Finding Errors in Multithreaded GUI
Applications

Sal Zhang
University of Washington

Joint work with: Hao Lu, Michael D. Ernst

GUIs are everywhere in modern software

® E3 Gowce Remcir Mg Sewen Eroez Bun dnane bep

EXPERIENCE - [o o O

e —— T . *nanngy
v [Apsiation v I JE) R —
[T pr—— . . g RpE————)
Vi public class NEEmleTest {
v i)
> o - : -
v oy
auick Jump To: ([B Pl vold tesiEsistingRescarca()
. Sivg 81 » HoBarle gerhfesscgeProjectyiew class, addl rew gt ser
' B assenquaislAd Ny PYT or SAT taer,
' !
ASHBOAR FILES Y v
Top Folders . narvezistng 'k
v
o b comaranco poseriz e
& Cloud v —
B v o sy
MyDocs -
S —— :
& My Movies ndleTest
o aranco o g
b dsanpes 3
o R Sy Ly o1 50,551 0 T
+ miPug- i Cepenaencies =
e Lo ks Prociams | Comon | Progeres. Seaich g Junn 3 PEORE-" =0
L Finihes s 0129 sacomss
Samsung gala v esicon funs: 212 — -
b e METaINE
- Fipk—" ficom aranco povers2 sttt Funner a4 o Traca
"X
[s——
pugn_cusonzatan i
| O E—— (10

k=] Q=B

Menu item
Menu item
Menu item
Menu item

Menu item

cance

© Contextmenu
Menu item
Menu item
Menuitem

Menu item

Androi A Dialog label

be displayed right here

Multithreading in GUI applications

-

[—

—>

Ul event 1

- —>
Ul event 2

A GUI Application

Thread #1 .= """

3

<-

Thread #2

%

Ul thread

—-—

-
-
-
-

he Single-GUI-Thread Rule

All GUI objects must be exclusively
accessed by the Ul thread

A

(Mac OS X

: g ,]
* Required by: SWT @ = - K)l X Windows

Jav an>=x0I1d 24

((

A GUI Application uithread

, s
?' Ul event 1 Thread #1 <

This non-Ul thread must not access any GUI objects

Violation of the Single-GUI-Thread rule

« Triggers an “Invalid Thread Access Error”
« May abort the whole application

[0 Retacorg 1

An exception has been caught while processing the refactoting Update §0) query’.

Feasor
Inwalid theead access

Chick ‘Undo’ to undo ol successfully executed changes of the current refactorng.
Click ‘Abort’ to abort the cumment refactenng

ndo | [aben | [<<owais]

Jeveabid thread sccess A SO r'l'y!

The application TestAndroid

S - (process test.android) has
stopped unexpectedly. Please

SWT / Eclipse plugin try again.

= o o = Force close
L= [%! Problems | @ Javadoc @) Declaration | &l Console &2 4y Search
SwingErrorbxample [Java Application] D:\Java\jdkl 6.0_27\bin\javaw.exe (Feb 13, 2012 12:3%:29 PM)
at java.awt.EventQueue.acceas$000 (EventQueue.java:84)
4 at jawv 1 {EventQueue.java:602)
3 at (EwventQueue.java:600)
g at j leged (Native Metl

at 3
at 3
at 3
at 3

.doIntersectionPrix

at 3
at I

EventDispatchTl

at 3 wventDispatchTh

rTnzesd Android
Swing :

An Example Violation

Do some computation,
and update the Ul.

ANOOo AHNoO
B " | —— —
. Run Task \. . Finished \:
~— {E) —

-, button’s event handler:
v

public void runTask() {

‘Runnable r = new Runnable () ({
public void run() ({

.. [/ /do some lengthy computation

}
};

button.setText (“"Finished”) ;

new thread(r) .start () ;

Ul thread

runTask ()

\
\

N a non-Ul thread
|

button.setText (“."”)

checkThread ()

3%

Create a new, non-Ul thread

Access the button object to set text

/[IGUI framework code
public void setText (String) ({
checkThread() ;

SR

Trigger an invalid-thread-access-error
6

Invalid Thread Access Errors in practice

 Pervasive
— One of the top 3 bug categories in SWT [Shanmugam 2010]
— A Google search returns 11800+ entries (bug reports, FAQs, etc.)
— In Eclipse
« 2732 bug reports
« 156 confirmed bugs in 20+ projects, 40+ components

¢ Severe
— Often aborts the whole application

 Hard to debug

— Non-trivial effort to fix (e.g., 2 years to resolve one bug in Eclipse)

Why the Single-GUI-Thread Rule?

« Simpler programming
— No datarace nor deadlock on GUI objects

* Less overhead
— No locking when accessing GUI objects

* A single event queue can dispatch Ul events
— Easy event processing, program comprehension, and testing

Our Error Detection Technigue

Static Analyses Bugs |

, 10 bugs
1. Call graph construction

A GUI _ = , 5 hours human
... =] 2. Error detection — | Warnings |}|. :
Application L/_“JIHSDEC“OH
3. Error filtering \ =
False
9 applications Less than 5 mins 20 warnings Positive

from 4 supported per application 10 false positives
GUI frameworks

-Automated: no need for a test harness

-General: instantiated it for 4 GUI frameworks: SWT @]ava & anomol
-Scalable: evaluated on 9 applications, over 1.4 M LOC with lib code
-Practical: found 10 bugs with 10 false positives

Ul thread

Existing Solutions for this Problem runTask ()
. Testing \Aa non-Ul thread
— Misses many corner cases in practice asyncExec_. -
Jpsssr
« Stylized programming rules setText (™..")

public void runTask () ({ o
Runnable r = new Runnable() { Requiring Wrappers

public void run() {
./ /do some lengthy computation public void run() {

button.setText (“"Finished”) = button.setText (“Finished”) ;
};

new thread(r) .start();

Display.asyncExec (new Runnable () {

}

Results on 9 evaluation programs

- Unnecessary: if already on
the Ul thread ———————

- Dangerous: may introduce Requiring Wrappers 6393
New concurrency errors our technique 20 10

Outline

Problem

Error detection technique
Implementation
Experiments

Related work

Conclusion and future work

11

erminology

Ul thread:

a single special thread to handle Ul events

« Non-Ul thread: other threads

« Ul-accessing method:
a method whose execution may read or write a GUI object

« Safe Ul method:

message-passing methods to execute code on the Ul thread

Ul-thread

A GUI Application

- ~. | asyncExec(. .)

.Y
§ Non-Ulthread — === ="="*="7"7"7 r\

Safe Ul method

void runTask() {
Ul-accessing method ~

button.setText (“..”) ; 12

Assumptions

« Single Ul thread

« Thread spawning:
— Every non-Ul thread is (transitively) spawned by the Ul thread

Ul-thread

A GUI Application %

-
-
-
- ’
- -
- -
- -
- -
- -
- -

&
Non-Ul thread

13

O00@®

Problem formulation: call graph reachabillity

 An Iinvalid thread access error occurs when:

a non-Ul thread invokes a Ul-accessing method
without going through a Safe Ul method

* A reachability problem
— Source: non-Ul thread spawning
— Sink: Ul-accessing method

button.setText (V")

Non-Ul thread spawning (source)

Ul-accessing method (sink)

Safe Ul method

runTask ()

Other method 14

O00@®

Error detection algorithm

1. Construct a call graph for the tested program

2. Find paths from Thread.start () to Ul-accessing methods
without going through a safe Ul method

Non-Ul thread spawning
(i.e., Thread.start())

chain as errorrep

A method-c

Ul-accessing method

Safe Ul method

Other method

15

Reflection in Constructing Call Graphs

Android Application:

<LinearLayout>
<Button android:id="@+id/button_id" android:text=""A Button"" />

</LinearLayout>

Button button = (Button) findViewById (“button id”) ;
button.setText (“This is a button”);

 findViewById does not explicitly construct a button object

A call graph construction algorithm may:
- fail to conclude the variable button points to a concrete object
- exclude a setText edge to the call graph (that should exist)
- miss 1 bug in our experiments

16

Reflection-aware call graph construction

Android Application:

<LinearLayout>
<Button android:id="@+id/button_id" android:text=""A Button"" />
</LinearLayout>

Before transformation:

Button button =] (Button) findViewById (“button 1d”) ;}----,

button.setText (“"This is a button”) ;

After transformation:

Button button =] new Button(null), [|€-=——ccmmmmmmmmomcaa-
button.setText (“"This is a button”);

 Program transformation: replace reflection calls with explicit
object creation expressions

« Use an off-the-shelf call graph construction algorithm on the
transformed program

17

Annotation support for native methods

Relationships between native methods and Java methods

@CalledByNativeMethods (callers = {“init”})
public void addTypelItem(int id, String label) { ..}

- Manually specified
- addTypeltem(int, String) may be called by native method “init’
— Our technique will miss 1 bug without such annotations

18

Filtering the error reports

« A static analysis may report:
— false positives
— redundant warnings with the same error root cause

« A set of error filters to remove likely invalid reports
— 2 sound filters
— 3 heuristic filters

19

2 sound error report filters

— Filter 1: remove syntactically subsumed reports

- ——lo) —thread—start{—a—d-()-
b() = thread.start() =2 d()

— Filter 2: remove reports containing user-annotated, project-specific methods

util.runOnUIMethod (Runnable r)

Checks whether the current thread is Ul thread or not

20

3 heuristic error report filters

— Filter 3: remove reports containing specific library calls

€.J., Runtime. shutDown

— Filter 4: remove longer reports with the same “entry node = Thread.start ()’
head nodes

a)—=>b-()—=2 Threadstart{) =22 d0O0—=2 o ()
a() 2 b() 2 Thread.start() =2 c() =2 £()

— Filter 5: remove longer reports with the same “thread.start() =2 ui-accessing
node” tail nodes

alb——=b{) = Thread start{) =2 o} = d(} = ()}
£f() = Thread.start() =2 c() =2 d() =2 e()

21

Outline

Problem

Error detection technique
Implementation
Experiments

Related work

Conclusion and future work

22

O00@®

Instantiation for different frameworks

* Need to customize
— program entry points
— Ul-accessing methods
— Safe Ul methods

Non-Ul thread spawning Thread.start ()
(i.e., Thread.start()))

Ul-accessing method

Safe Ul method

Other method

Thread.start ()

23

Instantiation details for 4 GUI frameworks

Frameworks | Entry node Ul-accessing Safe Ul method
methods

main () checkWidget / asyncExec /
checkDevice syncExec

24

Outline

Problem

Error detection technique
Implementation
Experiments

Related work

Conclusion and future work

25

Subject programs

SWT desktop applications

FileBunker 14,237
ArecaBackup 23,226
Eclipse plugins

EclipseRunner 3,101
HundsonEclipse 11,077
Swing applications

S3dropbox 2,353
Sudoku Solver 3,555
Android applications

SGTPuzzler 2,220
Mozilla Firefox 8,577
MyTracks 20,297

Total: 89, 273

Framework size:
1.4 MLOC

26

Experimental Procedural

* Run the error detection algorithm on each application

— 3 call graph construction algorithms

RTA 0-CFA 1-CFA
>

precision

— 2 configurations for Android applications
« with / without call graph enhancement
(handle reflection + annotations for native methods)

« Tool performance
— Less than 5 minutes per application

« Manual result inspection
— Spent 5 hours in total to check the output validity

27

Experimental Results

« Output 20 warnings, in which 10 are bugs (5 are new)

Call graph algorithm

RTA with enhancement 250 4
0-CFA with enhancement 136 6
1-CFA with enhancement 20 10

« More precise call graph = more bugs found
— 1-CFA found the most

Call graph algorithr

1-CFA 19 8
1-CFA with enhancement 20 10

« Call graph enhancement are useful (2 more bugs)

28

Comparing graph search strategies

* Qur technique uses BFS, compare it with alternatives

Strategies

BFS 20 10

* Observations from our subject programs
— Multi-source BFS omits bugs
— DFS searches deeper, and returns longer paths
(more likely to be invalid, due to the conservative call graph)

— Exhaustive search is sound but infeasible in practice
29

Evaluating error filters

70000 _ _
60610 = #Warnings Sound Filters:
60000 - F1: remove lexically subsumed
reports
50000 -
F2: remove annotated reports
40000 -
Heuristic Filters:
30000 - F3: remove specific library calls
20000 - F4: merge common heads
10000 - F5: merge common tails
O %
<
(\%@
@
&0

30

Experimental conclusion

* Qur technique:

Finds real invalid-thread-access errors

Detects more errors as the call graph precision increases

Uses BFS to find more errors than other search strategies

Reduces likely invalid reports via 5 error filters

31

Outline

Problem

Error detection technique
Implementation
Experiments

Related work

Conclusion and future work

32

Related Work

 Analyzing and testing GUI applications
Guitar [Memon ‘00], Stabilizer [Michail ‘05], Julia [Payet “11] ...

Focus on test generation, error predication, and code verification; but
does not support finding invalid thread access errors

« Finding bugs in multithreaded programs
Eraser [Savage ‘97], Chord [Naik ‘05], Goldilocks [ElImas ‘07],
FastTrack [Flanagan ‘09] ...

Different goals (dataraces + deadlocks), algorithms, and, abstractions

« Call graph construction algorithms
RTA [Bacon ‘97], k-CFA [Might ‘10], TamiFlex [Bodden ‘“11] ...

Does not support reflection, or need dynamic information

33

Outline

Problem

Error detection technique
Implementation
Experiments

Related work

Conclusion and future work

34

Future Work

Incorporate dynamic and symbolic analysis
— Filter out infeasible paths
— ldentify more entry points

Automatically fix the invalid-thread-access errors
— Counterexample-guided reasoning
— Heuristic reasoning

Unit testing of multithreaded GUI applications

— Test abstraction
— Event simulation

35

Contributions

* A general technique to find invalid thread access errors
— Formulate error detection as a call graph reachability problem

« A tool implementation supporting 4 GUI frameworks
— Avalilable at:

%—& https://guierrordetector.googlecode.com/

GUI Error Detector

« An evaluation on 9 subjects shows its usefulness

36

