
Using Declarative Specification to Improve the
Understanding, Extensibility, and Comparison

of Model-Inference Algorithms
Ivan Beschastnikh, Yuriy Brun,Member, IEEE, Jenny Abrahamson,

Michael D. Ernst, Senior Member, IEEE, and Arvind Krishnamurthy

Abstract—It is a staple development practice to log system behavior. Numerous powerful model-inference algorithms have been

proposed to aid developers in log analysis and system understanding. Unfortunately, existing algorithms are typically declared

procedurally, making them difficult to understand, extend, and compare. This paper presents InvariMint, an approach to specify

model-inference algorithms declaratively. We applied the InvariMint declarative approach to two model-inference algorithms. The

evaluation results illustrate that InvariMint (1) leads to new fundamental insights and better understanding of existing algorithms,

(2) simplifies creation of new algorithms, including hybrids that combine or extend existing algorithms, and (3) makes it easy to

compare and contrast previously published algorithms. InvariMint’s declarative approach can outperform procedural implementations.

For example, on a log of 50,000 events, InvariMint’s declarative implementation of the kTails algorithm completes in 12 seconds, while

a procedural implementation completes in 18 minutes. We also found that InvariMint’s declarative version of the Synoptic algorithm can

be over 170 times faster than the procedural implementation.
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1 INTRODUCTION

UNDERSTANDING a system’s behavior is a difficult soft-
ware engineering task that is required when a system

behaves in an unexpected manner or when a developer
must make changes to legacy code. Logging and log analy-
sis of captured system behavior is one of the most ubiqui-
tous, simple, and effective tools for system understanding.
Unfortunately, the size and complexity of logs often exceed
a developer’s ability to navigate and make sense of the cap-
tured data. For example, production systems at Google log
billions of events each day; these are stored for weeks to
help diagnose errant behavior [40].

Model inference is one promising approach to help
users make sense of large and complex executions. The
goal of a model-inference algorithm is to produce a
model, typically a finite state machine (FSM), that accu-
rately and concisely represents the system that produced
the log.

A model-inference algorithm outputs a model that
accepts a formal language. (For an example model, see
Fig. 2b.) The model’s language is smaller than S

�: it is lim-
ited by certain temporal property instances that the algo-
rithm mined from the log. Some of the types of mined
properties may be explicit in the algorithm definition,
whereas others may be implicit and deeply hidden in a pro-
cedural definition.

Numerous model-inference algorithms and correspond-
ing tools already exist to help debug, verify, and validate
systems [1], [6], [7], [8], [18], [19], [21], [25], [26], [28], [29],
[31], [34], [38], [41]. Unfortunately, it is challenging to apply
and build on top of this rich body of work. This is because
model-inference algorithms are primarily expressed proce-
durally—as algorithms that iteratively modify a representa-
tion of the log (e.g., a graph) to infer a model that can be
shown to a user. Such procedural specification obfuscates
the key qualities of the algorithm, which makes procedural
model-inference algorithms difficult to understand, extend,
and compare.

This paper proposes InvariMint, an approach for speci-
fying model-inference algorithms declaratively. InvariMint
has two key features: (1) it explicitly specifies the types of
properties that will be enforced in the final model, and (2) it
decouples property type specification from the mechanism of
property instance mining. A property type is a pattern-level
description of possible temporal relationships between
events, whereas a property instance is a concrete example of
those relationships between specific types of events. An
example of a property type is an FSM that only admits
traces that start with events that come from some set X. An
instance of this property for an input log of TCP packet
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types might be an FSM that admits traces that start with
events that come from the set {syn, syn-ack}.

Fig. 1 overviews the InvariMint approach. With Invari-
Mint, a model-inference algorithm is specified by a set of
property types that the user wants to include in the inferred
model. InvariMint mines instances of these properties from
the log, then composes these instances to produce the final
model. InvariMint represents each property instance as an
FSM, and composes the FSMs using standard FSM opera-
tions (such as FSM union and intersection). Well-under-
stood work on formal languages allows InvariMint to
perform these operations efficiently and to produce mini-
mal models [20].

The InvariMint approach supports model-inference algo-
rithm understanding, extension, and comparison, as des-
cribed in Sections 1.1-1.3.

1.1 Improving Algorithm Understanding

An inferred model represents a combination of certain prop-
erty instances. For most algorithms, it is difficult for a devel-
oper to understand which property types and instances are
true of the input log andwhich are artifacts of the algorithm.

For example, suppose that in an inferred model of an e-
mail client, each login event is immediately followed by a
check mail event—that is, the model satisfies the property
instance “login must be immediately followed by check

mail”. Does that imply that the property instance was true
for all traces in the log? Alternately, it is possible that the
inferred model satisfies the property instance due to the
model-inference process (e.g., because login was immedi-
ately followed by check mailmost of the time).

As another example, suppose that an inferred model
allows for events other than check mail to follow some
login events. Does this mean that at least one trace in the
log exhibited such behavior? Alternately, it is possible that
the log traces always satisfied “login must be immediately
followed by check mail”, but the model-inference algo-
rithm did not preserve that property instance (e.g., because
the algorithm reasons about missing traces and generalizes
the model to accept traces that were not observed).

InvariMint expresses an algorithm in terms of property
types: the inferred model must satisfy instances of the
given property types. With this formulation, algorithms
become more clear, concise, and comprehensible. Further,
this formulation makes evident certain complexities that

may otherwise be hidden, such as non-determinism of
the inference algorithm.

1.2 Supporting Algorithm Extensibility

It is difficult to modify or to compose existing model-infer-
ence algorithms to create interesting hybrids.

For example, suppose that a developer uses two different
inference algorithms: one to model exceptional executions
and another to model executions with sequences of calls
into a specific library. The developer may want to compose
these two algorithms to generate a single model, but com-
bining the existing algorithms may require a complete algo-
rithm redesign.

Further, it is difficult or impossible to exclude a specific
log property instance from a specific invocation of the algo-
rithm. Suppose that in a particular log, every login event
is immediately followed by a check mail event. The devel-
oper may know that other events can follow login events:
the property instance “login must be immediately fol-
lowed by check mail” is an artifact of the log, which
records only a subset of all possible executions. The devel-
oper may want the model-inference algorithm to ignore this
observed, but inaccurate, property instance. However,
because a procedural algorithm definition explicitly speci-
fies neither property types nor instances, such exclusions
may be difficult.

The declarative specification enables algorithm users to
customize the algorithm to suit their needs. With Invari-
Mint, it is easy to add, remove, and modify both (1) the
instances of properties in a specific inference execution (e.g.,
each login event must be followed by a check mail

event), and (2) the types of properties the algorithm pre-
serves (e.g., an event may only follow another event if it did
so at least once in the log). A user can tweak the algorithm
by removing or adding a particular property instance or
type to improve the inferred model, without having to mod-
ify the algorithm implementation. For example, the Synop-
tic [7] algorithm uses the kTails algorithm as a final
(coarsening) step to derive a more compact final model.
InvariMint can express this by simply merging the kTails
property types into the Synoptic specification.

1.3 Simplifying Algorithm Comparison

Previously-published algorithms lack a common form to aid
comparison. Instead, researchers must reason about
pseudocode and work out complex proofs. A declarative
approach specifies a model-inference algorithm in terms of
log property types that the inferred model will satisfy.

InvariMint makes it easier to compare and improve
model-inference algorithms. For example, two algorithms
with incomparable procedural definitions may enforce
overlapping sets of types of properties on their inferred
models. Expressing the algorithms with InvariMint specifi-
cations makes this overlap evident.

1.4 Contributions

This paper makes four contributions.

Contribution 1. We describe InvariMint, a declarative
approach for specifying model-inference algorithms.

Fig. 1. An overview of the InvariMint approach. An InvariMint algorithm is
instantiated by a specification, which consists of a set of property types
and a composition function. The resulting InvariMint algorithm is a
model-inference algorithm—it takes a log of traces as input, and it out-
puts an inferred model that describes the process that generated the
input log. (See Fig. 2 for example input and output.) Internally, the algo-
rithm uses property types to mine property instances, and then it applies
the composition function to the property instances to derive the model.
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InvariMint provides a common language for expressing
model-inference algorithms. This declarative approach pro-
motes algorithm understanding, extension, and comparison.

Contribution 2. We use InvariMint to develop a
declarative specification of kTails [8], which leads to
improved understanding of this previously-pub-
lished, important model-inference algorithm.

From our past experiences with kTails, we know that this
algorithm behaves non-obviously on large log inputs. For
instance, it is neither apparent which states will be merged,
nor what unobserved traces the final kTails-inferred model
will accept. The InvariMint specification represents the
kTails algorithm as a composition of a set of property types,
each of which is easy to inspect to better understand the
characteristics of the final kTails-inferred model.

Contribution 3. We use InvariMint to develop a
declarative specification that approximates the Synop-
tic [7] model-inference algorithm. This leads us to
identify hidden properties in the Synoptic algorithm
and to find overlap in properties between Synoptic
and kTails.

Synoptic is an algorithm constructed with explicit log
property types in mind. Although Synoptic makes certain
property types explicit, we found that its procedural declara-
tion in fact preserves an additional property type. This prop-
erty type does not appear in Synoptic’s list of property types,
and Synoptic’s procedural declaration does not allow this
property instance to be removed, altered, or relaxed. In con-
trast, a declarative specification of Synoptic makes this prop-
erty instance explicit and allows a user to remove all
properties of this type or to select individual instances of this
property for specific log event types to enforce. More impor-
tantly, InvariMint makes the algorithm’s user and developer
explicitly aware of the full set of property types and instances
it enforces. Our declarative specification of Synoptic is an
over-approximation of the procedural Synoptic algorithm1.

Contribution 4.We empirically demonstrate that algo-
rithms expressed declaratively with InvariMint signifi-
cantly outperform the equivalent procedural variants.

As an added benefit, the declarative versions of kTails
and Synoptic with efficient property instance mining greatly
outperform their procedural counterparts and scale linearly
with log size. In benchmark testing on logs with 25K events,
we found that declarative kTails was at least 10� faster than
procedural kTails, and declarative Synoptic was 10� faster
than procedural Synoptic. For larger logs, InvariMint imple-
mentations provide even greater efficiency benefits. For
example, on a log of 50K events, declarative kTails com-
pletes in 12 seconds, while procedural kTails runs in 18
minutes. On a log of the same size, declarative Synoptic
completes in under 1 second, while procedural Synoptic
runs in 170 seconds.

A previous paper introduced InvariMint [5]. This paper
extends the prior work in the following ways: (1) it gives a
formal description of the InvariMint approach (Section 3);
(2) it proves equivalence between the declarative kTails and
procedural kTails algorithms (Section 4.3); (3) it corrects the
specification of the SimpleAlg algorithm (Section 2); (4) it
provides examples of more complex InvariMint speci-
fications and a more detailed description of InvariMint
limitations (Section 7); and (5) it improves the exposition
throughout the paper.

The rest of this paper is structured as follows. Section 2
motivates the declarative approach, and Section 3 formal-
izes the InvariMint specification language (Contribution
1). Sections 4 and 5 present InvariMint specifications of
kTails and Synoptic, respectively (Contributions 2 and 3).
Section 6 empirically evaluates procedural and declara-
tive algorithm specifications (Contribution 4). Section 7
discusses implications of our work. Section 8 places
our work in the context of related research, and Section 9
concludes.

2 SIMPLEALG: A MOTIVATING EXAMPLE

Wewill use SimpleAlg, a simple model-inference algorithm,
to introduce and explain InvariMint concepts.

A model-inference algorithm’s input is a log—a set of
traces of a system’s execution. Each trace is an ordered
sequence of events (elements of a finite alphabet) that occur
during execution. The output of a model-inference algo-
rithm is a model. Algorithms in this paper generate (possi-
bly nondeterministic) FSM models. Fig. 2 shows example
input and output for SimpleAlg.

A model-inference algorithm aims to create a model that
admits all traces in the input log, that is concise, and that
generalizes to traces that are legal but were not observed in
the log. In some cases, these measurements are subjective,
and different model-inference algorithms infer models that
are good for different purposes. This paper does not pro-
pose new model-inference algorithms nor evaluate existing
ones. Instead, our focus is on the specification of the model-
inference algorithms: the description of the process by
which the models are inferred. Our declarative mechanism
for specifying model-inference algorithms will enable peo-
ple to better understand existing algorithms and to create
new ones.

Fig. 2a shows an email client log with two traces. The
event alphabet is {login, check, compose, send, log-
out}. check stands for check mail. Fig. 2b shows the
model SimpleAlg infers from this input log.

Fig. 2. (a) An example log of an email client with two traces. (b) The
model inferred by SimpleAlg (Section 2) for the input log in (a).

1. That is, the InvariMint version of Synoptic outputs a model that
accepts traces that are accepted by all possible models that Synoptic
would return on the same input log, plus additional traces that Synop-
tic models may not include.
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SimpleAlg creates a single “initial” state (labeled s1)
that is the start of every execution, and then generates a
unique state (labeled s2, s3, s4, . . .) for each event type in
the log. Each of these states corresponds to an event and
indicates that the event has occurred immediately prior
to the state.

The example model in Fig. 2b has six states: the initial
state (s1), and one state for each of the five event types —
login (s2), check (s3), compose (s4), send (s5), and
logout (s6).

The ordering of the events in the observed traces
defines the transitions (edges) of a SimpleAlg-generated
model. There is a transition from the state corresponding
to the event type e1 to the state associated with the event
type e2 iff there exists at least once, in some trace in the
input log, an event of type e1 immediately followed by an
event of type e2. That transition is labeled e2. In the email
client example, in trace 2 of the log in Fig. 2a, a compose

event is immediately followed by a send event. There-
fore, the SimpleAlg-generated model in Fig. 2b has a tran-
sition labeled send from state s4 (which corresponds to
compose) to state s5 (which corresponds to send).

The language of a model inferred with SimpleAlg always
contains every trace in the input log. SimpleAlg generalizes
in the following way: if SimpleAlg ever observes an event
of type e1 to be immediately followed by an event of type e2
in the input log, then whenever the system being modeled
produces or consumes an e1-type event, SimpleAlg assumes
that it is legal for the system to then produce or consume an
e2-type event.

Because SimpleAlg merges all log events of the same
type into a single state, the models it generates are com-
pact: There is exactly one state for each event type, plus
the initial state s1. Thus, the model size is independent
of the total number of events in the log. The running
time of SimpleAlg is asymptotically linear in the size of
the log.

Fig. 3 shows the SimpleAlg pseudocode. While the
pseudocode may help someone implement SimpleAlg, it
does not convey the insights we presented above, and it
lacks many of the desirable qualities of an algorithm
description, such as ease of understanding, extensibility,
and the ability to compare to other algorithms. In contrast
to this procedural form, Sections 2.1 and will now cap-
ture the SimpleAlg algorithm declaratively, by specifying
it in terms of temporal properties that relate event instan-
ces in the log. After that, Section 2.3 discusses the benefits
of this declarative specification.

2.1 Decomposing SimpleAlg into
Property Instances

One way of thinking about SimpleAlg is via the set of prop-
erty instances—temporal relationships between events in
the input log—that SimpleAlg implicitly mines from the log
and then uses to build a final FSM model. We propose to
express these individual properties as FSMs, then combine
those FSMs to form the final model.

Fig. 4 shows six FSMs, each of which is a property
instance of the input log in Fig. 2a. Each property instance
FSM accepts each trace in the log; equivalently, the trace is
in the language of each of the FSMs.

We make two important observations about these prop-
erty instances:

� The four property instances in Fig. 4a have a similar
shape—all of them represent the same, more general,
type of property: “event x must be immediately
followed by an event y 2 Y ”. For example, p1 is an
instantiation of this property with the binding b,
where bðxÞ ¼ login and bðY Þ ¼ fcheckg.

� The intersection of the six property instances in Fig. 4
is the model of Fig. 2b. These property instances can
be thought of as a factoring of the SimpleAlg-
generated model.

We can generalize the above observations as follows: (1)
collections of property instances can be described more
abstractly with property types, and (2) FSM operations, such
as intersection, can compose property instance like the ones
in Fig. 4 into models.

The above generalizations allow us to declaratively spec-
ify a model-inference algorithm by specifying (1) the prop-
erty types and (2) the composition process by which
instances of these property types are composed into the
final model. Next, Section uses this declarative approach to
specify SimpleAlg.

2.2 A declarative Specification of SimpleAlg

Using the SimpleAlg property instances from Fig. 4, this
section constructs a declarative InvariMint specification

Fig. 3. Procedural pseudocode for the SimpleAlg algorithm. Fig. 5
declaratively specifies SimpleAlg.
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of SimpleAlg. The first half of the specification describes
the types of property instances that should be mined
from an input log. The second half of the specification
describes how to compose the mined property instances
into the final model. Fig. 1 illustrates how property types
and the composition function make up an InvariMint
specification.

2.2.1 Property Types

We represent a property type as (1) a parameterized FSM
(PFSM) and (2) an IncludeBinding binding evaluator func-
tion. Informally, a PFSM is a FSMwith variable-labeled transi-
tions. The transitions in a PFSM can be instantiated to event
types (denoted with lowercase variables, e.g., x), or sets of
event types (denoted with uppercase variables, e.g., Y ). For
example, p2 in Fig. 4a is an instantiation of the PFSM in Fig. 5a
with the binding b, where bðxÞ ¼ check and bðY Þ ¼
fcheck; logout; composeg. The function IncludeBindingðLog
L;Binding b) determines which bindings of transition varia-
bles to event types in a PFSM are valid. This function is used
tomine property instances from an input log.

A PFSM can be instantiated as many different FSMs, or
property instances, with the variables bound to different
events and sets of events. Given a log and a property type,
InvariMint mines property instances whose corresponding
bindings—the assignment of PFSM variables to event types
and sets of event types—cause IncludeBinding to evaluate
to true. In addition, InvariMint instantiates a property type

at most once for every event type variable in the PFSM, and
in every such instantiation the event type set variables are
instantiated to be maximal.

For example, InvariMint instantiates the PFSM in Fig. 5a
for every choice of x with a maximal value for Y , such that
the resulting property instances must accept every trace in
the log. Section 3.1 describes the binding process more
formally.

For SimpleAlg, there are three property types, shown
as PFSMs in Fig. 5 and IncludeBinding functions in
Fig. 6. In this paper we use linear temporal logic (LTL)
[35] to compactly specify IncludeBinding (see Section 7.2
for examples of other variants). LTL statements use the
operators always (tu), eventually (�), until (U), and next
(�). The SimpleAlg property types can be described as
“event x must be immediately followed by an event
from set Y ”, “traces start with x 2 X”, and “traces end
with x 2 X”. These properties simply specify that every
trace in the log should be accepted by the inferred model
with an additional generalization that if some x was
followed by a y somewhere in the log, then every
instance of x can be followed by a y. These three prop-
erty types are sufficient for a complete declarative speci-
fication of SimpleAlg.

Each of the six property instances in Fig. 4 is an instantia-
tion of one of these three property types. For a different log,
the specific instantiations would differ from those in Fig. 4,
but the property types would be the same.

Fig. 4. Property instances mined by the InvariMint implementation of SimpleAlg from the log in Fig. 2a, based on property types in Figs. 5a, 5b and 5c.

Fig. 5. PFSMs used in the InvariMint specification of SimpleAlg. The PFSMs correspond to the property instances in Fig. 4.
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2.2.2 Composition Function

An InvariMint specification of an algorithm includes not
only property types, but also a composition function for com-
posing the property instances mined from an input log into
a model. For SimpleAlg, the composition function is

Composeðp1; . . . ;pnÞ ¼ Minimizeð\piÞ

InvariMint uses existing FSM intersection and minimiza-
tion algorithms [20] to compose property instances by inter-
secting them and minimizing the result to produce the final
model. The resulting model is compact and accepts exactly
those event sequences that satisfy all of the mined property
instances.

This completes the InvariMint specification of Sim-
pleAlg. Given the SimpleAlg property types and composi-
tion function the InvariMint declarative formulation of
SimpleAlg produces exactly the same model as the proce-
dural implementation (e.g., for the log in Fig. 2a the model
in Fig. 2b is produced).

2.2.3 Other Formulations of SimpleAlg

Note that other InvariMint specifications of SimpleAlg are
possible. For example, Fig. 7 shows an alternative set of
PFSMs to specify SimpleAlg. In particular, the PFSM in
Fig. 7b is an intersection of the PFSMs in Figs. 5b and 5c.
These PFSMs, in combination with a new IncludeBinding
function,2 is a different specification of SimpleAlg. Although
this new specification is different, it describes the same
SimpleAlg algorithm.

2.3 InvariMint Benefits

The declarative specification of SimpleAlg (Figs. 5 and 6)
provides three benefits over the SimpleAlg procedural
pseudocode (Fig. 3):

1) The declarative specification makes clear the key
property types of the final model by decoupling these
property types from themining and composition pro-
cedures, while the pseudocode mixes all three.
InvariMint’s declarative approach makes it easier for

a person to understand which properties of the log
are preserved in themodel, andwhich are not.

2) The declarative specification eases (1) adding new
constraints to the model via defining new property
types, and (2) eliminating constraints from the model
by omitting property instances. For example, if we
do not want login to only be immediately followed
by check, we can simply omit the property instance
p1 in Fig. 4.

3) The declarative specification allows extending Sim-
pleAlg to construct InvariMint specifications for
kTails and Synoptic (as we will show in Sections 4
and 5.1). While the pseudocode for these algorithms
looks completely different from SimpleAlg’s pseudo-
code, the InvariMint declarative specifications reveal
that both kTails and Synoptic share a key property
type (Fig. 5a and its corresponding IncludeBinding
function) with SimpleAlg. The fact that all three
algorithms share this property type is one of the
insights gained from specifying these algorithms
with InvariMint.

Before extending the SimpleAlg specification to kTails
and Synoptic, Section 3 presents the InvariMint declarative
approach formally.

3 THE INVARIMINT APPROACH

InvariMint is an approach—or a common language—for
describing model-inference algorithms, such as SimpleAlg,

Fig. 6. The InvariMint specification of SimpleAlg. We use LTL to compactly specify IncludeBinding. LTL statements use the operators always (tu),
eventually (�), until (U), and next (�).

Fig. 7. Alternative PFSMs to specify SimpleAlg. (a) Identical to the
PFSM in Fig. 5a. (b) A PFSM that captures the “traces start with x 2 X”
property of Fig. 5b and the “traces end with y 2 Y ” property of Fig. 5c in
a single PFSM.

2. The new IncludeBinding function for PFSM in Fig. 7b will merge
the lower two IncludeBinding functions in Fig. 6 by linking their “true”
conditions with a conjunction.
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kTails, and Synoptic. Fig. 1 overviews the InvariMint
approach. Like other model-inference algorithms, an Invari-
Mint algorithm takes as input a log of traces to be modeled,
and outputs a model. We differentiate the concept of an
InvariMint algorithm from an InvariMint specification, which
specifies how an InvariMint algorithm behaves for a partic-
ular log input. An InvariMint specification has two parts:
(1) a set of property types that describe properties to be mined
from the log to derive property instances; and (2) a composition
function that combines the mined property instances into a
final model.

3.1 Property Types

A property type is represented as a parameterized FSM
(PFSM)—an FSM with variable-labeled transitions (e.g.,
Fig. 5a)—and an IncludeBinding binding evaluator function
(e.g., Fig. 6a). Before we formalize property types, we
first define some basic concepts, such as log, trace, event,
and variable.

Definition 1 (Log, trace, and event). The alphabet of events is
a finite alphabet of logging statements a system can produce.
An ordered sequence of events is a trace, and a set of traces is
a log.

Definition 2 (Event variable and event set variable). An
event variable is a variable, or a placeholder, for an event. An
event set variable is a variable for a set of events.

We use lowercase letters to denote event variables and
uppercase letters to denote event set variables. Thus x
could represent any single event, whereas Y could repre-
sent any set of events. Further, when an entity can be
either an event variable or an event set variable, we sim-
ply use variable.

A parameterized FSM (PFSM) is an FSM whose finite
alphabet of transition labels are log events (S) and variables
(Sv)—both event variables and event set variables. The spe-
cial � symbol allows for transitions between PFSM states
without consuming an alphabet symbol.

Definition 3 (Parameterized FSM (PFSM)). A PFSM P is an
FSM, P ¼ hQ;QI;S [ Sv;D; QT i, where:

� Q is a set of states.
� QI � Q is a set of initial states.
� S is a set of events, � 2 S.
� Sv is a finite set of variables.
� D : Q� S [ Sv ! 2Q is a transition relation. If q0 2

Dðq; sÞ, we say that P transitions from q to q0 on s.
� QT � Q is a set of terminal states.

A PFSM can be instantiated as many different FSMs,
with the variables bound to different events and sets of
events. Further, if an event set variable is bound to the
empty set, the transition labeled with this empty set can-
not take place.

Definition 4 (Binding). Let E be an alphabet of events such that
� =2 E. Let Sv be a finite set of variables. Then, a function

b : Sv ! S0
v is a binding if for all variables sv 2 Sv, if sv is an

event variable, then bðsvÞ 2 E, and if sv is an event set vari-
able, then bðsvÞ � E.

Note that a binding may bind multiple variables in Sv to
the same element, or set of elements, in E.

Given an input log, the IncludeBinding function deter-
mines whether a property instance, with a specific binding
of variables to event types or sets of event types in the corre-
sponding PFSM, is valid and should be included in the
composition.

Definition 5 (Binding evaluator function). Let L be the set of
all possible logs, and let B be the set of all possible bindings for
a PFSM P . Then the binding evaluator function Include
BindingP : L � B ! ftrue, falseg.

We drop the P when the PFSM corresponding to the bind-
ing evaluator function is clear from the context.

For example, the version of IncludeBinding in Fig. 6a
returns true for event a and event set B if a was observed to
only be immediately followed by the events from B across
all traces in the log—that is, there is a trace for every b 2 B
and there is a b 2 B for every trace such that eventually (�),
if we observe an a event, then we will observe a b as the
next (�) event. This function is the binding evaluator for
the PFSM in Fig. 5a.

Fig. 4a lists the property instances for which the
IncludeBinding function in Fig. 6a returns true on the log in
Fig. 2a (with event set variables assigned to maximal sets).
For instance, the property instance p1 in Fig. 4a is included
because there is a binding b, where bðxÞ ¼ login and
bðY Þ ¼ fcheckg, for which IncludeBinding returns true.

A property type is a PFSM and a corresponding
IncludeBinding function. The PFSM captures the “shape” of
the property while the IncludeBinding function determines
when and how this shape should be instantiated for a given
log input. The explicit separation of the PFSM from the
IncludeBinding function makes the specification language
more expressive. For example, the shape may describe a
temporal constraint “an event x must be immediately fol-
lowed by an event y 2 Y ” (PFSM in Fig. 5a). The Include
Binding function can then be used to specify which x and Y
can be used in an instantiation. One possibility is that
IncludeBinding chooses a Y that is a subset of the events
that immediately follow event x in the observed traces (e.g.,
selecting a Y that contains the events that most frequently
and immediately follow x). Another possibility is that the
IncludeBinding function allow a Y that includes events that
never immediately follow x in the observed traces, building
an inverse model of the input observations (i.e., model that
accepts those traces that did not appear in the log). Yet
another possibility is that the IncludeBinding function is
probabilistic and returns true for a log and a binding if a
condition is satisfied by most (e.g., 99 percent) of the traces.
Section 7.2 discusses this example in more detail.

A property instance is an FSM over an alphabet of events.
For a property type T and an input log, a property instance
for T is an FSM that is an instantiation of T ’s PFSM with a
binding that is accepted by T ’s IncludeBinding function.

Definition 6 (Property instance for a property type). Let E
be an alphabet of events such that � =2 E, and let L be a log over
E. Let T be a property type with a PFSM P ¼ hQ;QI;S [
Sv;D; QT i and an IncludeBinding binding evaluator
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function. Then the FSM p ¼ hQ;QI;S [ S0
v;D

0; QT i is a
property instance of property type T iff all of the following
hold:

� 9 a binding b : Sv ! S0
v, such that Include

BindingðL; bÞ evaluates to true.
� For all q 2 Q, s 2 S, q̂ 2 Dðq; sÞ, q̂ 2 D0ðq; sÞ
� For all q 2 Q, sv 2 Sv,

- if sv is an event variable, then:

q̂ 2 Dðq; svÞ, q̂ 2 D0ðq; bðsvÞÞ
- if sv is an event set variable, then:

for all e 2 bðsvÞ; q̂ 2 Dðq; svÞ, q̂ 2 D0ðq; eÞ

Given a property type T and a binding b, we will refer to
the property instance generated by T on b as T ðbÞ.

3.2 Composition Functions

InvariMint combines the derived property instances into a
model using the composition function.

Definition 7 (Composition function). Let P be the set of all
possible property instances and let F be the set of all possible

FSMs. Then the composition functionc : 2P ! F composes
a set of property instances into a single FSM.

This paper’s examples use composition functions that
involve only FSM intersections and minimizations, but this
limitation is not inherent to InvariMint. More complex func-
tions may include unions, set differences, and other set
operations. For example, an algorithm that supplements
positive examples of traces with negative examples that the
models needs to exclude, may subtract the model of the
negative traces from one of the positive traces. In this case, a
composition function could union some property instances,
intersect other property instances, and then subtract one
from the other (see Section 7.3 for more).

The composition function also determines what happens
when an InvariMint algorithm mines zero property instan-
ces (e.g., if InvariMint is executed on an empty input log).
For example, the composition function could produce
a model that accepts all possible traces, or one that rejects
them all.

3.3 Using Declarative Specifications to Specify
Model-Inference Algorithms

Given a set of property types and a composition function,
the InvariMint approach produces a model-inference algo-
rithm implementation, as shown in Fig. 1. (The implementa-
tion takes an input log and produces a model.) The
implementation uses the property types to mine property
instances from the input log, and then uses the composition
function to compose the mined property instances. Figs. 8
and 9 list unoptimized pseudocode for the property
instance mining and property instance composition proce-
dures. For example, the mining algorithm evaluates the
IncludeBinding function on the log and every possible
property instance of the input PFSM to determine which
property instances are valid. Both of these general mining
and composition algorithms can be further optimized and
tailored to the specific PFSMs.

kTails [8] and Synoptic [7] are two previously-published
model-inference algorithms. To reinforce the InvariMint
approach for declaratively specifying algorithms, Sections 4
and 5 present the InvariMint declarative specifications of
kTails and Synoptic, respectively.

4 EXPRESSING KTAILS WITH INVARIMINT

kTails [8] is a popular algorithm that has served as the basis
for many modern model-inference algorithms [10], [12],
[25], [26], [28], [29], [38], [39]. This section defines the kTails
algorithm (Section 4.1), declaratively specifies it using
InvariMint (Section 4.2), and discusses the insights that
InvariMint reveals about kTails (Section 4.3). Later, Section
6.3 will empirically compare the procedural and declarative
implementations of kTails.

4.1 kTails

kTails is a model-inference algorithm that works via state
merging. kTails’s inputs are a log and a parameter k. We
refer to kTails with a specific k as kTails(k); e.g., we refer to
kTails with k ¼ 2 as kTails(2). kTails initially represents the
log as an FSM composed of linear sub-FSMs, one per trace.
These linear sub-FSMs are joined in a parallel fashion, with
a single initial state transitioning to the start of each trace
and all traces finishing by transitioning to a single terminal
state. kTails then iteratively merges states in the FSM that
are k-equivalent. Two states are k-equivalent if their kTails
are identical.

A state’s kTail is the set of strings of length k or shorter
that map to valid paths starting from that state. The algo-
rithm terminates and outputs the model when no two
remaining states are k-equivalent. Fig. 10 lists the kTails
pseudocode. Fig. 11 shows the output model produced by
kTails(2) on the input log from Fig. 2(a).

The intuition behind kTails is that if two execution points
have identical, k-long sequences of observed events follow-
ing them, then those points likely represent the same pro-
gram state. To infer a concise model, kTails merges
execution points that it considers to represent the same pro-
gram state. The process stops once all points deemed equiv-
alent are merged. The parameter k determines the size and
generality of the inferred model—a smaller k leads to more
merges and produces more compact (and more general)
models, while a greater k restricts state equivalence.

4.2 InvariMint Declarative kTails

We refer to InvariMint formulation of kTails as declarative
kTails to distinguish it from procedural kTails. Declarative

Fig. 8. The generic property instance miner algorithm.
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kTails includes a pre- and a post-processing step. The pre-
processing step prepends an a symbol to the start of each
trace and postpends v to the end of each trace. These sym-
bols are selected so that they do not already appear in any
of the traces. The post-processing step modifies the final
model to remove the a and v; it makes states with incoming
a transition be initial states, makes states with outgoing v

transition be accept states, and removes all a and v transi-
tions from the model. The extra a and v symbols are neces-
sary to properly identify the initial and terminal states (see
Section 7.5 for more discussion of this requirement).

Declarative kTails uses property types to capture tail-
equivalence. Its specification includes the PFSM in Fig. 12a,
which mandates that all traces start with a and terminate on
the first v. Figs. 12a and 12b list the two PFSMs in the
declarative kTails(1) specification and Figs. 13a and 13b list
the corresponding IncludeBinding functions.3 The composi-
tion function for declarative kTails(1), and in all declarative
kTails specifications, is identical to the one used for Sim-
pleAlg (Section 2.2.2)—FSM intersection followed by FSM
minimization.

Specifying declarative kTails(2) requires three PFSMs
listed in Figs. 12a, 12b, 12c and the corresponding Include
Binding functions in Figs. 13a, 13b, and 13c.

Note that the property type with the PFSM in Fig. 12b
and the IncludeBinding function in Fig. 13b is identical to
the “immediately followed by” property type described ear-
lier, in Section 2.2. This equality is not a coincidence—the k
parameter generalizes the “immediately followed by” prop-
erty type to k steps into the future.

The greater k is, the finer the granularity4 of the prop-
erty types that declarative kTails(k) enforces. For exam-
ple, the property type in Figs. 12c and 13c states that an
event x, followed by an event y, must be followed by
one—any one—of the events in the set Z. This corre-
sponds to merging all x; y tails together. This merging,
expressed as a property type, captures the key state-
merging quality of the algorithm. To see this, consider a
log of three traces fabc; abd; acdg. One binding b such that
IncludeBindingðL; bÞ in Fig. 13c will evaluate to true is
bðxÞ ¼ a, bðyÞ ¼ b, bðZÞ ¼ fc; dg. This binding is maximal
because the set fc; dg cannot be made larger without
IncludeBinding returning false. The mined property
instance for this binding corresponds to an execution of
the state-merging operation in procedural kTails on the
two states preceding the a events in the first two input
traces.

Fig. 12d shows the general PFSM used to specify declara-
tive kTails(i) (of course, the complete specification also
includes the property types from declarative kTails(i� 1)).
In this case, a tail of length i—composed of a binding to
x0; . . . ; xi�1—is constrained to be immediately followed by
an event from the event set bound to Y .

Both the procedural and declarative kTails algorithms
are parameterized by k, the size of the tail. The InvariMint
specification requires more property types for larger k.
Fig. 12d shows an informal template for a family of PFSMs
(for each value of k there is exactly one PFSM represented in
the Figure). Note that the InvariMint approach does not cur-
rently support such a parametric PFSM. However, our cur-
rent implementation (see Section 6) of the declarative kTails
is parametric: it takes a parameter k and computes the prop-
erty types internally.

An important feature of the declarative kTails is that it is
deterministic. This feature helped us better understand
the kTails algorithm and helped reveal a bug in our initial
procedural kTails implementation, which happened to be
non-deterministic.

4.3 Comparing Procedural and Declarative
Specifications of kTails

The model produced by the procedural kTails is identical to
the model produced by declarative kTails. Next, we define
the kTails algorithm by building on [12]. Then, we provide
a proof of equivalence between the two types of kTails.

Let S	k denote the set of all strings of length k or less,
including the empty string �. Let a trace be a string over
alphabet S [ fa;vg, and let a (pre-processed) log L be a set
of traces, each of which starts with an a symbol and termi-
nates with the v symbol. Let PFL be the set of all prefixes of
strings in L. For example, consider the log L ¼ faabcv,
aabv, acdvg. The corresponding PFL ¼ fa, aa, aab, aabc,
aabcv, aabv, ac, acd, acdvg.

Fig. 9. The generic property-instance-composition algorithm.

Fig. 10. The procedural kTails algorithm. Section 4.1 defines
k-equivalence.

Fig. 11. Example output of kTails(2) on the input log in Fig. 2.

3. Since the PFSM in Fig. 12a has no variable transitions (the PFSM is
an FSM) and we need to include at least one copy of this FSM in the
composition, the IncludeBinding function for this PFSM simply evalu-
ates to true, regardless of the input log or binding.

4. Section 7 discusses in more detail the granularity of property
types and how the wrong granularity may cause the algorithm to over-
fit to the input log.
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We use p 
 t to denote concatenation of string t to p, and
refer to t as a tail of p 
 t. One tail of the string aabcv ¼ aa

bcv is bcv.

Definition 8 (Procedural kTails FSM FpkTails). The procedural
kTails algorithm takes a log L and an integer k as inputs and
generates a FSM FpkTails. The states of FpkTails correspond to
equivalence classes of prefixes from PFL. One state corre-
sponds to exactly one equivalence class. Every prefix must be
assigned to some equivalence class and an equivalence class E
is a maximal set of prefixes such that:

8ðp; p0Þ 2 E; 8t 2 S	k; ðp 
 tÞ 2 PFL , ðp0 
 tÞ 2 PFLð Þ:
The transition relation D for equivalence classes, or states,

in FpkTails is defined as follows. Given a state Ei and a symbol
a 2 S,

DðEi; aÞ ¼
[

fE½p 
 a�g; 8p 2 Ei;

where E½p 
 a� is the equivalence class of p 
 a.
There is a single initial state in FpkTails—the state corre-

sponding to E½a�5.
An equivalence class Ei is an accept state of FpkTails if

9 s 2 L, such that s 2 Ei.

Definition 9 (Declarative kTails FSM FdkTails). For a log L
and an integer k, let FdkTails be the FSM derived using the
InvariMint kTails algorithm on L. This algorithm is specified
by the 1-tail,. . ., k-tail property types (Figs. 12 and 13) and the
composition function6:

FdkTails ¼
\�

p1
1; . . . ;p

1
n1
; . . . ;pk

1; . . . ;p
k
nk

� \ pa;v;

where pi
1; . . . ;p

i
ni
are the property instances for the i-tail prop-

erty type, and pa;v is an instance of the PFSM in Fig. 12a.

Theorem 1 (Declarative specification of kTails is exact).
For an input log L and an integer k, let FpkTails be the corre-
sponding procedural kTails FSM and let FdkTails be the declara-
tive kTails FSM. Then, the languages of the two FSMs are
equivalent, or:

LðFpkTailsÞ ¼ LðFdkTailsÞ:

Proof.We prove the two directions of equality in Theorem 1
separately.

(1) LðFpkTailsÞ � LðFdkTailsÞ
Proof by contradiction:
Assume that 9 s 2 LðFpkTailsÞ and s 62 LðFdkTailsÞ.
Because s 62 LðFdkTailsÞ and FdkTails is composed by

intersecting property instances, there is a non-empty set
of rejecting (non-accepting) property instances P that
make up FdkTails. That is, 8p 2 P; s 62 LðpÞ.

The property instance pa;v 62 P because s must start
with a and terminate with v, so s 2 pa;v.

Consider a specific pi
j 2 P, where i 	 k because of

Definition 9. This property instance (corresponding to
the i-tail PFSM in Fig. 12d) can reject s in two ways:

(1a) pi
j rejects s by terminating in state siþ1.

Note that once pi
j is in state siþ1, it cannot transition

out of this state. Let r be the shortest prefix of s that causes

pi
j to enter state siþ1.

In this case, r must be at least iþ 1 symbols long, and

can be expressed as r ¼ v 
 a0 
 
 
 ai�1 
 a. Since r causes pi
j

to enter state siþ1, it must be the case that a 62 Y (other-
wise rwould not lead to state siþ1).

Now, consider the equivalence class E½v�. This class
must be non-empty because v 2 PFL (since s 2 LðkTailsÞ
and v is a prefix of s). Because E½v� contains v, i 	 k, and
a0 
 
 
 ai 
 a is a tail of v, by definition of equivalence
classes, v 
 a0 
 
 
 ai 
 a 2 PFL. However, this means that

a0 
 . . . 
 ai 
 a should be accepted by pi
j, which means that

a 2 Y . This contradicts the assumption that implied
a 62 Y .

(1b) pi
j rejects s by terminating in sh, 1 	 h 	 i.

The i-tail PFSM in Fig. 12d mandates that each am
bound to xm must be followed by some amþ1 in some
trace. Since v is the last symbol in any trace, it cannot be
bound to any xm.

The above implies that 8g, 1 	 g 	 i, 8p 2 P, there is
no transition on v intosg. Because all traces in L terminate
with v, s 2 LðFpkTailsÞ only if s terminates with v.

But, this means that pi
j must have a transition in which

xm is bound to v. Contradiction.

Fig. 12. (a) PFSM that mandates that traces start with a and terminate on the first v. This PFSM is used by all declarative kTails specifications. This
PFSM has no variable-labeled transitions (i.e., it is an FSM). (a+b) PFSMs necessary to specify kTails(1). (a+b+c) PFSMs necessary to specify
kTails(2). (d) PFSM representing the i-tail property type. Labels x0 . . . xi�1 are event variables and Y is an event set variable.

5. After a is removed from FpkTails in the post-processing step, the
final model may have multiple initial states.

6. We omit FSM minimization as it does not change the FSM’s
language.
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We have shown that pi
j cannot reject s since it cannot

terminate on s in any non-accepting states. Therefore, by
contradiction, s 2 LðFdkTailsÞ and LðFpkTailsÞ � LðFdkTailsÞ.

(2) LðFdkTailsÞ � LðFpkTailsÞ:
Note that s 2 LðFdkTailsÞ implies that s is accepted by

all property instances that make up FdkTails. Let s ¼ a0 
 
 

an. Since s is accepted by pa;v, a0 ¼ a and an ¼ v.

By induction on k, we will show that if s 2 LðFdkTailsÞ
then there exists an accepting path of equivalence classes,
½E0; . . . ; En�, that corresponds to s, and thus s 2 FpkTails.

Base case (k ¼ 1). We prove this base case by induction
on n, assuming k ¼ 1.

Base case (n ¼ 2). Show that s ¼ a0 
 a1 
 a2 ¼ a 
 a1 
 v
maps to an accepting path E0; E1; E2 in FpkTails.

Let E0 ¼ E½a�.
Since a is the first symbol in all traces in L, there must

be a property instance p1
j corresponding to the 2-tail

PFSM in Fig. 12b, that binds x to a. Since s 2 LðFdkTailsÞ,
p1
j must accept a 
 a1 
 v. Therefore, p1

j must bind Y to a

set B, such that a1 2 B. Because p1
j was mined, a 
 a1 is a

prefix for some trace t 2 L. So, there exists a non-empty
equivalence class E1 ¼ E½a 
 a1� and E0 has a transition
on a1 to E1.

Now, consider the string a1 
 v. Since a1 appears in
some trace there must be a corresponding property

instance p1
m (based on the PFSM in Fig. 12b) that binds x

to a1 and binds Y to a set B0 such that v 2 B0. For p1
m to

be mined, 9t0 2 L such that t0 ¼ p 
 a1 
 v. Let E2 ¼ E½t0�.
Note that E½s� ¼ E½t0�. To see this, consider Definition 8.
Since both s and t0 end with v, there is only one symbol
e 2 S	k that satisfies the constraint from the Definition
that ðs 
 eÞ 2 PFL , ðt0 
 eÞ 2 PFL, namely e ¼ �. This is
because all strings in PFL that contain v contain v as the
last symbol. Also by Definition 8, D, the transition rela-
tion on equivalence classes allows a transition on v from
E1 to E2 because DðE1;vÞ contains E½a 
 a1 
 v� ¼ E½s�
and E2 ¼ E½s�. As a result E0; E1; E2 is an accepting path
for s in FpkTails.

Inductive case (n ¼ i). Assume that for all s 2 L where
jsj ¼ i, s maps to an accepting path E0; E1; . . . ; Ei in
FpkTails. Show that for s0 2 L such that js0j ¼ iþ 1, s0 maps
to an accepting path E0; E1; . . . ; Eiþ1 in FpkTails.

Consider a subset of L, L0, that contains traces from L
that are iþ 1 long but are truncated by v to be i long.
That is, L0 ¼ fsjðs 
 vÞ 2 L; jsj ¼ ig.

We can apply the inductive case to L0. So, for all
s 2 L0, s maps to an accepting path E0; E1; . . . ; Ei in
F 0
pkTails. Note that since L � L0, the states in F 0

pkTails are a

strict subset of the states in FpkTails. Now, it suffices to
show that for an s 2 L0 we can extend its path in F 0

pkTails

by Eiþ1 so that E0; E1; . . . ; Ei; Eiþ1 would be an accepting
path in FpkTails.

For an s 2 L0 its Eiþ1 ¼ E½s 
 v�. So we need to show
that for the D in FpkTails, Eiþ1 2 DðEi;vÞ. This follows
from Definition 8.

Inductive case (k ¼ j). We prove this by induction on n.
We assume that the proof statement is true for k ¼ j and
perform induction on n to show that the statement is true
for k ¼ jþ 1.

Base case (n ¼ 2). Show that s ¼ a0 
 a1 
 a2 ¼ a 
 a1 
 v
maps to an accepting path E0; E1; E2; E3 in FpkTails.

Since k ¼ j > 1, FdkTails includes property instances
corresponding to the 1-tail PFSM (Definition 9). This
means that we can re-use the base case for k ¼ 1 above
and construct the path E0; E1; E2; E3 corresponding to s
in FpkTails in the same manner. This construction also
holds for k ¼ jþ 1.

Inductive case (n ¼ i). Assume that a0 
 
 
 ai maps to a
valid path E0; . . . ; Ei. Show that a0 
 
 
 aiþ1 maps to a valid
path E0; . . . ; Eiþ1.

Consider the string t ¼ ai�j 
 
 
 ai. Each symbol in t cor-
responds to a property instance P , for a particular k
value, that makes up FdkTails and which accepts all of the
symbols at the tail of t in front of the symbol.

For example, ai�j corresponds to some property

instance pj, which accepts the tail ai�jþ1 
 
 
 ai of t.
Using the base case construction of overlapping pre-
fixes, we construct a path E0; . . . ; Eiþ1 that corre-
sponds to a0 
 
 
 aiþ1. tu
Theorem 1 states that the languages of the FSMs

produced by the declarative and procedural kTails
algorithms are equivalent; however, the models themselves
may differ in the number of states and transitions. For
example, InvariMint is guaranteed to produce the minimal

Fig. 13. IncludeBinding functions corresponding to the PFSMs in Fig. 12. We use�i to represent a sequence of i instances of�.
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FSM for the language, whereas the procedural algorithm is
not. While the models may look different, they are the same
semantically. Smaller models may be easier for a human to
understand, but otherwise, it is not clear that either model
has benefits over the other.

Next, we use InvariMint to specify Synoptic, another
model-inference algorithm.

5 EXPRESSING SYNOPTIC WITH INVARIMINT

This section describes the Synoptic model-inference algo-
rithm and formulates it declaratively with InvariMint. We
refer to InvariMint formulation of Synoptic as declarative
Synoptic to distinguish it from procedural Synoptic. Later,
Section 6.4 will empirically compare the procedural and
declarative implementations of Synoptic.

5.1 Procedural Synoptic and Its Shortcomings

Procedural Synoptic is a model-inference algorithm that
explicitly infers property instances from the log, then con-
structs a model that satisfies them.7 Procedural Synoptic
first infers an overly-general model of the log, which
accepts too many traces. Then, it progressively refines the
model until every trace in the language of the model satis-
fies specific property instances mined from the log. Because
procedural Synoptic models enforce these observed prop-
erty instances, the models accurately describe the underly-
ing system and can improve understanding and aid
debugging [7], can help to automate the generation of test
oracles [33], and can be extended to model program perfor-
mance [34].

The procedural Synoptic algorithm has four steps: (1)
Mine three types of properties from the log: “x always fol-
lowed by y” (whenever event x occurs in a trace, event y
also occurs later in the same trace), “x always precedes y”
(whenever event y occurs in a trace, event x also occurs ear-
lier in the same trace), and “x never followed by y” (when-
ever event x occurs in a trace, event y never occurs later in
the same trace). (2) Build an initial model by merging all
states with the same outgoing event into a single state.8 (3)
Iteratively apply counterexample-guided abstraction refine-
ment (CEGAR) [11] to derive a model that satisfies all of the
mined property instances. Procedural Synoptic does this
by model-checking the current (e.g., initial) model against
the mined property instances to find a counterexample trace
in the model’s language, which falsifies one or more of
the property instances. Procedural Synoptic then traces the
found counterexample in the model to find the first state
responsible for falsifying the property instance, and refines
(splits) that state to remove the counterexample path. Proce-
dural Synoptic repeatedly refines the model to eliminate
counterexamples until it reaches a model that satisfies all of
the property instances. (4) Finally, to compact the model,
procedural Synoptic applies procedural kTails(k ¼ 1) to the

refined model, but only performs a merge if it does not un-
satisfy any of the property instances.9

As an example of a procedural Synoptic execution, con-
sider the log in Fig. 2a. When run with this input log proce-
dural Synoptic produces the same output as SimpleAlg—the
model in Fig. 2b. This model satisfies all property instances
(31 in total) of the three kinds of property types used by pro-
cedural Synoptic. For instance, this model satisfies themined
property instance “login always followed by logout”.

While procedural Synoptic has been empirically shown
to help developers improve their system understanding
and find bugs [7], it has two features that may cause its
users difficulty.

First, procedural Synoptic is externally non-determin-
istic. The order in which it resolves the counterexamples
may affect the language of the final model it produces. In
contrast, procedural kTails (Fig. 10) is internally but not
externally deterministic (i.e., the order in which states are
merged is non-deterministic, but the final model is always
the same). (More generally, the problem procedural Synop-
tic tries to solve is NP-complete [2], [11], [17], so the non-
deterministic algorithm attempts to balance running time
against the size of the final model.) If a user makes a change
to the input log and procedural Synoptic produces a differ-
ent model, the user does not know if the input log difference
explains the change in the returned model. This makes it
difficult to apply procedural Synoptic to verify a bug fix or
to check how a new feature impacts the model.

Second, while procedural Synoptic is significantly more
efficient on large traces than kTail-based model inference, it
may still be slow. This is because procedural Synoptic must
maintain all of the parsed log traces in memory, and it
makes repeated model-checking invocations and repeatedly
traverses the model.

Next, we present a declarative specification that approxi-
mates procedural Synoptic. We show that the declarative
Synoptic algorithm resolves the above two issues of non-
determinism and efficiency, and discuss insights that we
gained about Synoptic through this formulation.

5.2 Modeling Synoptic with InvariMint

Procedural Synoptic’s use of well-defined property types
simplifies the task of declaratively specifying it with Invari-
Mint—each of the three mined property types in procedural
Synoptic (always followed by, always precedes, and never
followed by) has a corresponding InvariMint property type.
Fig. 14 lists the PFSMs for these three property types and
Fig. 15 lists the corresponding IncludeBinding functions.

However, while procedural Synoptic explicitly speci-
fies some of the log property types that the inferred mod-
els will enforce, the procedural definition imposed a
property type that was unknown both to Synoptic users
and to us, the researchers who developed the algorithm.
The process of specifying Synoptic declaratively with
InvariMint revealed this property type. We found that the
initial procedural Synoptic model is not captured by
the three explicit property types; rather, the declarative7. For simplicity, and despite minor differences, we use “property”

where the Synoptic literature uses the term “invariant”.
8. Procedural Synoptic uses an event-based graph model with nodes

representing event types and unlabeled edges representing observed
event orderings in the log. This model is equivalent to an FSM with
anonymous states, which is the model type we use in this paper.

9. In an event-based model, procedural Synoptic uses kTails(k ¼ 0)
to merge nodes with identical event labels. This is equivalent to kTails
(k ¼ 1) in a state-based model.

BESCHASTNIKH ET AL.: USING DECLARATIVE SPECIFICATION TO IMPROVE THE UNDERSTANDING, EXTENSIBILITY, AND COMPARISON OF... 419



specification requires the additional “immediately fol-
lowed by” property type, which is exactly SimpleAlg’s
property type (Figs. 5a and 6a).

Finally, declarative Synoptic uses the same pre- and post-
processing steps as the declarative kTails formulation (first
paragraph of Section 4.2). The pre-processing step adds two
fresh symbols—a and v—to the each trace, and the post-
processing step removes these from the final model. As in
declarative kTails, these extra symbols are necessary to
properly identify the initial and terminal states. Therefore,
the last property type used by declarative Synoptic is the
one in Figs. 12a and 13a, which mandates that all traces start
with a and terminate on the first v.

To compose declarative Synoptic property instances,
InvariMint uses a composition function that is similar to
SimpleAlg:

Composeðp1; . . . ;pnÞ ¼ Minð
 
 
 ðMinðp1 \ p2Þ \ 
 
 
Þ \ pnÞ:

In this composition Min is FSM minimization, which
minimizes intermediate models so as to maintain a small
model in memory at run time. For a large number of prop-
erty instances, this composition yields a faster algorithm.

Next, we evaluate declarative Synoptic.

5.3 Theoretical Evaluation

We were already intimately familiar with procedural Syn-
optic. Nonetheless, when we modeled Synoptic with Invari-
Mint, we discovered a new feature, demonstrating how
InvariMint can improve algorithm understanding. The
InvariMint specification of Synoptic is, in fact, an approxima-
tion of the procedural Synoptic algorithm. A key feature of
procedural Synoptic models is that every transition in the
model is associated with some event in the log. This is
because procedural Synoptic models are defined in terms of
traces—a transition between two states in the model exists
only if there are two observed states in the log that map to
the model states and have this transition.

InvariMint models, on the other hand, are specified in
terms of event types, so the particular trace-specific

constraints are absent from an InvariMint model unless they
are explicitly specified with property types. Therefore, for a
given log, a declarative Synoptic model generalizes and
includes the language of any procedural Synoptic model.
Fig. 16 summarizes this relationship between the language of
the model derived using declarative Synoptic, the languages
of possible non-deterministically-derived procedural Synop-
tic models, and the input log. The InvariMint formulation is
more permissive than procedural Synoptic and includes the
language of all possible non-deterministically-derived proce-
dural Synoptic models. Here, we prove that the language of a
procedural Synoptic model is a subset of the model derived
using declarative Synoptic (Section 6.2 empirically evaluates
this containment). We also show that the InvariMint model
does not satisfy any property instances that are not true
of the input log. This result is analogous to Theorem 3 in [7].

Theorem 2 (Declarative Synoptic encompasses procedural
Synoptic). Let L be a log. Let FpSynoptic be an FSM produced
with procedural Synoptic on L and let FdSynoptic be the FSM
produced with declarative Synoptic on L. Let LðFpSynopticÞ and
LðFdSynopticÞ be the languages of those models. Then
LðFpSynopticÞ � LðFdSynopticÞ.

Proof. Let t be a trace in LðFpSynopticÞ. By construction, when
procedural Synoptic terminates all traces accepted by its
inferred model satisfy all instances of the always fol-
lowed by, always precedes, and never followed by prop-
erty instances mined from L. Therefore, t must satisfy all
such property instances.

Consider each of the property instances intersected to
form FdSynoptic. First, each property instance of the three
types described in Fig. 14 is mined from L, and therefore
must be true in each trace in L. Since t satisfies all such
property instances, the language of each of these instance
FSMs must contain t. Second, each property instance of
the type described in Fig. 5a accepts all traces whose
transitions are pairs of consecutive events observed in L.
Since each transition in FdSynoptic maps to at least one pair
of consecutive events in at least one trace in L, a property
instance FSMmust accept t.

Fig. 14. Three of the five PFSMs used by InvariMint to specify declarative Synoptic. Figs. 5a and 12a show the remaining two PFSMs—the first cap-
tures the initial model, while the second identifies initial and terminal states.

Fig. 15. IncludeBinding functions corresponding to the PFSMs in Fig. 14.
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Finally, FdSynoptic includes the property instance of the
property type in Fig. 12a. This property instance accepts
t because procedural Synoptic algorithm never refines
the initial and terminal states associated with a and v.

Since every property instance intersected to
form FdSynoptic accepts t, t 2 LðFdSynopticÞ. Therefore,
LðFpSynopticÞ � LðFdSynopticÞ. tu

Theorem 3 (Models produced by declarative Synoptic do
not include false property instances). Let L be a log and
let FdSynoptic ¼ Composeðp1; . . . ;pnÞ be the FSM produced by
declarative Synoptic on L.

Let Pfalse be the set of all property instances, such that
8p 2 Pfalse, p is an instantiation of some declarative Synoptic
property type that is not true in L.

Then 8i;pi 62 Pfalse.

Proof. We present a proof by contradiction. Assume the
opposite: 9pi, pi 2 Pfalse.

Since pi is used to construct FdSynoptic, it must corre-
spond to some property type, and by definition, to be
included in FdSynoptic, pi must accept all traces in the
input log L. Contradiction. tu
As discussed in Section 5.1, procedural Synoptic is non-

deterministic and executing it on two similar logs may pro-
duce different models, even when using identical random
number generator seeds. Declarative Synoptic removes this
non-determinism because FSM intersection and minimiza-
tion are commutative. This, in turn, makes it possible to use
the algorithm to assist in other development tasks, such as
to check how a bug fix or new feature impacts the model.

6 INVARIMINT EMPIRICAL EVALUATION

This section describes our open-source InvariMint imple-
mentation, and it empirically evaluates the declarative spec-
ifications of kTails and Synoptic against their procedural
counterparts.

6.1 InvariMint Implementation

We have implemented InvariMint in Java, using the dk.brics
[32] library for FSM operations. The InvariMint implemen-
tation is available as open source: http://synoptic.
googlecode.com/.

Our InvariMint implementation exposes a command-line
interface through which the user specifies the input log,
property types, and the composition function. A user may
write custom property types and composition functions by

extending simple Java classes. Alternatively, a user may use
one of the built-in property types and composition functions
(these include all of the property types and composition
functions described in this paper).

The property types and composition function form the
specification of a model-inference algorithm. Meanwhile,
the input log and a set of regular expressions for parsing
this log are the input to the model-inference algorithm.

InvariMint produces models in the Graphviz format,10

which can be visualized and manipulated using various
open-source software.11 Our most common use, however,
has been to convert the Graphviz file into an image of the
FSMmodel.

6.2 Overlap in Declarative and Procedural
Synoptic Models

Recall that the InvariMint Synoptic specification is an
approximation of the procedural Synoptic algorithm
(Section 5.3). In this section, we evaluate how the models
produced by these two algorithms compare in practice by
measuring the overlap between models produced using
the InvariMint Synoptic and the procedural Synoptic
algorithms. We do this in two ways: First, we use a small
log example to explain our model comparison approach.
Second, we report on the overlap in models derived using
the two algorithms in an experiment with randomly gen-
erated logs.

Fig. 17a shows a small log with two traces. Figs. 17b and
17c show the models generated for this log by procedural
and declarative Synoptic algorithms, respectively. Note that
the two models are different: declarative Synoptic adds a
self-loop on event a to state s4. It does this because of the
property instance “a immediately followed by fa; bg”, corre-
sponding to the property type in Fig. 5a. (Note that there is
no outgoing transition from state s4 on event b because b is
not allowed to immediately follow another b (i.e., the b on
transition from state s3).)

We use a metric of model language similarity to compare
models inferred by the two algorithms. A model’s language
is the set of strings it accepts. Because models with loops,
such as the two models in the example, have infinite lan-
guages, we compare finite subsets of the languages consist-
ing of all the strings in the language up to a constant length.
For example, we can compare the two models in Fig. 17 by
using a string length bound of 2. In this case, the languages
are identical: both models accept the set of strings fab; bag.
However, this bound does not even exercise all of the transi-
tions in the models. A string length bound of 3 reveals that
the procedural Synoptic model in Fig. 17b accepts the set
fab; ba; aabg, while the declarative Synoptic model in
Fig. 17c accepts the set fab; ba; aab; aba; baag. This bound
reveals that the two models accept different languages.

Let LbðFpSynopticÞ and LbðFdSynopticÞ be the length-bounded
language subsets with bound b of the procedural and
declarative Synoptic algorithms, respectively. Recall Theo-
rem 2 in Section 5.3: for the same log, the language of the
declarative Synoptic model always contains the entire

Fig. 16. The inclusion relationships between an input log, the language
of the model derived from the log with declarative Synoptic, and the lan-
guages of all potential non-deterministically-derived procedural Synoptic
models (numbered 1; . . . ; n) for the same log.

10. http://www.graphviz.org
11. e.g., Gephi: https://gephi.org/

BESCHASTNIKH ET AL.: USING DECLARATIVE SPECIFICATION TO IMPROVE THE UNDERSTANDING, EXTENSIBILITY, AND COMPARISON OF... 421



language of the procedural Synoptic model. This contain-
ment also holds for the length-bounded subsets of these lan-
guages, that is, LbðFpSynopticÞ � LbðFdSynopticÞ. In the example,
fab; ba; aabg � fab; ba; aab; aba; baag. We can characterize
the similarity of these two sets with the fraction of the
declarative model’s language that is covered by the proce-
dural model’s language. This coverage measure is mono-
tonic—larger differences in the models result in larger
differences in the measure—but not robust—small differen-
ces in models can result in large differences in the measure.
(For example, the two models in Fig. 17 are quite similar—
they have the same node sets (of size n) and differ by only
one out of the n 
 n ¼ 16 possible edges among that node
set—but that single edge difference results in a coverage

measure of 3
5 ¼ 60%.) A more robust related measure is the

number of bits necessary to describe the differences
between the two models’ languages. We thus use the fol-
lowing log-based, model-similarity, coveragemetric:

log2
jLbðFdSynopticÞj
jLbðFpSynopticÞj:

This coverage metric evaluates to 0 for two identical
models (no bits necessary to describe the difference between
two identical languages), and to 1 if the declarative model’s
language is twice as large as the procedural model’s lan-
guage. For the example in Fig. 17 with string length bound

of 3, the coverage is log2
5
3

� � ¼ 0:73 bits.

We next compare the two algorithms in an empirical
study using 100 randomly-generated text logs. Each log
contains six traces, and each trace has four events uni-
formly selected from an alphabet of eight possible event
types. We ran declarative Synoptic (Section 5.2) on each
log. Because procedural Synoptic is a non-deterministic
algorithm and may produce different models for the
same log, we ran procedural Synoptic ten times on each
log, and used the model that is the union of the ten pro-
duced models for the comparison. (We found that ten
Synoptic runs were sufficient to cover the different mod-
els procedural Synoptic can produce; rerunning the
experiment with 1,000 Synoptic executions produced
nearly identical results.) First, we empirically confirmed
that Theorem 2 holds for the 100 models in the experi-
ment. Second, for each of the 100 pairs of models, we
computed the log-based coverage metric described above.
We report results for three different string length bounds:
bound of 4, a conservative bound that is the same as the
length of traces in the experiment; and bounds of 6 and 8,

which are 1.5 and 2.0 times the length of traces in the log.
Fig. 18 shows the results as a box-plot, illustrating the
median, 25th and 75th percentiles for metric for each of
the string length bounds. For example, for the bound of 4,
the minimum difference was 0.6 bits, the maximum dif-
ference was 3 bits, the median difference was 1.7 bits, and
the average difference was 1.7 bits. This quantifies the dif-
ferences between the models produced by the procedural
and declarative Synoptic algorithms.

While declaratively inferred models always generalize
the procedural models (which, in turn, generalize the input
log), the declaratively inferred model introduce additional
behavior (captured by our metric). This behavior may be
removed by introducing additional property types that cap-
ture more trace context, which would make the declarative
and procedural models more similar and decrease the met-
ric. For example, the property type described in Figs. 12a
and 13a excludes traces that do not start/end with events
that were the initial/terminal events in the input traces. We
leave a more detailed comparison of the two algorithms on
more realistic program logs to future work.

6.3 Performance of Declarative
and Procedural kTails

We performed two experiments to compare the perfor-
mance of declarative kTails and procedural kTails. We
found that the declarative kTails implementation outper-
forms procedural kTails on large logs with few property
instances, while procedural kTails scales better with increas-
ing number of property instances.

Our experiments were executed on an OS X 10.8 machine
with a 2.8 GHz Intel i7 processor and 8 GB of RAM. In all
experiments the bottleneck resource was the CPU. Our
experiments used logs with tens of thousands of events.
From our previous studies [7] we consider this to be a repre-
sentative log size for logs generated by developers during
debugging sessions. We used a script to generate synthetic
logs with the desired number of event, event types, and
other log characteristics. For all of the kTails experiments
we used k ¼ 1.

To evaluate scalability with respect to log size, we ran
both algorithms on logs that ranged in size from 5 to 50 K
events, but maintained a constant number of property
instances per log. Every log in the experiment ranged over
an alphabet of 5 event types, and each log was partitioned

Fig. 18. Number of bits necessary to describe the difference in lan-
guages between declarative and procedural Synoptic models, in the
100-log experiment described in Section 6.2. Each box plot corresponds
to a string length bound (4, 6, or 8) used to approximate the infinite lan-
guage sets of pairs of models.

Fig. 17. An example log (a) with two traces for which procedural Synoptic
(b) and declarative Synoptic (c) produce different models.
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into 20 traces of equal length. The number of property
instances true for each log was held constant at 182. Fig. 19a
plots the average runtime of three runs for each log size.

In the figure, as the log size increases the standard
kTails algorithm scales poorly because it needs to per-
form more merges. The declarative kTails algorithm
maintains an almost constant running time. This is
because the algorithm composes a constant number of
property instances in constant time—composing 182
property instances used in the experiment took about 10
seconds. Although the time to mine property instances
does increase linearly with log size, it remains insignifi-
cant (for a 50 K event log, all property instances are
mined in under one second).

To evaluate scalability with respect to number of property
instances, we varied the number of property instances for
the log from 108 to 1,480, but maintained a constant log size
of 25 K events. Logs were drawn from an alphabet that had
between 9 and 37 event types. Fig. 19b plots the average
runtime of three runs. Overall declarative kTails had a
lower running time than procedural kTails.

6.4 Performance of Declarative
and Procedural Synoptic

We compared the performance of procedural Synoptic
against the declarative Synoptic implementation. Both algo-
rithms are implemented in Java and we use the same experi-
mental setting as in the kTails experiments (Section 6.3).

We carried out two experiments to compare algorithm
performance across different log sizes (Fig. 20a), and across
logs with varying number of property instances (Fig. 20b).
As with the kTails algorithm, Fig. 20a indicates that the

declarative version of Synoptic outperforms procedural
Synoptic on large logs. As the number of property instances
increases (in Fig. 20b), declarative Synoptic continues to out-
perform procedural Synoptic. The difference in perfor-
mance might be due to the fact that models generated with
declarative Synoptic may include behaviors not captured by
models generated with procedural Synoptic (Section 6.2).

6.5 InvariMint Performance

The InvariMint implementation run time can be broken up
into the time it takes to mine the property instances, and the
time it takes to compose those instances. For the property
types we have considered in this paper, the mining time
was negligible. For the InvariMint implementations of
kTails and Synoptic, the composition time, and in particular
the intersection of property instances, dominated the overall
run time. The time to minimize the FSMs was negligible.

In general, we expect InvariMint implementations of
algorithms to outperform procedural implementations.
This was true for Synoptic and kTails in our experiments
(Figs. 19 and 20), but it might not be true for all algorithms.

There are numerous factors that affect how the proce-
dural and InvariMint implementations of algorithms per-
form, including:

Memory footprint. Our procedural implementations of
kTails and Synoptic keep the entire input log in memory as
both algorithms require continued access to the input log
throughout the execution. For example, our Synoptic proce-
dural implementations requires looking at the input log to
infer the edges between its refined partitions at every

Fig. 19. (a) The running time of procedural kTails and the declarative
InvariMint version of kTails for different log input sizes. The number of
property instances true of the log was held constant at 182. (b) The run-
ning time of procedural kTails and the declarative InvariMint version of
kTails for logs with different number of property instances. The size of
the log was held constant at 25 K events.

Fig. 20. (a) The running time of procedural Synoptic and the declarative
InvariMint version of Synoptic for different log input sizes. The number of
property instances true of the log was held constant at 19. (b) The run-
ning time of procedural Synoptic and the declarative InvariMint version
of Synoptic for logs with different number of property instances. The size
of the log was held constant at 25 K events.
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refinement step. For input logs that are larger than the avail-
able memory, these algorithms likely experience significant
overhead. In contrast, after the InvariMint implementation
mines the property instances from the input log, it no longer
needs to access the log and deals exclusively with the prop-
erty instances.

Slow dependencies. Many procedural implementations rely
on slow subroutines. For example, the procedural Synoptic
implementation performs model checking at every refine-
ment stage. This both increases the run time and bounds the
implementation’s scalability, as model checking does not
scale well. In contrast, declarative Synoptic does not have
this dependency.

Algorithm uniqueness. While procedural definitions of
algorithms can rely on obscure or one-off algorithms, many
FSM manipulations necessary for the composition function
are well-known and have been optimized through years of
research. For example, declarative kTails and Synoptic ben-
efit from the fact that FSM intersection and minimization
are well studied, optimized procedures [20].

Coarsening versus refinement. Some procedural algorithms
start with a very large FSM, and work to coarsen that graph,
(e.g., kTails starts with an FSM that depicts every input trace
as a separate path, and then must merge many states before
arriving at a compact model). This process can be quite
slow for large input logs, even if those logs have very few
relevant property instances. By contrast, other procedural
algorithms such as Synoptic start with a minimal FSM and
refine (enlarge) it to more accurately describe the traces, so
it performs fewer FSM transformations and operates on
smaller FSMs.

In our experiments, we observed that declarative kTails
and Synoptic were particularly beneficial over their proce-
dural counterparts when the input logs were large and there
were relatively few types of events. On very small logs (ones
that can fit entirely inmemory), procedural implementations
may perform better than InvariMint implementations. Simi-
larly, for logs with a very large number of types of events,
the increased number of property instances slows down
composition, andmay benefit procedural implementations.

7 DISCUSSION

This section describes several other benefits of declarative
specifications, the power of binding evaluator and composi-
tion functions, tips for creating declarative specifications,
and the limitations of our approach.

7.1 Benefits of Declarative Specification

Sections 4 and 5 presented insights derived from expressing
existing model-inference algorithms with InvariMint. This
section describes other benefits to declaratively specifying
model-inference algorithms.

Declarative specifications can improve the efficiency of
model checking and run-time verification through, for
example, parallelization. Declarative specifications enable
identifying violated property instances, which can be more
helpful than a path counterexample in understanding a
behavior or why a trace fails to conform to the model.

InvariMint can be robust to specificationswith redundant,
overlapping, or conflicting property types. For example, a

composition function that intersects property instances will
ignore redundant and overlapping property instances, and
will immediately reveal conflicting property instances as
their intersection would be the empty set. The user can use
this to better understand the structure of algorithm.

7.2 Complex Binding Evaluator Functions

The property types we presented so far use IncludeBinding
functions that are expressed as LTL formulae and closely
mirror the corresponding PFSMs. For example, the property
type in the SimpleAlg specification uses an IncludeBinding
that tests if “x immediately followed by y 2 Y ” for a particu-
lar binding of x and Y over all traces in the log (Fig. 6a).
This function corresponds to the PFSM in Fig. 5a, which
resembles the B€uchi automaton of the true case in the
IncludeBinding function. More complex binding evaluator
functions are possible, including a probabilistic function.

Probabilistic IncludeBinding. An algorithm designer can
use an IncludeBinding that returns true for a log and a bind-
ing if the condition is satisfied by most (e.g., 99 percent) of
the traces. This is useful when the log contains errors or
incomplete traces, or if the model is intended to represent
only most common behavior. For example, for a live, online
email server, a log may come from a period in the middle of
the server’s operation, rather than from its start to its termi-
nation. As a result, some traces may be missing the login

event at the start, while others may be missing the logout

event at the end. InvariMint can still mine the property
instances that all traces start with login and end with
logout, as long as an overwhelming fraction of the traces
satisfy this property instance. Fig. 21 shows an example
property type with a probabilistic IncludeBinding. This
function corresponds to a PFSM that captures the initial
events in the model. This IncludeBinding evaluates to true
if the candidate events have appeared as initial events in at
least 99 percent of the traces in the log.

This property type illustrates that IncludeBinding does
not need to mirror the PFSM. Furthermore, this shows the
power and flexibility of separating the PFSM specification
of the shape of the event type from the IncludeBinding spec-
ification of when the event type is instantiated.

7.3 Complex Composition Functions

All of the composition functions described so far in this
paper have intersected property instances to derive the final
model. However, more complex composition functions
are possible. The intersection composition ensured that the
model satisfied all of the mined property instances in the
presented algorithms. Property instances, however, can

Fig. 21. A property type with a probabilistic IncludeBinding.
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describe more than just the must rules. Next, we present a
composition function that takes into account negative exam-
ples, in which property instances capture both the must and
must not rules.

Composing with positive and negative examples. Consider a
model inference algorithm for which some of the property
types describe what must occur and the remaining property
types describe what must not occur. Given two input logs:
Lþ containing positive examples (e.g., actual executions of a
system), and L� containing negative examples (e.g., execu-
tions manually constructed to be invalid), the algorithm

mines the must property instances, pþ
i , from Lþ and the

must not property instances, p�
j , from Lþ. These property

instances are then composed into the final model with the
following composition function:

Compose
�
pþ
1 ; . . . ;p

þ
n ;p

�
1 ; . . . ;p

�
m

� ¼
\

pþ
i n

\
p�
j :

In this composition, two separate models are first com-
posed, one for the positive examples and one for the negative
examples. Then, the composition function subtracts the nega-
tive-example model from the positive-example model. This
composition function illustrates how the InvariMint approach
can specify more advanced model inference algorithms, such
as those that use positive and negative examples.

7.4 Tips for Declaratively Expressing
Algorithms with InvariMint

Model-inference algorithms use different approaches to
generalize from the traces in the input log. While typical
model-inference algorithms “bake in” the generalization
logic into their procedural definitions, InvariMint uses
property types and the composition function to make the
generalization of the inference process explicit. In designing
an InvariMint specification, it is critical to identify the types
of properties that should be true and false of models
inferred by the algorithm. For example, the Synoptic algo-
rithm explicitly preserves properties of the form “event x is
never followed by event y” in the final model. Sometimes,
an algorithm’s properties are less explicit and must be
derived from a procedural specification, like the one for
SimpleAlg in Fig. 3. In this case, we found it useful to focus
on answering why the algorithm adds or retains a particular
edge in the final model. The “immediately followed by”
property type in the SimpleAlg InvariMint specification
captures exactly this rationale.

It is also important to identify the right property-type
granularity. Property types that are too fine-grained and too
close to the input traces (e.g., union of the linear positive
example trace FSMs) lead to models that overfit the log,
rather than describe the algorithm.

Property types can describe algorithm operations. For
example, Section 4 showed how a single property type
describes merging of all states with the same k-tail. How-
ever, it is important to not simply simulate the procedural
algorithm with the property types. Instead, we found that
property types that work well are those that capture what
the algorithm enforces.

If the procedural algorithm deals with positive examples
of traces (as both kTails and Synoptic do), we found it

helpful to start with a formulation that produces a model
that is a generalization of the desired model. This model
may enforce fewer property instances, which makes it easier
to reason about the composition. Then, this initial formula-
tion can be refined towards the desired specification by
introducing new property types.

7.5 InvariMint Limitations

Although InvariMint can declaratively specify the Synoptic
and kTails algorithms, it has some limitations.

Loss of trace context during mining. By construction, the
declarative property types abstract input traces into prop-
erty instances. This process of mining of property instances
is lossy—potentially useful trace context is lost. An example
of this is the initial and terminal states in the trace, which
may be necessary to identify the initial and terminal states
in the inferred model. To retain this information, the Invari-
Mint kTails (Section 4.2) and InvariMint Synoptic (Section
5.2) algorithms add a and v symbols during the pre-proc-
essing step and removed them during the post-processing
step. The InvariMint approach could be generalized to
allow for such pre- and post-processing steps by design.
However, our goal is to describe the core approach and
leave the details of what traces (pre-processed or not) are
expected as input and how the output is post-processed up
to the InvariMint user.

Limited expressiveness: property instances as LTL properties.
The InvariMint approach uses the PFSM formalism for speci-
fying just those properties of traces that are relevant to the
algorithm. However, a PFSM models traces as independent
sequences of events and cannot capture more complex prop-
erties, such as the statistical properties used in sk-strings
[37], or performance-based properties used in Perfume [34].

Usability of declarative specifications. An InvariMint specifi-
cation may include multiple PFSMs, a set of corresponding
IncludeBinding binding evaluator functions, and a compo-
sition function. Naturally, an algorithm designer who works
with such a declarative specifications must be mathemati-
cally sophisticated. To a more general audience, the declara-
tive specification may be less accessible than a procedural
implementation in a popular programming language. Fur-
ther, certain kinds of parameters may be more evident in
procedural specifications than in declarative ones. For
example, the k parameter for the kTails algorithm is simple
to understand in the procedural version, but requires the
introduction of new property types, albeit each created
automatically from a general property type template shown
in Fig. 12d. This can reduce the usability of declarative
specifications.

Incremental computation. The current InvariMint imple-
mentation assumes that the entire log is available as input
and does not work incrementally on new input traces. This
is not a fundamental limitation and InvariMint can be
extended to support incremental computation. Particularly,
the event instances can be cached and checked against the
new traces, new event instances can be mined from the new
input traces, and the resulting set of event instances can be
re-composed. This approach is not as fine-grained as in [30],
but it can be extended to include some of the ideas in that
work (e.g., by associating a timestamp with every transition
in an event instance to support expiration).

BESCHASTNIKH ET AL.: USING DECLARATIVE SPECIFICATION TO IMPROVE THE UNDERSTANDING, EXTENSIBILITY, AND COMPARISON OF... 425



8 RELATED WORK

We have previously introduced InvariMint [5]. We add
to this prior work by formally describing InvariMint
(Section 3), giving a complete proof of the equivalence
between the InvariMint declarative kTails algorithm specifi-
cation and the procedural kTails specification (Section 4.3),
and by improving exposition by correcting the specification
of SimpleAlg and by improving the formalization of the
binding evaluator functions.

Li et al. introduce an approach that resembles Invari-
Mint, but targets reactive systems [23], [24]. Their approach
is similar to InvariMint in that it uses a set of property tem-
plates and mines LTL specifications based on these tem-
plates. Unlike InvariMint, the mined properties are not
composed into a model.

Walkinshaw and Bogdanov [39] propose a model-infer-
ence technique in which the user provides a model-infer-
ence algorithm with LTL formulae, which are then checked
by a model checker and are used as constraints on feasible
state merges in the inference algorithm. InvariMint uses
LTL differently. Our intent is generalize the specification of
model-inference algorithms. To this end, LTL formulae
encode valid bindings of variables in a parameterized FSM
to event types for a particular log input.

The kTails algorithm [8] is the basis for numerous
model-inference algorithms [10], [12], [25], [26], [28], [29],
[38], [39]. Many of these algorithms can be modeled with
InvariMint to better understand, extend, combine, and
compare them. At least two of the techniques require
richer models than the standard FSM models we use in
this paper. GK-Tails [29] requires EFSMs, and RPNI [10]
requires Probabilistic FSMs. For example, the Alergia
algorithm in [10] cannot be easily specified using Invari-
Mint because the similarity of two states (during a merge
in Alergia) is based on the transition probabilities, which
are updated after each merge. It would be highly chal-
lenging to express this procedural merging algorithm
with an InvariMint specification.

There are numerous algorithms to mine temporal prop-
erty instances, like the ones we have used in this paper [3].
Javert [15] is a temporal specification mining tool that infers
specifications by composing simpler “micropatterns” into
larger ones. Javert’s focus is on implementing this composi-
tion efficiently. InvariMint also uses composition to derive
larger models from property instances, but the focus is
on expressiveness of the declarative specification. We
can leverage Javert’s insights to improve our InvariMint
implementation.

Structural, data-value property types that relate internal
program variables are often described with variable values
and can encode method pre- and post-conditions, as well as
class-level property types. An example of a structural
property type is two co-existing integer variables in a
method are always equal. Automatically inferring property
instances of these types from program executions [13] can
improve model inference [29]. Combining structural and
temporal property types can improve scenario-based speci-
fication mining [27].

Model-inference frameworks can facilitate algorithm
comparison [36]. However, to date, these frameworks have

been used to compare model performance and accuracy,
not property types enforced by model inference. Further,
much of the kTail-based model-inference work compares
the recall and precision of inferred models against manu-
ally-specified ground-truth models. This process is manual,
error-prone, and, again, compares model quality, as
opposed to model-inference property types. Model quality
is a notoriously challenging aspect of model inference [25].
QUARK, a comparison framework, allows for comparing
the quality of models generated by algorithms such as
kTails [8] and sk-strings [37]. InvariMint is complementary
to these frameworks, as it aims to unify model-inference
algorithms with a declarative specification language, facili-
tating algorithm comparison, and model property type
comparison. Recent work by Gabel and Su tackles the ques-
tion of false specifications in a mining algorithm through
targeted program transformation. Their approach can be
used to validate property instances instantiated during an
InvariMint execution [16].

Non-FSM model inference (e.g., of UML sequence dia-
grams [42], communicating automata [9], and symbolic
message sequence graphs [22]) can also aid developer tasks.
Some of this work is similar to kTails, and we believe Invari-
Mint can be extended to accommodate such algorithms.
Similarly, InvariMint may be extendable to other types of
property types, such as those used to infer behavioral mod-
els of web-services [4], [14].

9 CONCLUSION

Model-inference algorithms can automatically mine models
of complex systems. Such models aid numerous develop-
ment tasks, such as program understanding and debugging.
Unfortunately, existing model-inference algorithms are
defined procedurally, making them difficult to understand,
extend, and compare to one another. We have presented
InvariMint, a declarative specification approach for model-
inference algorithms. InvariMint enables specification of
algorithms in terms of the types of properties they enforce
in the models they infer. InvariMint’s declarative specifica-
tions (1) provide insight into how inference algorithms
work and how the model relates to the underlying system,
(2) allow for easy extension of existing algorithms to
construct hybrid alternatives, and (3) provide a common
language for comparing and contrasting the essential
aspects of model-inference algorithms. We demonstrated
the benefits of InvariMint by declaratively specifying the
kTails algorithm and declaratively approximating the Syn-
optic algorithm. In addition, the InvariMint versions of
these algorithms outperform their procedural analogs. We
look forward to applying InvariMint’s declarative approach
more broadly and bringing these benefits to additional algo-
rithms. InvariMint is available as an open-source tool:
http://synoptic.googlecode.com
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