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ABSTRACT
Most programming languages support format strings, but their use
is error-prone. Using the wrong format string syntax, or passing
the wrong number or type of arguments, leads to unintelligible text
output, program crashes, or security vulnerabilities.

This paper presents a type system that guarantees that calls to
format string APIs will never fail. In Java, this means that the API
will not throw exceptions. In C, this means that the API will not
return negative values, corrupt memory, etc.

We instantiated this type system for Java’s Formatter API, and
evaluated it on 6 large and well-maintained open-source projects.
Format string bugs are common in practice (our type system found
104 bugs), and the annotation burden on the user of our type system
is low (on average, for every bug found, only 1.0 annotations need
to be written).

Categories and Subject Descriptors
D.2.4 [Software Engineering]: Software/Program Verification—
Reliability; D.3.3 [Programming Languages]: Language Con-
structs and Features—Data types and structures

General Terms
Experimentation, Languages, Reliability, Verification

Keywords
Format string, printf, type system, static analysis

1. INTRODUCTION
Format strings provide a convenient and easy-to-internationalize

way to communicate text to the user. Most programming lan-
guages therefore provide at least one format string API. For ex-
ample, Java provides format routines such as System.out.printf

and String.format.
A format routine’s specification requires that:

• The format string’s syntax is valid.
• The correct number of arguments is passed.
• Each argument has the appropriate type.
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// Untested code (Hadoop)
Resource r = ...
format("Insufficient memory %d", r);

// Unchecked input (FindBugs)
String urlRewriteFormat = read();
format(urlRewriteFormat , url);

// User unaware log is a format routine (Daikon)
log("Exception " + e);

// Invalid syntax for Formatter API (ping -gcal)
format("Unable to reach {0}", server);

Listing 1: Real-world code examples of common programmer
mistakes that lead to format routine call failures. Section 7.2
explains these common programmer mistakes.

Format string APIs are often used incorrectly. Listing 1 shows
some common programmer mistakes. Each kind of programmer
mistake can violate multiple requirements of the format routine
specification.

These violations of the format routine specification are often hard
to detect, because:

• The programming language’s type system does not find any
but the most trivial mistakes. Most type systems detect if a
number is used where a format string is expected, but fail to
detect more complex mistakes, such as missing arguments.
• The format string API fails silently, for example if too many

arguments are passed.
• Format string APIs are often used to report error messages.

Hence, they appear in code that is infrequently executed.

The implications of using a format string API incorrectly range
from unintelligible text output (because information is missing or
scrambled), to program crashes, to security vulnerabilities (for ex-
ample in wu-ftpd [7]).

Previous work addresses the problem of format string bugs by
lexical analysis of source code [10], static tracking of tainted input
[29], checks for literal format strings [15, 25], using a dependent
type system [17], dynamically checking certain safety properties of
format routine calls [6, 28, 34], or introducing alternative formatting
APIs that can be checked in standard type systems [4, 9, 18, 19]. As
discussed in Section 8, these approaches either cannot guarantee
that a format routine call will never fail at run time, are intractable
to understand or implement, or do not support internationalization.

Therefore, we have developed a type system that guarantees that
format routine calls never fail at run time. Our type system exposed
104 bugs in 6 open-source projects.
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A string-based DSL can be very readable and expressive, because
its syntax is unconstrained by the host language and can be tuned
to the domain. And, it requires no host language changes. The
same lack of constraints makes use of the DSL error-prone, because
the host language gives no support to help programmers use the
DSL correctly. Therefore, some people discourage use of string-
based DSLs. Our work shows that you can have your cake and
eat it too: uses of a string-based DSL for format routines can be
statically verified in a mainstream programming language. We hope
this success will inspire verification of other DSLs and a change in
attitudes about their use.

Our type system could be useful not only for string-based DSLs,
but also for other APIs such as C’s syscall function. The syscall
function’s first argument is a “tag value” that chooses the syscall to
make and decides which arguments are valid, such as:

tid = syscall(SYS_gettid);
tid = syscall(SYS_tgkill , getpid(), tid, SIGHUP);

1.1 Format String Type System Overview
We propose a qualifier-based type system that guarantees that

format routine calls never fail at run time. Our format string type
system introduces two main qualifiers: Format and InvalidFormat.

The Format qualifier, attached to a String type, represents syn-
tactically valid format strings, such as "%s %d" in C’s printf API,
"%[1]d" in Go’s fmt API, and "{0}" in C#’s String.Format API.

The InvalidFormat qualifier, attached to a String type, represents
syntactically invalid format strings.

The Format qualifier is parameterized over the expected number
and type of arguments passed into a format routine along with
the format string. For example, in the Java Formatter API, the
format string "%d %c" requires two arguments. The first one needs
to be “integer-like” and the second one needs to be “character-like”.
Consider the following example:

@Format({INT ,CHAR}) String fmt = "%d %c";
System.out.printf(fmt, 5, ’c’); // Ok
// Compile -time error: invalid format string:
System.out.printf("%y", 5, ’c’);
// Compile -time error: too few arguments:
System.out.printf(fmt, 5);
// Compile -time error: argument of wrong type:
System.out.printf(fmt, 5, "hello");

1.2 Contributions
This paper makes the following contributions:

• A qualifier-based type system that guarantees that format
routine calls never fail at run time.
• A publicly-available instantiation and implementation of the

type system for Java’s Formatter API, called the Format String
Checker1, available at http://checkerframework.org.
• An evaluation on 6 open-source projects. The evaluation

found 104 bugs. It also shows that the overhead of using
the Format String Checker is low (on average, for every bug
found, only 1.0 annotations need to be written).

The rest of this paper is organized as follows. Section 2 provides
background and terminology about format string APIs. Section 3
presents the format string type system that guarantees that format
string calls never fail at run time. Section 4 instantiates the format
string type system for Java’s Formatter API. Section 5 presents

1The Format String Checker met the expectations of the ISSTA
Artifact Evaluation Committee.

an implementation of this instantiation, called the Format String
Checker. Section 6 instantiates the format string type system for
Java’s i18n format string API. Section 7 presents the results of apply-
ing the Format String Checker to 6 open-source projects. Section 8
reviews related work, and Section 9 concludes.

2. BACKGROUND
Many format string APIs share common concepts. This chap-

ter introduces the common concepts of most format string APIs,
including the APIs provided by C, Java, C#, and Go.

Consider the following format string usage in C:
printf("%s %d", "str", 42);

printf is the procedure for string formatting that is provided by C’s
standard library. printf-like functions are called format routines.
A format routine takes, as an argument, a format string and a list
of format arguments. In this example, "%s %d" is the format string,
and "str" and 42 are the format arguments.

The format string contains format specifiers. In C, these are
introduced with the % character. In this example, %s and %d are the
format specifiers.

The call to the format routine produces a new string. The pro-
duced string is the format string where each format specifier has been
replaced by the corresponding format argument. In our example, the
result is thus "str 42". Depending on the format routine, this string
is either returned directly or forwarded to an output stream.

The format specifier not only determines how the output is for-
matted, but also determines the legal types for its corresponding
format argument. In C, %s requires that the corresponding format
argument be a pointer to a null-terminated char array.

In some format string APIs, the format specifier can select a
specific format argument. In Java, by default, the format arguments
are consumed left to right. But if the programmer inserts n$ into a
format specifier, the positive integer n is used as a one-based index
into the format argument list.

In the following Java example, the 2$ component of the first
format specifier specifies that the second argument is used (instead
of the first). The result is thus "42 str".

String.format("%2$d %1$s", "str", 42);

C# supports the same feature, with a different syntax:
String.Format("{1} {0}", "str", 42);

In this case, {1} and {0} are the format specifiers, and 1 and 0 select
the format argument.

Format string APIs differ in the syntax used for format strings
and in the available format specifiers.

3. TYPE SYSTEM
This section presents the format string type system. It guarantees

that format routine calls never fail at run time.
The type system can be instantiated for a specific format string

API by providing three parameters: conversion categories (Sec-
tion 3.3), a subset relation among them (Section 3.4), and type
introduction rules for literals (Section 3.5). Section 4 instantiates the
format string type system for Java’s Formatter API, and Section 6
instantiates the format string type system for Java’s i18n API.

For the sake of clarity, the type system is introduced with concrete
examples from its instantiation for Java’s Formatter API.

3.1 Qualifier-Based Type Systems
The format string type system is a qualifier-based type system

[13]. In a qualifier-based type system, a type qualifier is attached to
every occurrence of a type in the language. If a type is interpreted as
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a collection of values, the type qualifier is a restriction that removes
certain values from the collection.

Integrating a qualifier-based type system into an existing language
requires three changes to the language’s type system.

Firstly, a type qualifier must be attached to every occurrence of a
type in the language definition.

Secondly, the language’s subsumption rule must be extended
with a new premise that checks that the qualifiers are in a subtype
relationship ≤q. The language’s existing subtyping rules ≤ stay
unchanged.

Γ ` t : Q′T ′ Q′ ≤q Q T ′ ≤ T
Γ ` t : QT

Finally, existing introduction rules for literals must be extended
to infer the correct qualifier, using a function qualifier that maps
literals to type qualifiers.

Q = qualifier(l)
Γ ` l : QT

3.2 Type Qualifiers
Our type system provides four type qualifiers:

• The Format qualifier, attached to a String type, stands for
the collection of format strings that are syntactically valid.
To allow verifying that the format arguments match the for-
mat specifiers of the format string, the Format qualifier is
polymorphic, and must be parameterized with a list of con-
version categories. Conversion categories are discussed in
Section 3.3.
• The InvalidFormat qualifier, attached to a String type, stands

for the collection of format strings that are not syntactically
valid.
• The Unknown qualifier imposes no restriction on the type. Its

values are the union of Format and InvalidFormat values.
• The FormatBottom qualifier imposes the restrictions of both

Format and InvalidFormat. In Java, its only value is null.

For simplicity, this paper does not discuss how the qualifiers are
applied to non-string types. The full type system and the implemen-
tation do handle those cases.

3.3 Conversion Categories
Section 3.2 introduced the Format qualifier. It restricts the values

of the attached String type to syntactically valid format strings.
But syntactic validity of the format string is not enough to guaran-

tee that a format routine call never fails. To prevent that the wrong
number or type of arguments is passed, the format specifiers of the
format string must also match the format arguments of the call.

The Format qualifier is polymorphic — it is parameterized over
the expected number and type of arguments passed into a format
routine along with the format string.

Listing 2 shows how the Format qualifier could be used on code
found in FindBugs. The Format(INT,INT,GENERAL) qualifier re-
quires that the first two format arguments are “integer-like”, and
that the first two format specifiers can deal with any “integer-like”
arguments without failure (there are no restrictions on the last argu-
ment).

Conversion categories make the notion of “integer-like” precise.
A conversion category is a set of permissible format argument types.

The conversion categories differ substantially between format
string APIs. The type system is parameterized over conversion

void printBoard(PrintWriter w,
@Format({INT,INT,GENERAL}) String format)

{
int pos = // ...
int num = // ...
String key = // ...

w.printf(format , pos, num, key);
}

printBoard(w, "%d %d %s"); // Ok
printBoard(w, "%d %d"); // Bad

Listing 2: A method definition from FindBugs (paraphrased for
brevity). We have added a Format qualifier to explicitly state
the contract of method printBoard: the String parameter
must be a format string that can be used in a format routine call,
where the first two format arguments are “integer-like” and the
last argument has no restrictions.

@Format({FLOAT , INT}) String f;

f = "%f %d"; // Ok
f = "%s %d"; // Ok, %s is weaker than %f
f = "%f"; // Ok, last argument is ignored
f = "%f %d %s"; // Error , too many arguments
f = "%c %d"; // Error , %c not weaker than %f

// Ok, because f’s type is
// consistent with 0.8 and 42
String.format(f, 0.8, 42);

Listing 3: Examples showcasing the subtyping rules.

categories. Therefore, each instantiation of the type system for a
specific format string API must define its own conversion categories.

The conversion category UNUSED is required if a format argu-
ment is not used as the replacement for any format specifier. For
example, in Java "%2$s" ignores the first format argument. UN-
USED has to be provided by all instantiations of our type system.

3.4 Subtyping
Subtyping among the type qualifiers is required by the subsump-

tion rule of Section 3.1. The subtyping rules among type qualifiers
are expressed in Figures 1 and 2, and the examples in Listing 3 show
the subtyping rules in action.

The fifth subtyping rule reflects the fact that:

• If a format routine call succeeds with a certain format string, it
will also succeed if one of the format specifiers in the format
string has been replaced by a format specifier with weaker
restrictions. In the format routine call format("%d", 5), %d
can be replaced with %s and the call will still succeed.
• Format string APIs allow the programmer to pass more argu-

ments to a format routine than are actually required by the
format string (e. g. format("%d",1,1) is legal).

The last two subtyping rules combined capture the fact that if the
last conversion category is UNUSED, it is the same as omitting that
conversion category.

Note that the subtyping rules require that a subset relation is
defined among the conversion categories. The type system is param-
eterized over this subset relation. Therefore, each instantiation of
the type system must define its own subset relation.
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S≤q T
InvalidFormat≤q Unknown

Format(s0, . . . ,sn)≤q Unknown

FormatBottom≤q Format(s0, . . . ,sn)

FormatBottom≤q InvalidFormat

∀i ∈ 0..n, ti ⊆ si

Format(s0, . . . ,sn)≤q Format(t0, . . . , tn, . . . , tn+k)

Format(s0, . . . ,sn,UNUSED)≤q Format(s0, . . . ,sn)

Figure 1: Subtyping rules among type qualifiers.

Unknown

Format(s0, ...,sn) InvalidFormat

FormatBottom

Figure 2: Part of the format string type system’s qualifier hier-
archy (Figure 1), depicted pictorially.

3.5 Qualifier Introduction Rules
Format string APIs differ in the syntax used for format strings.

An instantiation of the type system must therefore provide an imple-
mentation of the qualifier function of Section 3.1, which infers the
correct qualifier for literals.

3.6 Polymorphism
We have shown how to write a routine that takes as an argument

a format string of a specific type. However, some routines are poly-
morphic with respect to their format string parameter: the routine’s
parameter types depend on the value of the format string. This can
be viewed as type polymorphism or as a dependent type.

Consider for example Listing 4. If the log method is called with
the format string "%d", then args must be an array of one “integer-
like” value. If the format string is "%f %f", then args must be an
array of two “float-like” values.

Our type system provides the FormatFor type qualifier to express
this situation. The FormatFor(x) qualifier specifies that the variable
or parameter x is an array of format arguments that matches the
format string of the qualified variable.

The FormatFor qualifier is useful for expressing the types of for-
mat routines not only in the standard library, but also for programs
that define their own format routine wrappers. Listing 4 is an exam-
ple of a format routine wrapper found in Daikon.

3.7 Security
Misuse of format string APIs can cause security vulnerabilities.

In C, this was first noticed with the exploit of a format string bug in
wu-ftpd [7].

The most severe attacks on C’s format string API take advantage
of the %n format specifier. It writes the length of the string produced
by the format routine so far, to the location pointed to by the corre-
sponding format argument. Note how this is in contrast to all other
format specifiers, which simply read the format argument. Assume
that an attacker has control over the format string. By simply chang-

public final void log (
@FormatFor("args") String format ,
Object... args) {

if (enabled) {
logfile.print(indent_str);
logfile.printf(format , args);

}
}

log("%d", 42); // Ok
log("%f %f", 1.2, 3.4); // Ok
log("%d", "str");// Compile -time error: parameter

// and argument are incompatible

Listing 4: A FormatFor type qualifier on the format parameter
of a format routine wrapper. The routine is taken from the
Daikon project.

ing the length of the format string, the attacker can control the value
that is written to %n’s format argument.

If %n’s format argument points to the function’s return address,
the attacker is able to make the program jump to code at an arbitrary
location, often a shell.

For this attack to succeed in practice, the attacker must not only
be able to provide the format string to a format routine, but must
also be able to provide an incorrect number of format specifiers (to
“search” the heap for interesting values to overwrite), and format
specifiers of the wrong type (because most format routine calls are
not intended to use %n). Tsai and Singh provide a more detailed
description of the attack [34].

Our type system restricts the format strings that can be passed into
format routines to valid format strings. This has two advantages:

• Even if the attacker can provide the format string, the string
must have the correct number and type of format specifiers,
which makes our type system effective in stopping format
string attacks [6].
• All user-provided strings can be invalid format strings. The

format string type system therefore prevents a programmer
from passing unverified user-provided strings as the format
string to a format routine like syslog. Section 5.5 discusses
how a programmer can validate user-provided input before
passing it to a format routine.

4. FORMATTER API INSTANTIATION
This section instantiates the format string type system for Java’s

Formatter format string API, which is provided by the Formatter

class [21].
The instantiation provides the three parameters of the format

string type system: conversion categories (Section 4.1), a subset
relation among conversion categories (Section 4.2). and the qualifier
function (Section 4.3).

4.1 Conversion Categories
The instantiation for Java’s Formatter API provides the following

conversion categories:

GENERAL imposes no restrictions on a format argument’s type.
Applicable for format specifiers %b, %B, %h, %H, %s, and
%S.

CHAR requires that a format argument represents a Unicode char-
acter. Specifically, char, Character, byte, Byte, short, and
Short are allowed. int or Integer are allowed if Character.is-

130



INT_AND_TIMECHAR_AND_INT

GENERAL

UNUSED

FLOATINTCHAR TIME

NULL

s⊆ t

Figure 3: The subset relation among the conversion categories,
for the instantiation of the format string type system for Java’s
Formatter API.

ValidCodePoint(value) would return true for the format ar-
gument. Applicable for format specifiers %c, and %C.

INT requires that a format argument represents an integral type.
Specifically, byte, Byte, short, Short, int, Integer, long,
Long, and BigInteger are allowed. Applicable for format
specifiers %d, %o, %x, and %X.

FLOAT requires that a format argument represents a float-like type.
Specifically, float, Float, double, Double, and BigDecimal

are allowed, but integral types are not. Applicable for format
specifiers %e, %E, %f, %g, %G, %a, and %A.

TIME requires that a format argument represents a date or time.
Specifically, long, Long, Calendar, and Date are allowed. Ap-
plicable for format specifiers ending in t and T.

UNUSED imposes no restrictions on a format argument.

In the Formatter API, the same format argument may serve as a
replacement for multiple format specifiers. In this case, the argu-
ment is restricted by the intersection of the associated conversion
categories. Therefore, every intersection of conversion categories
must be added as a new conversion category.

An example format string that requires conversion category in-
tersection is "%1$c %1$d". The first argument is restricted by both
CHAR and INT.

Only three additional conversion categories are required to repre-
sent all possible intersections of the conversion categories that were
previously mentioned:

CHAR_AND_INT = CHAR∩ INT is used if a format argument
is restricted by a CHAR and an INT conversion category. Specif-
ically, byte, Byte, short, Short are allowed. int and Integer

are allowed with restrictions.
INT_AND_TIME = INT∩TIME is used if a format argument is

restricted by an INT and a TIME conversion category. Specifi-
cally, long and Long are allowed.

NULL is used if no value of any type, except null, can be passed
as an argument. As null is a member of all non-primitive
types in Java, it is allowed by all conversion categories.

All other intersections lead to already-existing conversion categories.
For example GENERAL∩CHAR=CHAR and CHAR_AND_INT
∩INT_AND_TIME = NULL.

4.2 Subtyping
The instantiation for Java’s Formatter API provides the subset

relation among all conversion categories. Figure 3 shows the subset
relation.

4.3 Qualifier Introduction Rules
The instantiation for Java’s Formatter API provides the qualifier

function for literals. Given a literal, the qualifier function returns a
type annotation. If the literal is:

• a valid format string, the function returns a @Format annota-
tion with the appropriate conversion categories, for example
qualifier("%s %d") =@Format({GENERAL,INT}).
• an invalid format string, the qualifier function returns an

@InvalidFormat type annotation.
• the null literal, the function returns @FormatBottom.

In Java, null is an element of every non-primitive type, and
it must also be an element of every type qualifier. Consider the
following code:

<T> T f() {
return null;

}

This type checks in Java, because no matter how the caller of f

instantiates T, null is an element of T.

4.4 Implicit Casts
The following call to Java’s format routine throws an exception

at run-time:
printf("%f", 2);

This is surprising because in most contexts the Java compiler im-
plicitly casts int to float or double when necessary. For example,

Math.sqrt(2);

can be compiled and executed, even though sqrt is only defined for
doubles. In the case of printf, the compiler cannot insert an implicit
cast from float to int, because the compiler lacks information about
the expected type of the format arguments.

Exploiting the information from our type system, the compiler
could infer the expected type of format arguments, and insert appro-
priate implicit casts. We have not yet implemented this compiler
extension.

4.5 Guarantees
The instantiation for Java’s Formatter API guarantees that a for-

mat routine never throws an exception at run time, with a few caveats.
This section explains the guarantees precisely.

The instantiation guarantees that a format routine will never be
called with an invalid format string. Thus, a format routine never
throws any of the following exceptions:

• IllegalFormatException

• DuplicateFormatFlagsException

• FormatFlagsConversionMismatchException

• IllegalFormatFlagsException

• IllegalFormatPrecisionException

• IllegalFormatWidthException

• MissingFormatWidthException

• UnknownFormatConversionException

• UnknownFormatFlagsException

The instantiation also guarantees that a format routine will never
be called with missing format arguments, and thus never throws
MissingFormatArgumentException.

The instantiation also guarantees that a format routine will never
be called with format arguments of the wrong type, and thus never
throws IllegalFormatConversionException.

We now discuss erroneous format routine calls in Java that are
outside the scope of the type system. This means that a well-typed
format routine call may throw an exception.
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// IllegalFormatCodePointException
String.format("%c", (int)-1);

// NullPointerException
String.format(null);

// Callback error
class A {

public String toString() {
throw new Error();

}
}
String.format("%s", new A());

Listing 5: Errors in format routine usage that are outside the
scope of our format string type system. Our implementation
issues no errors or warnings for these invocations of format
routines.

• The only other exception directly thrown by Java’s format
routines, other than those listed above, is the IllegalFormat-
CodePointException exception. It is thrown if a conversion
category is CHAR_AND_INT or CHAR, and the type of the respec-
tive format argument a is int or Integer, and Character.is-
ValidCodePoint(a) is false.2 The type system does not track
the potential values of integers, but it could make use of an
external analysis that does so [5, 24, 33].
• If the format string is null, then a format routine will throw a

NullPointerException. Checking for null values is orthogo-
nal to restricting the values of non-null format strings. Again,
the type system could make use of an external nullness analy-
sis [24, 27, 31] to eliminate NullPointerExceptions.
• A callback method implemented by one of the format argu-

ments may throw an exception. This can happen with a format
argument’s toString method, or if the format argument im-
plements the Formattable interface and throws an exception
in the formatTo method.

Listing 5 illustrates these cases.

5. FORMATTER API IMPLEMENTATION

5.1 Checker Framework
The Format String Checker is the implementation of the instan-

tiation of the format string type system for Java’s Formatter API.
The Format String Checker is a pluggable type system built using
the Checker Framework [27]. A pluggable type system extends
Java’s type system in a backward-compatible way, to provide more
guarantees about the absence of certain errors. The Format String
Checker guarantees the absence of format-routine-related errors.

Java 8 has native support for type qualifiers, in the form of type
annotations. The Checker Framework is implemented as an anno-
tation processor for the Java compiler (javac). To run the Format
String Checker with a project’s usual build, the programmer simply
adds the -processor command-line option to the invocation of the
javac command.

The Format String Checker has no effect on run-time behavior:
javac produces the same bytecodes whether or not javac is running
the Format String Checker annotation processor.

The Format String Checker is shipped along with the Checker
Framework. Both are open-source. Installation instructions, infor-
2isValidCodePoint returns false if the parameter is not in the range
of Unicode characters, namely [0x0..0x10ffff].

mation on how to integrate them with a build system such as maven
or ant, and more can be found at http://checkerframework.org.

5.2 Optional Checks
The Format String Checker implements optional checks that issue

a warning when format routines are used in a suspicious way. These
code smells often indicate bugs, but the code never throws an ex-
ception at run time. With these optional checks enabled, the Format
String Checker exhibits lint-like behavior. Two optional checks are
implemented.

Unused Format Arguments.
With most format string APIs, it is legal to provide more argu-

ments to the format routine than are required by the format string.
In C, the reason is that the printf implementation has no way to

know how many arguments were passed to the function, because no
special terminator appears at the end of the array. Thus, printf has
no way to check that the number of arguments is correct at run time.

In Java, the format string API implementation could check whether
too many arguments were passed, but it chooses not to do so. We
speculate that this is in part to make it more similar to the C imple-
mentation, and in part to enable a variety of polymorphism, allowing
certain format strings to ignore arguments. However, we found that
unused format arguments often lead to silent failures, so the Format
String Checker provides the option to issue a warning.

Format Arguments That Can Only Be null.
It is possible to write a format string for which the only possible

argument value is null. An example is "%1$d %1$f".
If this is the intention, it is better style to replace the format

specifiers with "null", as in "null null".

5.3 Library Annotations
We annotated 14 format routines in the JDK with the @Format-

For annotation. The format routines provided by the JDK are the
format and printf methods in the Formatter, String, PrintStream,
PrintWriter, and Console classes.

These annotations are stored in a separate file that the Format
String Checker reads. This allows a user of the Format String
Checker to use their own unmodified JDK, and to easily add annota-
tions to other libraries that cannot be modified.

5.4 Implicit Annotations
The Format String Checker infers the type annotation of literals

using the qualifier function, and it performs flow-sensitive intrapro-
cedural type inference to propagate annotations within each method
body.

Overall, a programmer mainly needs to write @Format and @Format-
For annotations on types of fields and method signatures.

5.5 Run-time Checks
If a program obtains a string from an external source (such as a

configuration file), the program must test the string at run time before
passing it into a format routine. Otherwise, there is no guarantee
that the string is of the correct form, and the call may fail.

The Format String Checker provides the hasFormat(String, Con-
versionCategory...) method for this purpose. hasFormat returns
true if the argument is a syntactically valid format string with format
specifiers that match the passed conversion categories.

After a hasFormat test, the tested string is given a @Format type
in all code that is reachable from the true branch but not reachable
from the false branch.
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// Bad version , throws an exception if
// an invalid format string is used.
Scanner s = new Scanner(System.in);
String f = s.next()
System.out.printf(f, "hello", 42);

// Improved version , reports an error when
// an invalid format string is read.
Scanner s = new Scanner(System.in);
String f = s.next()
if (!hasFormat(f, GENERAL , INT)) {

// ... good error reporting here ...
System.exit(2);

}
// f is now known to be of type:
// @Format({GENERAL , INT}) String
System.out.printf(f, "hello", 42);

Listing 6: The hasFormat method dynamically checks whether
a string is valid. The Format String Checker issues a warning
about the first call to printf, but no warning about the second
call.

Listing 6 illustrates the use of hasFormat to catch an invalid format
string at the time when it is read, instead of when it is potentially
used.

6. I18N API INSTANTIATION
This section instantiates the format string type system for Java’s

i18n (internationalization) format string API, which is provided by
the MessageFormat class [22].

The instantiation provides the three parameters of the format
string type system.

Conversion Categories.
The instantiation for Java’s i18n API provides the following con-

version categories:

GENERAL imposes no restrictions on a format argument’s type.
Applicable for the implicit format specifier, e. g. {0}.

DATE requires that a format argument represents a date or time.
Specifically, instances of Number and Date are allowed. Appli-
cable for format specifiers date and time.

NUMBER requires that a format argument represents a number.
Specifically, instances of Number are allowed. Applicable for
format specifiers number and choice.

UNUSED imposes no restrictions on a format argument.

The same format argument may serve as a replacement for mul-
tiple format specifiers. No additional conversion categories are
required to represent the possible intersections of the conversion
categories.

Subtyping.
The instantiation for Java’s i18n API provides the subset relation

among all conversion categories. Figure 4 shows the subset relation.

Qualifier Introduction Rules.
The qualifier function of the instantiation for Java’s i18n API

is identical to the qualifier function defined in Section 4.3, ex-
cept that the @Format and @InvalidFormat annotations are inferred
according to the i18n API’s format string syntax. For example,
qualifier("{0,date} {1}") = @Format({DATE,GENERAL}).

s⊆ t

GENERAL

UNUSED

DATE

NUMBER

Figure 4: The subset relation among the conversion categories
required by the instantiation of our type system for Java’s i18n
API.

Implementation.
We have not yet implemented the instantiation for Java’s i18n

API, but we plan to extend the Format String Checker to support the
API, and automatically analyze translation files.

7. EVALUATION

7.1 Methodology
We evaluated the Format String Checker, an implementation

of the instantiation of our type system for Java’s Formatter API,
on 6 open-source projects. Apache Hadoop [2] is a framework
for distributed storage and processing of large-scale data. Apache
Hive is a data warehouse infrastructure built on top of Hadoop
that facilitates data summarization, querying, and analysis. Apache
Lucene [3] is a library that provides indexing and search capabilities.
Apache HBase is a non-relational distributed database modeled
after Google’s Bigtable. Daikon [8, 11] dynamically detects likely
program invariants. FindBugs [12] uses static analysis to look for
bugs in Java code.

For each project, we modified the build file to run the Format
String Checker. We then executed the Format String Checker.

For every warning, we performed one of the following three
actions. If the warning indicated a real bug, we reported it to the
maintainers. If the warning indicated a missing annotation, we wrote
@Format or @FormatFor in the source code. If the warning was a false
positive, we wrote a @SuppressWarnings("formatter") annotation.

7.2 Bugs Revealed
Running the Format String Checker revealed 104 previously un-

known bugs, as summarized in Table 1. We reported all of these
bugs. The developers fixed 102 bugs, won’t fix 1 bug because it is
in deprecated code, and have not yet commented on 1 bug.

We categorized the root causes of the bugs according to the
classification of Listing 1. When multiple root causes could be
applicable we used our judgment to choose the best category. For
example, in Hadoop SwiftUtils.debug(LOG, filename) might have
been caused because the programmer was unaware of the format
wrapper, or because he forgot to check inputs.

Untested Code.
Bugs classified as untested code would have been found had the

format routine call ever been executed.
In one Hadoop bug, a format argument of the wrong type was

passed into a format routine with a literal format string. No matter
what values the arguments are, an execution of this format routine
call always throws an exception. Despite this fact, the bug went
unnoticed. The format routine call was inside an error handling
block, that was apparently not tested.

This category contained 1 bug.
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Table 1: Case study overview. Code size is computed without blank lines or comments. Library Call Sites is the number of call sites to
library format routines (e.g. String.format). Wrapper Call Sites is the number of call sites to non-library methods annotated with
@FormatFor. Literal Call Sites is the number of call sites of format routines with a literal format string. False Positives is the number
of warnings that we suppressed with a @SuppressWarnings annotation. Table 2 categorizes false positives.

Java Lines Format Routine Call Sites Annotations False Bugs
Project of Code Total Library Wrapper Literal @Format @FormatFor Positives Submitted Fixed
Apache Hadoop 678K 332 283 49 251 20 6 22 3 2
Apache Hive 538K 213 213 0 197 0 1 7 1 0
Apache Lucene 664K 148 148 0 141 2 0 0 0 0
Apache HBase 569K 96 96 0 92 0 0 1 2 2
Daikon 205K 1583 930 653 1558 0 30 7 95 95
FindBugs 122K 133 130 3 119 7 1 3 3 3
Total 2777K 2505 1800 705 2358 29 38 40 104 102

Unchecked Inputs.
Passing an unchecked user-provided format string into a format

routine can always fail, because the string may be syntactically
invalid or may contain format specifiers that are not expected by the
format routine. Format strings can be checked using the hasFormat

method described in Section 5.5.
For example, a format string was read from a configuration file

and passed unchecked into a format routine in FindBugs. If this
format string was invalid, the format routine failed, terminating the
tool’s initialization thread. This in turn disabled some features of
the graphical user interface, such as closing the window. There was
no obvious connection between the non-working features and the
configuration file.

This category contained 15 bugs.

Unawareness of Format Wrappers.
Sometimes, programmers are not aware that they are calling a for-

mat routine. While this is unlikely for well-known format routines
like printf, it is quite common for routines that do more than just
formatting, such as format routine wrappers and C’s syslog.

Suppose that an arbitrary string is passed to a format routine, as
in printf(s). This invocation works, unless the string s contains
(legal or illegal) format specifiers. More specifically, if the string
contains % characters, then the invocation may fail at run time. The
correct way to print one string is to call printf("%s", s).

The Daikon program contained an example of this bug:
log(String.format("a=%s, b=%s, c=%s", a, b, c));

The programmer must not have been aware that Daikon’s log method
is a format routine wrapper, otherwise the programmer would have
written:

log("a=%s, b=%s, c=%s", a, b, c);

This category contained 88 bugs.

Invalid Literal Syntax.
We found no invalid literal format strings in the six programs of

our main evaluation. But, as a preliminary experiment, we ran a
search on Ohloh [26] for Java’s format routines. We downloaded the
first 10,000 resulting source files and found 21 invalid literal format
strings.

Bugs in Daikon.
Daikon contained more bugs than the other projects. This may be

related to the fact that Daikon uses by far the most format routines of
any of the projects (Format Routine Call Sites columns of Table 1),
giving more opportunities for error. Daikon is also the project that
produces the largest and most diverse textual output. These two
facts may be correlated.

Table 2: False positive warnings in our case studies. The cate-
gories are described in Section 7.4.

Constant Dynamic Width Exception Misc.
Project Propagation any value non-neg. Handled
Apache Hadoop 10 4 2 0 6
Apache Hive 3 0 2 1 1
Apache Lucene 0 0 0 0 0
Apache HBase 0 0 0 0 1
Daikon 0 0 6 0 1
FindBugs 0 0 0 3 0
Total 13 4 10 4 9

7.3 Usage Effort
The only code changes introduced by us were additional annota-

tions (the sum of Annotations and False Positives in Table 1).
The ratio of annotations to bugs is very favorable at 1.0 (7.8

without Daikon). This means that for every annotation written, the
programmer is on average rewarded by finding 1.0 new unknown
bugs (0.13 without Daikon). The ratio of annotations to format
routine call sites is only 0.04 (0.08 without Daikon).

Our methodology required us to run the Format String Checker,
identify the right annotations to write in the cases where they were
not already inferred automatically, and understand the false positives.
In our evaluation, this was less time-consuming than learning how
to build the evaluated projects.

7.4 False Positives
Like every conservative static analysis, the Format String Checker

issues false positive warnings. In these cases, we manually inspected
the code and verified that it cannot fail at run time.

Table 2 categorizes the false positives generated by our type
system. We have designed analyses that would eliminate 31 of the
40 false positives. Once these are implemented, the Format String
Checker’s precision (bugs/(bugs+false positives)) would increase
from 72% to 92%, the lines of code per false positive would increase
from 70K to 308K, and the format routine call sites per false positive
would increase from 63 to 278.

Compile-Time Constants.
This category contains all false positives in which the format

string’s value is a compile-time constant. This includes format
strings built by concatenating literal strings. For example:

format("%"+"d", n);

These false positives could be eliminated by using constant prop-
agation.
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<T> void print(String format , Iterator <T> iter) {
while (iter.hasNext()) {

System.out.format(format , iter.next());
}

}

List <Byte > l = ...
print("%X", l.listIterator());

Listing 7: False positive in Hadoop. The restrictions of
the format string depend not on the main type qualifier on
the function argument, but on the type qualifier on the type
argument of the function argument.

Dynamic Width.
This category contains all false positives that are due to a for-

mat string being computed by concatenating compile-time constant
strings with the printed representations of non-constant integers.
This enables a format specifier’s width or precision to be controlled
at run time, as in the following example found in Hadoop:

format("%"+width+"f", n);

In cases like the one above, the computed string is a valid format
string for all run-time values of the integer expression. These false
positives could be eliminated by a special case in the Format String
Checker.

In other cases, the computed string is a valid format string only if
the integer expression has a non-negative value, because the format
string already contains a - flag (indicating left-justification). Here is
an example found in Hive:

format("%-"+width+"f", n);

These false positives could be eliminated by adding a type system
that tracks the potential values of integers [5, 24, 33].

Exception Handled.
This category contains false positives where the Format String

Checker correctly warns that a format routine call may throw an
exception, but the exception is caught by a try-catch block and thus
does not cause a user-visible failure.

The try-catch block exists for the purpose of error handling, like
that illustrated for the hasFormat method in Section 5.5. In all the
cases that we found in our evaluation, a user-provided format string
was the reason why an exception may have been raised.

These false positives could be eliminated if the Format String
Checker suppressed warnings in the bodies of try-catch constructs
that catch and do not re-throw IllegalFormatException.

Miscellaneous.
This category contains all other false positives. This category

primarily consists of complex format string computations. It also
includes a case in Hadoop where failure of a format method call was
intended to terminate the program with a stack trace, as a diagnostic
for a sophisticated user such as a programmer.

Another example is a polymorphic format routine wrapper in
Hadoop, illustrated by Listing 7. The restrictions on the format
string depend on the polymorphic type of the function’s argument.
A conservative approximation, using the GENERAL conversion
category, yields warnings, and in this case they were false positives.

7.5 Optional Checks
The optional checks of Section 5.2 issued no warnings for the

six programs of our main evaluation. We did find 76 bugs in other

programs from Ohloh that would have been revealed by the optional
warnings. An example is provided in Listing 1.

8. RELATED WORK
FORTRAN was the first language to standardize a format string

API, in 1966 [1]. C standardized printf in 1989 [20]. Modern
languages continue to provide format string APIs. Java provides
the Formatter and MessageFormat classes, PHP the prinft function,
OCaml the Printf module, Haskell the Printf package, C# the
String.Format method, Go the fmt package, and Rust the format!

macro.
Format string mistakes are an important source of bugs. As a

result, others have addressed the problem before us.

Lexical Analysis.
The PScan [10] tool runs a lexical analysis on C files and finds,

among others, code lines that look as if they are calling the printf

function without a literal format string.
The main advantage of such techniques is that they can be run

on projects without the need to become familiar with the project’s
build process or library dependencies. One disadvantage is the lack
of guarantees about the absence of errors. The lack of sophisticated
reasoning also leads to many false positives.

Static Taint Tracking.
A value that was provided by an untrusted source (such as user

input) is regarded as tainted. The solution by Shankar et al. [29]
disallows tainted strings to be used as the format strings in format
routines and format routine wrappers.

Because the approach uses only static analysis, there is no over-
head at run time. The downside of this approach is that it only
checks that the format string is not tainted. A format routine call
may still fail with invalid syntax or the wrong number or type of ar-
guments. This technique also hinders internationalization, as format
strings that are read from internationalization files are tainted.

Analysis of Literal Format Strings.
Some compilers and languages, such as GCC [15] and OCaml

[25], can check at compile time whether the number and type of
arguments passed to a format routine are correct. GCC supports a
function attribute [16] to extend these checks to user-defined format
routines. The analysis is not sophisticated enough to check these
properties for anything but literal format strings.

Dependent Type Systems.
Gronski et al. show how to implement a simple printf function

in the dependently typed language SAGE [17]. The function’s type
requires a proof at every call site that the right type and number of
arguments is passed.

SAGE can use static analysis to automatically discharge some of
these proof obligations, in particular for short literal format strings.
No experiments have been done to evaluate how well SAGE’s static
analysis performs on programs that call their implementation of
printf. If the analysis run by SAGE fails, it generates a run-time
check for the proof obligation.

Our type system goes beyond Gronski et al.’s printf by sup-
porting format routines that handle invalid format strings, format
specifiers with argument selection, and format specifiers that allow
multiple types. The type of Gronski et al.’s printf shows similarities
to our qualifier function. Our notion of InvalidFormat and conver-
sion categories could potentially be used to extend their printf

implementation.

135



One can interpret our type system as a concrete instance of a
dependent type system. On the one hand, it is limited to format string
APIs, but it is also simpler, easier to use (no background in type
theory is required), and more tractable to implement. Dependent
types are not supported by any mainstream language. Type qualifiers,
on the other hand, are a powerful but relatively unintrusive way of
extending a language’s type system. For this reason even Java,
known for its conservatism when adapting new language features,
has included type annotations with Java 8 [23].

Dynamic Checking.
Safer implementations of C’s printf have been proposed. These

make printf act more like Java’s format routines, throwing immedi-
ate run-time errors rather than suffering silent or delayed failures.

FormatGuard [6] uses GCC-specific properties of macros to count
the arguments passed to printf, and ensures at run time that they
match the arguments required by the format string.

Libsafe 2.0’s [34] implementation of printf terminates the pro-
gram if certain format arguments point to suspicious locations on
the stack, such as a function’s return address.

The approach by Ringenburg et al. [28] uses a combination of
static analysis and dynamic checks to ensure that a format routine
only modifies a memory location x if the programmer explicitly
passed a pointer to x.

This kind of solution is easily deployed, often without even re-
compiling the target application, and it protects against format string
exploits in unsafe languages.

On the other hand, dynamic analysis gives no guarantees about
the absence of errors, and the program may fail or crash at run time.
Furthermore, existing dynamic analysis do not guard against all
kinds of format routine errors.

Alternative Formatting APIs.
An alternative to making existing format string APIs safer, is to

replace them with a different API.
C++ introduced iostreams [19], a type-safe alternative to printf.

Continuation-based approaches can be used for languages with ML-
style type systems [4, 9, 18].

While these replacements are easier to type-check, format string
routines are more readable and support internationalization. Con-
sider the internationalization examples from Listing 8, that compare
format string APIs with alternative APIs. The alternatives make
translation hard because variables split up the sentences that have
to be translated. In the first example, a translator must inspect the
context of the string to understand that "bugs" has to be translated
to "Bugs entdeckt". Yet worse, in the second example, the vari-
ables have to be reordered in the translation — a task unachievable
without recompilation.

Static Analysis of Domain Specific Languages.
A format string can be thought of as a program written in a DSL,

embedded inside a string in a host language.
Previous work investigated static analysis for embedded DSLs

like SQL queries [14, 32] and regular expressions [30].

Summary.
In contrast to previous work, our format string type system stati-

cally guarantees that calls to format routines never fail, is tractable
to understand and implement, supports internationalization, has a
low annotation burden, and suffers few false positives.

// 1a. Java i18n API
format("We detected {0,number} bugs", n);
format("Wir haben {0,number} Bugs entdeckt", n);

// 1b. ML continuation passing style
// Parts of sentences cannot be translated
fmt (lit "We detected " oo int oo lit " bugs") n;
fmt (lit "Wir haben " oo int oo

lit " Bugs entdeckt") n;

// 2a. Java Formatter API
printf("It’s a %s %s", adj, noun);
printf("Es un %2$s %1$s", adj, noun);

// 2b. C++ iostreams
// Recompilation required
cout << "It’s a " << adj << " " << noun;
cout << "Es un " << noun << " " << adj;

Listing 8: Comparison of format string APIs and alternative
APIs for internationalization. 1) The verbs "detected" and
"entdeckt" are in different positions relative to the variable.
Thus, sentences have to be translated as a whole; their parts
cannot be translated independently. 2) The variables adj and
noun have to be reordered. Thus, the code cannot be translated
without recompilation.

9. CONCLUSION
We created a qualifier-based type system that guarantees that

format routine calls never fail at run time. The type system is
applicable to many format string APIs, and could for example be
instantiated for C, C#, Java, or Go.

We instantiated this type system for Java’s Formatter format
string API. An implementation is available for download at http:
//checkerframework.org. Our tool generates few false positives,
has a low annotation burden, and found 104 bugs in 6 large and
well-maintained, open-source projects.
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