing method:

 a method whose execution may read or write a GUI object

• Safe UI method:

 message-passing methods to execute code on the UI thread

12

A GUI Application
UI-thread

Non-UI thread

asyncExec(..)

Safe UI method
void runTask() {

 ...

 button.setText(“..”);

}

UI-accessing method

Assumptions

• Single UI thread

• Thread spawning:

– Every non-UI thread is (transitively) spawned by the UI thread

13

A GUI Application
UI-thread

Non-UI thread

Problem formulation: call graph reachability

• An invalid thread access error occurs when:

 a non-UI thread invokes a UI-accessing method

without going through a Safe UI method

• A reachability problem

– Source: non-UI thread spawning

– Sink: UI-accessing method

14

Non-UI thread spawning (source)

UI-accessing method (sink)

Safe UI method

Other method

entry

Thread.start()

button.setText(“”)

Display.asycExec(…)

runTask()

Error detection algorithm

1. Construct a call graph for the tested program

2. Find paths from Thread.start() to UI-accessing methods

without going through a safe UI method

15

Non-UI thread spawning

UI-accessing method

Safe UI method

Other method

A method-call chain as error report

(i.e., Thread.start())

entry

Reflection in Constructing Call Graphs

16

<LinearLayout>

 <Button android:id="@+id/button_id" android:text="A Button" />

</LinearLayout>

...

Button button = (Button) findViewById(“button_id”);

button.setText(“This is a button”);

...

Android Application:

• findViewById does not explicitly construct a button object

• A call graph construction algorithm may:
- fail to conclude the variable button points to a concrete object

- exclude a setText edge to the call graph (that should exist)

- miss 1 bug in our experiments

Reflection-aware call graph construction

• Program transformation: replace reflection calls with explicit

object creation expressions

• Use an off-the-shelf call graph construction algorithm on the

transformed program 17

<LinearLayout>

 <Button android:id="@+id/button_id" android:text="A Button" />

</LinearLayout>

Button button = (Button) findViewById(“button_id”);

button.setText(“This is a button”);

Android Application:

Button button = new Button(null);

button.setText(“This is a button”);

After transformation:

Before transformation:

Annotation support for native methods

• Relationships between native methods and Java methods

 @CalledByNativeMethods(callers = {“init”})

 public void addTypeItem(int id, String label) { …}

- Manually specified

- addTypeItem(int, String) may be called by native method “init”

- Our technique will miss 1 bug without such annotations

18

Filtering the error reports

• A static analysis may report:

– false positives

– redundant warnings with the same error root cause

• A set of error filters to remove likely invalid reports

– 2 sound filters

– 3 heuristic filters

19

2 sound error report filters

– Filter 1: remove syntactically subsumed reports
 a()  b()  thread.start()  d()

 b()  thread.start()  d()

– Filter 2: remove reports containing user-annotated, project-specific methods

20

util.runOnUIMethod(Runnable r)

• Checks whether the current thread is UI thread or not

3 heuristic error report filters

– Filter 3: remove reports containing specific library calls

 e.g., Runtime.shutDown

– Filter 4: remove longer reports with the same “entry node  Thread.start()”

head nodes

 a()  b()  Thread.start()  c()  d()  e()

 a()  b()  Thread.start()  c()  f()

– Filter 5: remove longer reports with the same “thread.start()  ui-accessing

node” tail nodes

 a()  b()  Thread.start()  c()  d()  e()

 f()  Thread.start()  c()  d()  e()

21

Outline

• Problem

• Error detection technique

• Implementation

• Experiments

• Related work

• Conclusion and future work

22

Instantiation for different frameworks

• Need to customize

– program entry points

– UI-accessing methods

– Safe UI methods

23

entry

?

?

?

?

?

?

?

Non-UI thread spawning

(i.e., Thread.start()))

UI-accessing method

Safe UI method

Other method

Thread.start()

Thread.start()

Instantiation details for 4 GUI frameworks

24

Frameworks Entry node UI-accessing

methods

Safe UI method

SWT main() checkWidget /

checkDevice

asyncExec /

syncExec

Eclipse

Plugin

all overridden SWT UI

event handlers

checkWidget /

checkDevice

asyncExec /

syncExec

Swing All overridden Swing UI

event handlers

All methods in GUI

class with 3 exceptions

invokeLater /

invokeAndWait

Android methods in class Activity

+ all overridden Android

UI event handlers

checkThread post /

postDelay

Outline

• Problem

• Error detection technique

• Implementation

• Experiments

• Related work

• Conclusion and future work

25

Subject programs

26

Programs Line of Code

SWT desktop applications

FileBunker 14,237

ArecaBackup 23,226

Eclipse plugins

EclipseRunner 3,101

HundsonEclipse 11,077

Swing applications

S3dropbox 2,353

Sudoku Solver 3,555

Android applications

SGTPuzzler 2,220

Mozilla Firefox 8,577

MyTracks 20,297

Total: 89, 273

Framework size:

1.4 MLOC

Experimental Procedural

• Run the error detection algorithm on each application

– 3 call graph construction algorithms

– 2 configurations for Android applications

• with / without call graph enhancement

 (handle reflection + annotations for native methods)

27

RTA 0-CFA 1-CFA

precision

• Tool performance

– Less than 5 minutes per application

• Manual result inspection

– Spent 5 hours in total to check the output validity

Experimental Results

• More precise call graph  more bugs found

– 1-CFA found the most

28

Call graph algorithm # Warnings #Bugs

RTA with enhancement 250 4

0-CFA with enhancement 136 6

1-CFA with enhancement 20 10

Call graph algorithm # Warnings #Bugs

1-CFA 19 8

1-CFA with enhancement 20 10

• Call graph enhancement are useful (2 more bugs)

• Output 20 warnings, in which 10 are bugs (5 are new)

Comparing graph search strategies

• Our technique uses BFS, compare it with alternatives

29

Strategies #Warnings #Bugs

BFS 20 10

Multi-source BFS 20 8

DFS 19 9

Exhaustive search 0

(explored 5,100,000,000+

non-cyclic paths in an hour)

0

• Observations from our subject programs

– Multi-source BFS omits bugs

– DFS searches deeper, and returns longer paths

 (more likely to be invalid, due to the conservative call graph)

– Exhaustive search is sound but infeasible in practice

Evaluating error filters

30

60610

40440 39753 37414

110 20
0

10000

20000

30000

40000

50000

60000

70000
#Warnings Sound Filters:

 F1: remove lexically subsumed

reports

 F2: remove annotated reports

Heuristic Filters:

 F3: remove specific library calls

 F4: merge common heads

 F5: merge common tails

Experimental conclusion

• Our technique:

– Finds real invalid-thread-access errors

– Detects more errors as the call graph precision increases

– Uses BFS to find more errors than other search strategies

– Reduces likely invalid reports via 5 error filters

31

Outline

• Problem

• Error detection technique

• Implementation

• Experiments

• Related work

• Conclusion and future work

32

Related Work

• Analyzing and testing GUI applications

 Guitar [Memon „00], Stabilizer [Michail „05], Julia [Payet „11] …

 Focus on test generation, error predication, and code verification; but

 does not support finding invalid thread access errors

• Finding bugs in multithreaded programs

 Eraser [Savage „97], Chord [Naik „05], Goldilocks [Elmas „07],

 FastTrack [Flanagan „09] …

 Different goals (dataraces + deadlocks), algorithms, and, abstractions

• Call graph construction algorithms

 RTA [Bacon „97], k-CFA [Might „10], TamiFlex [Bodden „11] …

 Does not support reflection, or need dynamic information

33

Outline

• Problem

• Error detection technique

• Implementation

• Experiments

• Related work

• Conclusion and future work

34

Future Work

• Incorporate dynamic and symbolic analysis

– Filter out infeasible paths

– Identify more entry points

• Automatically fix the invalid-thread-access errors

– Counterexample-guided reasoning

– Heuristic reasoning

• Unit testing of multithreaded GUI applications

– Test abstraction

– Event simulation

35

Contributions

• A general technique to find invalid thread access errors

– Formulate error detection as a call graph reachability problem

• A tool implementation supporting 4 GUI frameworks

– Available at:

 https://guierrordetector.googlecode.com/

• An evaluation on 9 subjects shows its usefulness

36

