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An Empirical Study of Fault Localization Families
and Their Combinations

Daming Zou, Jingjing Liang, Yingfei Xiong, Michael D. Ernst, and Lu Zhang

Abstract—The performance of fault localization techniques is critical to their adoption in practice. This paper reports on an empirical
study of a wide range of fault localization techniques on real-world faults. Different from previous studies, this paper (1) considers a
wide range of techniques from different families, (2) combines different techniques, and (3) considers the execution time of different
techniques. Our results reveal that a combined technique significantly outperforms any individual technique (200% increase in faults
localized in Top 1), suggesting that combination may be a desirable way to apply fault localization techniques and that future
techniques should also be evaluated in the combined setting. Our implementation is publicly available for evaluating and combining
fault localization techniques.
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1 INTRODUCTION

THE goal of fault localization is to identify defective pro-
gram elements related to software failures. Automated

fault localization uses static and run-time information about
the program to identify program elements that may be the
root cause of the failure. This paper considers seven families
of fault localization techniques, which take as input seven
different types of information:

• Spectrum-based fault localization (SBFL) [1], [2], [3]:
utilizing test coverage information

• Mutation-based fault localization (MBFL) [4], [5]:
utilizing test results from mutating the program

• Dynamic program slicing [6], [7]: utilizing dynamic
program dependencies

• Stack trace analysis [8], [9]: utilizing crash reports
• Predicate switching [10]: utilizing test results from

mutating the results of conditional expressions
• Information-retrieval-based fault localization (IR-

based FL) [11]: utilizing bug report information
• History-based fault localization [12], [13]: utilizing

the development history

Some techniques compute a suspiciousness score for
each program element and can generate a ranked list of
elements, such as spectrum-based fault localization. Other
techniques only mark a set of elements as suspicious, such
as dynamic program slicing.

The performance of fault localization is critical to its
adoption in practice. Fault localization techniques are help-
ful only when the root causes are ranked at a high absolute
position [14], [15], such as within the top 5 [16]. A number
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of empirical studies [17], [18], [19], [20] have evaluated the
performance of SBFL and MBFL. However, no empirical
study has evaluated the performance of other techniques
on real-world faults, as far as we know.

This paper reports on an empirical study of a wide
range of fault localization techniques from different fam-
ilies. Following the insight from existing work [17] that
the performance of fault localization techniques may differ
between real faults and artificial faults, our study is based
on 357 real-world faults from the Defects4J dataset [21].

Our study has two main novel aspects. First, since
techniques in different families use different information
sources, it is interesting to know how much these techniques
are correlated to each other. We measured the correlation
between different pairs of techniques and explored the pos-
sibility of combining these techniques using the learning to
rank model [22]. In contrast, previous work usually consid-
ers techniques in one or a few families [23], e.g., combining
different formulae in SBFL [24] or combining SBFL and
history-based techniques [25], and our work, CombineFL,
is the first to explore combinations of a wide range of
techniques that rely on different information sources.

The second novelty is that we measured the time cost of
different fault localization techniques. Existing studies have
shown that efficiency and scalability are both critical to the
adoption of fault localization techniques [16]. Thus, a good
fault localization approach must balance between localiza-
tion performance and cost. We have considered different
usage scenarios to find the best balance in practice.

We also improved the measurement of fault localization
performance by designing a new measurement Einspect that
calculates the expected rank when multiple faulty elements
are presented in ties.

Finally, we have released our experimental infrastruc-
ture CombineFL-core and the fault localization data of the
studied techniques, which can be used by other researchers
to evaluate fault localization techniques and to combine
different fault localization techniques.

Our study has the following main findings:
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• On real-world faults, all techniques except for
Bugspots and BugLocator localize more than 6% of
faults in the top 10. The best family, SBFL, localizes
about 44% faults of in the top 10.

• Most techniques in our study are weakly correlated
with each another, especially those in different fami-
lies, indicating the potential of combining them.

• CombineFL improves performance significantly:
200/63/51/31% increase in localized faults in the
top 1/3/5/10, compared to the best standalone tech-
nique.

• CombineFL also outperforms the four state-of-the-
art fault localization approaches, MULTRIC [24], Sa-
vant [26], FLUCCS [25], and TraPT [27] by 133%,
167%, 11% and 18% in Top 1 correspondingly.

• Time costs of different fault localization families can
be categorized into several levels. When using a
technique at one time cost level, it does not affect
run time to include all techniques from the preceding
levels, but it does improve fault localization effective-
ness.

• The above findings hold at both statement and
method granularities — that is, when the FL tech-
nique is identifying suspicious statements and when
it is identifying suspicious methods.

To sum up, the paper makes the following contributions.

• The first empirical study that compares a wide range
of fault localization techniques on real faults.

• A combined technique, CombineFL, which is con-
figurable based on the time cost, and the peak per-
formance of the technique significantly outperforms
standalone techniques.

• An infrastructure, CombineFL-core, for evaluating
and combining fault localization techniques for fu-
ture research.

The rest of the paper is organized as follows. Section 2
presents background about several fault localization fami-
lies. Section 3 gives the empirical evaluation methodology.
Section 4 shows the experiment results and answers the
research questions. Section 5 discusses related research.
Section 6 discusses the implications for future research.
Section 7 concludes.

2 BACKGROUND

Commonly, a fault localization technique takes as input a
faulty program and a set of test cases with at least one
failed test, and it generates as output a potentially ranked
list of suspicious program elements. Recently, some ap-
proaches [11], [13], [28] considered other input information,
such as the bug report or the development history. This pa-
per also considers these approaches. The common levels of
granularity for program elements are statements, methods,
and files. This paper uses statements as program elements,
except for Sections 4.5 and 4.6 which compare results for
different granularities.

This section first introduces seven families of fault local-
ization techniques, and then introduces the learning to rank
model for combining different techniques.

TABLE 1
Input Values for Spectrum-Based Fault Localization

ef Number of failed tests that execute the program element.
ep Number of passed tests that execute the program element.
nf Number of failed tests that do not execute the program element.
np Number of passed tests that do not execute the program element.

2.1 Spectrum-Based Fault Localization
A program spectrum is a measurement of run-time be-
havior, such as code coverage [3]. Collofello and Cousins
proposed that program spectra be used for fault localiza-
tion [29]. Comparing program spectra on passed and failed
test cases enable ranking of program elements. The more
frequently an element is executed in failed tests, and the less
frequently it is executed in passed tests, the more suspicious
the element is.

Typically, an SBFL approach calculates suspiciousness
scores using a ranking metric [30], [31], [32], or risk eval-
uation formula [1], [33], based on four values collected from
the executions of the tests, as shown in Table 1. For example,
Ochiai [2] and DStar [34] are effective SBFL techniques [17],
[33], [35] using the formulas:

Ochiai(element) =
ef√

(ef + nf ) · (ef + ep)

DStar(element) =
e∗f

ep + nf

DStar’s notation ‘*’ is a variable, which we set to 2 based on
the recommendation from Wong et al. [34].

2.2 Mutation-Based Fault Localization
Mutation-based fault localization uses information from
mutation analysis [36], rather than from regular program
execution, as inputs to its ranking metric or risk evalua-
tion formula. While SBFL techniques consider whether a
statement is executed or not, MBFL techniques consider
whether the execution of a statement affects the result of
a test by injecting mutants. A mutant typically changes
one expression or statement by replacing one operand or
expression with another [17]. If a program statement affects
failed tests more frequently and affects passed tests more
rarely, it is more suspicious.

For a statement s, a MBFL technique:

• generates a set of mutants m(s) =
〈m1(s),m2(s), ...〉,

• assigns each mutant a score Smutant(mi(s)), and
• aggregates the scores to a statement suspiciousness

score Sstatement(s).

MUSE [5] and Metallaxis-FL [4] are two state-of-the-art
MBFL techniques.

MUSE assigns each mutant a suspiciousness score as
follows:

Smutant(mi) = failed(mi)−
f2p

p2f
· passed(mi)

where failed(mi) is the number of test cases that failed on
the original program but now pass on a mutant mi, and
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likewise for passed(mi). f2p is the number of test cases
that change from fail to pass on any mutant, and likewise
for p2f . To aggregate mutant suspiciousness scores into a
statement suspiciousness score, MUSE uses Sstatement(s) =
Avgmi∈m(s)Smutant(mi).

Metallaxis assigns each mutant a suspiciousness score
using the Ochiai formula:

Smutant(mi) =
failed(mi)√

totalfailed · (failed(mi) + passed(mi))

where failed(mi) is the number of test cases that failed
on the original program and now the output changes on
a mutant mi, and similarly for passed(mi). totalfailed is the
total number of test cases that fail on the original program.

A mutant is said to be killed by a test case if the test
case has different execution results on the mutated program
and the original program [37]. A test case that kills mutants
may carry diagnostic information. Note that the definition of
killed in MUSE and Metallaxis is different. In MUSE, a failed
test case must change to passed to count as killing a mutant.
In Metallaxis, a failed test case only needs to generate a
different output (may still be failed) to count as killing a
mutant.

2.3 Program Slicing

A slicing criterion is a set of variables at a program location;
for example, they might be variables that have unexpected
or undesired values. A program slice is a subset of program
elements that potentially affect the slicing criterion [38].

Program slicing was introduced as a debugging tool to
reduce a program to a minimal form while still maintaining
a given behavior [39]. Static slicing only uses the source code
and accounts for all possible executions of the program.

Dynamic slicing focuses on one execution for a specific
input [40]. The key difference between dynamic slicing and
static slicing is that dynamic slicing only includes executed
statements for the specific input, but static slicing includes
possibly-executed statements for all potential inputs. Since
dynamic slices are significantly smaller, they are more suit-
able and effective for program debugging [41].

The following example shows the difference between
static slicing and dynamic slicing.

int collatz(int x) {
1: int res;
2: if ((x % 2) == 0)
3: res = x / 2;
4: else
5: res = x * 3 + 1;
6: return res;
}

The collatz function returns x/2 when x is even and
returns 3x + 1 when x is odd. Let the slicing criterion be
res at line 6. Static slicing includes statements in both the
then and else block, because both may affect the value of
res. Dynamic slicing considers a particular execution of the
program. For example, for x=3, the dynamic slice would
contain line 5, but would not contain line 3.

2.4 Stack trace Analysis

A stack trace is the list of active stack frames during ex-
ecution of a program. Each stack frame corresponds to a
function call that has not yet returned. Stack traces are use-
ful information sources for developers during debugging
tasks. When the system crashes, the stack trace indicates the
currently active function calls and the point where the crash
occurred.

2.5 Predicate Switching

Predicate switching [10] is a fault localization technique
designed for faults related to control flow. A predicate, or
conditional expression, controls the execution of different
branches. If a failed test case can be changed to a passed test
case by modifying the evaluated result of a predicate, the
predicate is called a critical predicate and may be the root
cause of the fault.

The technique first traces the execution of the failed test
and identifies all instances of branch predicates. Then it
repeatedly re-runs the test, forcibly switching the outcome
of a different predicate each time. If switching a predicate
produces the correct output, the predicate is potentially the
cause of the fault and is called a critical predicate.

Predicate switching is similar to MBFL techniques, as
they both apply mutations and examine the change of the
execution results. We treat predicate switching as a different
family because predicate switching mutates the control flow
rather than the program itself. For example, if a conditional
expression has been evaluated multiple times during the
program execution, predicate switching inverses one evalu-
ation at a time instead of all evaluations. Furthermore, pre-
vious work [17], [27] does not include predicate switching
as an MBFL approach as far as we are aware.

2.6 Information Retrieval-Based Fault Localization

Information Retrieval (IR) was initially used to index text
and search for documents [42]. Recent studies [11], [28], [43],
[44] have applied information retrieval techniques to fault
localization. These approaches take as input a bug report,
rather than a set of test cases, and generate as output a list
of relevant source code files [45].

These approaches treat the bug reports as a query and
then rank the source code files by their relevance to the
query. Unlike aforementioned fault localization families, IR-
based fault localization techniques do not require program
execution information, such as passed and failed test cases.
They locate relevant files based on the bug report [11].

2.7 History-Based Fault Localization

Program files that contained more bugs in the past are likely
to have more bugs in the future [46]. Development history
can be used for fault prediction, which ranks the elements in
a program by their likelihood to be defective. Traditionally,
fault prediction and fault localization are considered as dif-
ferent problems, and fault prediction runs before any failure
has been discovered [12]. However, since they both produce
a list of suspicious elements, this paper also considers fault
prediction techniques.
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We consider a simple fault prediction technique intro-
duced by Rahman et al. [13]. This technique ranks files by
the number of fixing changes applied on them. This simple
technique has the same utility for inspections as a more
sophisticated fault prediction technique, FixCache [12].

2.8 Learning to Rank
Learning to rank techniques train a machine learning model
for a ranking task [47]. Learning to rank is widely used in
Information Retrieval (IR) and Natural Language Processing
(NLP) [48]. For example, in document retrieval, the task
is to sort documents by their relevance to a query. One
way to create the ranking model is with expert knowledge.
By contrast, learning to rank techniques improve ranking
performance and automatically create the ranking model,
integrating many features (or signals).

Liu categorized learning to rank models into three
groups [48]. Pointwise techniques transform the rank prob-
lem into a regression or ordinal classification problem for
the ordinal score in the training data. Pairwise techniques
approximate the problem by a classification problem: cre-
ating a classifier for classifying item pairs according to
their ordinal position. The goal of pairwise techniques is
to minimize ordinal inversions. Listwise techniques take
ranking lists as input and evaluate the ranking lists directly
by the loss functions.

Recently, Xuan and Monperrus showed that learning to
rank model can be used to combine different formulae in
SBFL [24]. The basic idea is to treat the suspiciousness score
produced by different formulae as features and use learning
to rank to find a model that ranks the faulty element as high
as possible. In this paper we apply learning to rank similarly
to combine techniques from different families.

3 EXPERIMENTAL METHODOLOGY

3.1 Experiment Overview and Research Questions
Our experiments investigate the following research ques-
tions.

RQ1: How effective are the standalone fault localization
techniques?

This question helps us to understand the performance of
widely-used techniques.

RQ2: Are these techniques correlated? What is their corre-
lation?

This question explores the possibility of combining dif-
ferent techniques. If different techniques are not correlated,
then combining them may archive better performance.

RQ3: How effectively can we combine these techniques
using learning to rank?

This question considers a specific way of combining
different techniques, and evaluates the performance of the
combined technique.

RQ4: What is the run-time cost of standalone techniques
and combined techniques?

The previous question only concerns the effectiveness
of the combined techniques. This question considers the
efficiency. The best technique for a given use case balances
effectiveness and efficiency.

TABLE 2
Defects4J Dataset (version 1.0.1). ‘Faults’ is the number of defective

versions of the program. ‘LoC’ is average lines of code for each buggy
version of the project, as reported by cloc1.

Project Faults LoC

Apache Commons Math 106 103.9k
Apache Commons Lang 65 49.9k
Joda-Time 27 105.2k
JFreeChart 26 132.2k
Google Closure compiler 133 216.2k

Total 357 138.0k

RQ5: Are the results the same for statement and method
granularity?

We shall answer the preceding four questions first at
statement granularity, which is often used in evaluating
fault localization approaches [33], [49], [50], [51] and in
downstream applications such as program repair [52], [53],
[54]. On the other hand, several studies have suggested that
methods may be a better granularity for developers [26],
[55], so we repeated the experiments for the above questions
at the method granularity.
RQ6: How effective the combined approach is when com-
pared with the state-of-the-art techniques?

Recently, a set of new fault localization approaches were
proposed. Interestingly, they also use learning to rank to
combine existing techniques or other features. This research
question compares the performance of our combined ap-
proach to these approaches.

3.2 Experimental Subjects
Our experiments evaluate fault localization techniques on
the Defects4J [21] benchmark, version v1.0.1 (Table 2). De-
fects4J contains 357 faults minimized from real-world faults
in five open-source Java projects. Many previous studies on
fault localization used Defects4J as their benchmarks [17],
[26], [56]. For each fault, Defects4J provides a faulty version
of the project, a fixed version of the project, and a suite of test
cases that contains at least one failed test case that triggers
the fault.

3.3 Studied Techniques and Their Implementations
A fault localization technique outputs one of the following:

• A ranked list. Examples include the SBFL, MBFL,
stack trace, and history-based families, and one slic-
ing technique.

• A suspicious set. The techniques do not distinguish
the suspiciousness between these elements. Exam-
ples include the predicate switching family and some
slicing techniques.

3.3.1 SBFL and MBFL
Pearson et al. [17] studied the performance of SBFL and
MBFL on Defects4j, and our experiments reuse their in-
frastructure and the collected test coverage information. For
SBFL, we used only the two techniques that performed best

1. https://github.com/AlDanial/cloc

https://github.com/AlDanial/cloc
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in Pearson et al.’s study: Ochiai [2] and DStar [34]. The
parameter ∗ in DStar is set to 2. For MBFL, we used the
two mainstream MBFL techniques, MUSE [5] and Metal-
laxis [4]. The formulae for calculating the suspiciousness are
introduced in Sections 2.1 and 2.2.

3.3.2 Dynamic Slicing
The JavaSlicer dynamic slicing tool [57] is based on the
dynamic slicing algorithm of Wang and Roychoudhury [58],
[59], with extensions for object-oriented programs. The
JavaSlicer implementation attaches to the program as a Java
agent and rewrites classes as they are loaded into the Java
VM.

A test fails by throwing an exception, either because of
a violated assertion or a run-time crash. If there is only a
single failed test, we use the execution of the statement that
throws the exception as the slicing criterion. The slice then
contains all statements that may have affected the statement
that throws the exception.

If there are multiple failed tests, our experiments apply
three strategies from a previous study [60] to utilize multi-
ple slices: union, intersection, and frequency. The first two
strategies calculate the union or the intersection of the slices
and report a set of statements as results. The frequency
strategy calculates the inclusion frequency for each state-
ment and reports a ranked list of statements based on the
frequency. The more frequently a statement is included in
the slice of a failed test, the more suspicious the statement is.

3.3.3 Stack Trace Analysis
According to Schroter et al. [61], if the stack trace includes
the faulty method around 40% of the faults can be located
in the very first frame, and 90% of the faults can be located
within the top 10 stack frames.

We defined a stack trace technique based on this insight.
If the exception is thrown by the testing framework (such as
JUnit), then the technique returns an empty suspicious list.
Otherwise, we call the fault a crash fault and the suspicious
list consists of the frames in the stack trace. The frame at
depth d is given suspiciousness score 1/d score. The score of
an element (method) is its maximum score in all failed tests.

3.3.4 Predicate Switching
We re-implemented Zhang et al.’s method of predicate
switching for Java (the original implementation was for
x86/x64 Linux binaries) [10]. Our implementation of the
technique is based on Eclipse Java development tools (JDT).
The technique first traces the execution of the failed test case
and records all executed predicates. Then it forcibly switches
the outcome of a predicate at run time. Once switching
a predicate makes the failed test case pass, it reports the
predicate as a critical predicate. The technique produces a
set of critical predicates as the suspicious program elements.

3.3.5 IR-based Fault Localization
BugLocator [11] ranks all files based on the textual similarity
between the initial bug report and the source code file using
a revised Vector Space Model (rSVM).

Since the granularity in BugLocator is source file, our
implementation uses the file score for all statements in it.

For example, if BugLocator reports that file1.java has suspi-
ciousness score 0.2, then it marks every executable statement
in file1.java with suspiciousness score 0.2.

3.3.6 History-Based Fault Localization

Bugspots2 is an implementation of Rahman et al.’s algo-
rithm [13]. Bugspots collects revision control changes with
descriptions related to ‘fix’ or ‘close’. The tool ranks more
recent bug-fixing changes higher than older ones.

the granularity in Bugspots is source file. Our implemen-
tation maps the score of a suspicious file to all executable
statements as in Section 3.3.5.

Bugspots supports only Git repositories. However, the
version control system of Chart in Defects4J uses a private
format of Subversion and neither git-svn3 nor svn2git4 can
convert this format. As a result, our experiments apply
Bugspots on the Math, Lang, Time, and Closure projects.

3.3.7 Learning to Rank

For the learning to rank model, our experiments associate
each program statement with a vector

Suspiciousness(e) = 〈st1(e), st2(e), ...〉

where e is a program element, and sti(e) is the suspicious-
ness score of e reported by technique ti. The vector values
are normalized to be within the domain [0, 1], where 1 is
most suspicious and 0 is least suspicious.

Then our experiments apply rankSVM [62] to train the
learning to rank model. RankSVM is an open-source learn-
ing to rank tool based on LIBSVM [63]. It implements a
pairwise learning to rank model and has been used in pre-
vious fault localization work [25], [26]. It generates pairwise
constraints, e.g., efaultyi > ecorrectj , and the training goal is to
rank the faulty elements at the top, i.e., maximize satisfied
pairwise constraints.

3.4 Measurements

To evaluate fault localization techniques, we need to mea-
sure their performance quantitatively. Previous studies use
similar metrics for this measurement, but they may differ in
how they handle cases such as insertion or multiple faulty
elements. This section describes the measurement methods
used in our study.

3.4.1 Determining Faulty Elements

To understand how faulty elements are ranked, we need
first to determine which elements in the program are faulty.
Following common practice [17], [25], [26], we define the
faulty program elements as those modified or deleted in
the developer patch5 that fixes the defect. In the following
example patch, i.e., the diff between the fixed and the faulty
program, the second line is considered faulty.

2. https://github.com/igrigorik/bugspots
3. https://git-scm.com/docs/git-svn
4. https://github.com/nirvdrum/svn2git
5. In the Defects4J dataset, the developer patch has been minimized

to eliminate changes unrelated to the bug fix.

https://github.com/igrigorik/bugspots
https://git-scm.com/docs/git-svn
https://github.com/nirvdrum/svn2git
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1 if (real == 0.0 && imaginary == 0.0) {
2- return NaN;
3+ return INF;
4 }
5
6 if (isInfinite) {
7 return ZERO;
8 }
9 ...

However, sometimes a developer patch only inserts new
elements rather than modifies or deletes old elements. To
deal with insertions, we follow the principle used by Pear-
son et al. [17]: a fault localization technique should report
the element immediately following the inserted element.
The rationale is that the immediately following element
indicates the location that a developer should change to fix
the defect.

3.4.2 Multiple Faulty Elements
Many defective programs have multiple defective elements.

In Defects4J, there are two common reasons for multiple
faulty elements.

• To repair a fault, the programmer changed multiple
elements.

• The patch of a fault not only repairs the current fault
but also repairs cloned bugs, i.e., the same bug in
cloned code snippets.

Following existing work [17], we consider a fault to
be localized by a fault localization technique if any faulty
element is localized. It is assumed that if a fault localization
technique gives any of the faulty elements, the developer
can deduce the other faulty elements. Furthermore, when
multiple cloned bugs exist, the developer can re-run fault
localization to find the others or can use techniques for
repairing cloned bugs [64], [65] to discover and fix other
bugs.

3.4.3 Elements with the Same Score
Fault localization techniques often assign the same suspi-
ciousness score to elements, either because the techniques
are designed to only locate elements but not to rank them
(e.g., union strategy in slicing), or because the techniques
cannot distinguish some elements (e.g., statements in a basic
block in SBFL). When presenting the suspicious list to the
user, the elements with the same score are presented in
an arbitrary order, and thus we need to consider the order
when measuring the performance.

Previous studies [17], [45], [66] treat elements with the
same score as all the nth element in the list, where n is
their average rank. However, this method may unnecessarily
lower their ranks when multiple faulty elements exist. For
example, suppose a set of tied elements are all faulty. Then
regardless how this set is sorted, the user will find a faulty
element at the first element in the set, rather than at the
average rank.

To overcome this problem, in our study we measure
the performance of a fault localization by the expected
rank of the first faulty element, assuming tied elements
are arbitrarily sorted. More concretely, assuming a group
of t tied elements starting at Pstart that contains tf faulty

elements and there is no faulty element before Pstart , we
define Einspect , which measures the expected rank of the
first faulty element using the following formula.

Einspect = Pstart +

t−tf∑
k=1

k

(
t−k−1
tf−1

)(
t
tf

)
The equation within the summation is the probability for

the top-ranked faulty element to appear in the kth location
after Pstart : that is, the number of all combinations where
the first faulty element is at k (

(
t−k−1
tf−1

)
) divided by the

number of all combinations (
(
t
tf

)
).

Notice that, when there is only one faulty element, i.e.,
tf = 1, the equation reduces to:

Einspect = Pstart +
t− 1

2

which is the same as average rank, also average accuracy,
in existing studies [26], [27].

Also, when all tied elements are faulty, i.e., tf = t, the
equation reduces to:

Einspect = Pstart

which indicates the first element in the tied set.

3.4.4 Metrics

So far we have defined how to calculate the expected rank of
the first faulty element. Based on this definition we use two
metrics to measure the performance of a fault localization
technique.

Einspect@n counts the number of the 357 faults that
were successfully localized within the top n positions of
the resultant ranked lists, i.e., the number of faults that
Einspect values on these faults are less than or equal to n. It is
adapted from metric acc@n [26], [27]. A previous study [14]
suggested that programmers will only inspect the top few
positions in a ranked list, and Einspect@n reflects this.

EXAM [67] is the percentage of elements that have to
be inspected until finding a faulty element, averaged across
all 357 faults uniformly. It is a commonly used metric for
fault localization techniques [17], [30], [68]. The EXAM score
measures the relative position of the faulty element in the
ranked list. Smaller EXAM scores are better.

The Einspect@n metric is a more meaningful measure of
fault localization quality than the EXAM score. A developer
will only examine the first few reports from a tool (say, 5
or 10) and a program repair tool will only examine the first
200 or so reports. Therefore, any reports other than these are
irrelevant and can be disregarded, yet they are most of the
reports and dominate the EXAM score. This paper includes
the EXAM score to enable comparison with earlier papers.

4 EXPERIMENT RESULTS

Our experiments investigate and answer six research ques-
tions. The granularity of all experiments is statements, ex-
cept in Sections 4.5 and 4.6.
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TABLE 3
The Performance of Standalone Techniques on all 357 faults. Boldface

indicates the best-performing techniques.

Family Technique Einspect EXAM@1 @3 @5 @10

SBFL Ochiai 16 (4%) 81 (23%) 111 (31%) 156 (44%) 0.033
DStar 17 (5%) 84 (24%) 111 (31%) 155 (43%) 0.033

MBFL Metallaxis 23 (6%) 78 (22%) 103 (29%) 129 (36%) 0.118
MUSE 24 (7%) 44 (12%) 58 (16%) 68 (19%) 0.304

slicing
union 5 (1%) 33 (9%) 58 (16%) 84 (24%) 0.207
intersection 5 (1%) 35 (10%) 55 (15%) 71 (20%) 0.222
frequency 6 (2%) 39 (11%) 58 (16%) 84 (24%) 0.208

stack
trace

stack
trace 20 (6%) 31 (9%) 38 (11%) 38 (11%) 0.311

predicate
switching

predicate
switching 3 (1%) 15 (4%) 20 (6%) 23 (6%) 0.331

IR-based BugLocator 0 (0%) 0 (0%) 0 (0%) 3 (1%) 0.212

history-
based Bugspots 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0.465

4.1 RQ1. Effectiveness of standalone techniques
4.1.1 Procedure
To evaluate the effectiveness of standalone fault localization
techniques, we invoked each technique on Defects4J and
compared their Einspect@n and EXAM scores. The defini-
tions of Einspect@n and EXAM are in Section 3.4.4.

4.1.2 Results and Findings
Table 3 shows the Einspect@n and EXAM of each standalone
technique.
Finding 1.1: SBFL is the most effective standalone fault
localization family in our experiments.

Two techniques of SBFL, Ochiai and DStar, are the best
and second best on Einspect@3, 5, 10 and EXAM. The two
techniques locate 156 and 155 faults (about 44% of all faults)
in the top 10 reports. SBFL may underperform at Einspect@1
because blocks are the minimum granularity that SBFL can
identify. In a single execution, the statements in a basic block
are all executed or not executed, so the elements in a basic
block always have the same 〈ef , ep, nf , np〉 values and the
same score.
Finding 1.2: Bugspots and BugLocator are not as effective
at localizing faulty statements as other techniques.

Bugspots did not locate any fault in its top-10 statements
and BugLocator did not locate any fault in its top-5 state-
ments. A possible reason is that the two techniques works
at the file granularity and all statements in a file will be
tied. Even if the faulty statement is in the identified file, the
statement will be tied with many other statements and will
not be ranked high.
Finding 1.3: Stack trace is the most effective technique on
crash faults.

Stack trace analysis only works on crash faults (Sec-
tion 3.3.3). In the Defects4J dataset, 25% of the faults (90
out of 357) are crash faults, including application-defined
exceptions, out of memory errors, and stack overflow er-
rors. Table 4 shows that stack trace analysis locates 22% of
crash faults (20 out of 90) at top-1. By contrast, the second
best technique on these crash faults is Metallaxis, which
identifies 11% of faults (10 out of 90) at top-1. This finding
indicates that the stack trace is a vital information source for

TABLE 4
The Performance of Techniques on Crash Faults (90 out of 357 faults,

25%)

Family Technique Einspect EXAM@1 @3 @5 @10

SBFL Ochiai 4 (4%) 17 (19%) 32 (36%) 50 (56%) 0.028
DStar 4 (4%) 18 (20%) 33 (37%) 50 (56%) 0.029

MBFL Metallaxis 10 (11%) 30 (33%) 35 (39%) 44 (49%) 0.083
MUSE 6 (7%) 13 (14%) 18 (20%) 19 (21%) 0.345

slicing
union 2 (2%) 13 (14%) 26 (29%) 36 (40%) 0.112
intersection 2 (2%) 13 (14%) 21 (23%) 30 (33%) 0.136
frequency 2 (2%) 14 (16%) 25 (28%) 36 (40%) 0.112

stack
trace

stack
trace 20 (22%) 31 (34%) 38 (42%) 38 (42%) 0.194

predicate
switching

predicate
switching 1 (1%) 5 (6%) 8 (9%) 9 (10%) 0.323

IR-based BugLocator 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0.199

history-
based Bugspots 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0.433

TABLE 5
The Performance of Techniques on Predicate-Related Faults (115 out

of 357 faults, 32%)

Family Technique Einspect EXAM@1 @3 @5 @10

SBFL Ochiai 5 (4%) 20 (17%) 29 (25%) 43 (37%) 0.027
DStar 5 (4%) 21 (18%) 30 (26%) 43 (37%) 0.028

MBFL Metallaxis 8 (7%) 25 (22%) 34 (30%) 44 (38%) 0.090
MUSE 13 (11%) 24 (21%) 32 (28%) 35 (30%) 0.174

slicing
union 0 (0%) 6 (5%) 12 (10%) 26 (23%) 0.171
intersection 0 (0%) 9 (8%) 13 (11%) 20 (17%) 0.185
frequency 0 (0%) 10 (9%) 15 (13%) 27 (23%) 0.172

stack
trace

stack
trace 4 (3%) 7 (6%) 10 (9%) 10 (9%) 0.255

predicate
switching

predicate
switching 3 (3%) 15 (13%) 20 (17%) 23 (20%) 0.216

IR-based BugLocator 0 (0%) 0 (0%) 0 (0%) 1 (0%) 0.156

history-
based Bugspots 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0.417

crash faults. It is also consistent with debugging scenarios in
practice: when a program crashes, the developer often starts
by examining the stack trace.

Finding 1.4: Predicate switching is not the most effective
technique on “predicate-related” faults.

A predicate-related fault is one whose patch modifies
the predicate in a conditional statement. In the Defects4J
dataset, 32% of the faults are predicate-related faults. Table 5
shows the performance of each standalone technique on
predicate-related faults. It was surprising to us that MBFL
family works better than predicate switching on predicate-
related faults. When working on predicates, MBFL and
predicate switching have similar mechanisms. They both
modify the predicates and check whether the execution re-
sult changes. Predicate switching may underperform MBFL
because MBFL can further rank the critical predicates (modi-
fying which can change the execution result) while predicate
switching cannot.

4.2 RQ2. Correlation between Techniques
This research question explores the possibility of combining
different techniques. Two techniques are (positively) corre-
lated if they are good at localizing the same sorts of faults.
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Fig. 1. The Correlation of Three Example Pairs of Techniques. The X
and Y values for a point show the Einspect values for two techniques on
the same bug. Einspect is the expected rank of the first faulty element in
the FL tool’s output, or the number of elements that a user would have
to inspect before inspecting a faulty element.

If two techniques are less correlated, they may provide
different information, and combining them has the potential
to outperform either of the component techniques.

4.2.1 Procedure
First, to visually illustrate the correlation between tech-
niques, we drew the results of each pair of techniques as
a scatter plot. Each figure has 357 points, one for each fault
in our dataset. The coordinate (x, y) for a fault means on
this fault, the Einspect for technique on X-axis is x, and the
Einspect for technique on Y-axis is y.

To quantify the correlation between each pair of tech-
niques, we computed coefficient of determination r2, which
measures of the linear correlation between two vari-
ables [69]. Recall that a developer will only examine the
first few reports from a tool (say, 5 or 10) and a program
repair tool will only examine the first 200 or so reports.
When computing the correlation, we used all points such
that x ≤ q or y ≤ q, for threshold q = 100. We also
computed the p-value, to determine whether the correlation
coefficient is statistically significant.

4.2.2 Qualitative Results
Figure 1’s scatter plots visualize the correlation between
three sample pairs of techniques. The three pairs capture
typical patterns of the plots, and we omit the rest of the
plots as they are similar to one of the three plots.
Finding 2.1: Different correlation patterns exist between
different pairs of techniques.

In Fig. 1 (A), most points lie on the diagonal. This
distribution pattern means the two SBFL techniques, Ochiai

and DStar, have almost the same Einspect values on all faults.
The two techniques are very correlated and each is unlikely
to provide more information than the other.

In Fig. 1 (B), there are many faults located in upper-
left and lower-right regions, which correspond to faults
that one technique works well on, while the other works
poorly. These faults suggest that the two techniques are not
positively correlated.

The dots in Fig. 1 (C) are located on the diagonal in the
upper right region, but they are scattered in other regions.
This pattern indicates that there are a set of faults where
both techniques perform poorly, but there are also many
faults where one technique performs well but the other does
not.

4.2.3 Quantitative Results
Table 6 shows the coefficient of determination, r2, between
each pair of techniques. Different from Fig. 1, which is a log-
scale plot, this experiment calculates r2 based on Einspect ,
without log-scale normalization. Notice that the table is a
symmetric matrix.
Finding 2.2: Most techniques are weakly correlated, includ-
ing all techniques in different families.

In Table 6, there are 55 pairs of different techniques. Only
two of them are significantly correlated at p-value less than
0.05 level: 〈Ochiai, DStar〉 from SBFL, with r2 = 0.753,
p-value � 0.01, and 〈union, frequency〉 from slicing, with
r2 = 0.310, p-value� 0.01. The r2 values in other pairs of
techniques are much smaller, and the p-values of them are
larger than 0.05, which suggests that there is no statistically
significant correlation between other pairs of techniques, at
least for the reports that a programmer or tool may view.

Two techniques may provide different information when
they are less correlated. Since there exist many weakly
correlated pairs, if a method could utilize the information
from different techniques, it may improve the effectiveness
of fault localization.
Finding 2.3: The strongly correlated techniques only exist
in the same family, but not all techniques in the same family
are strongly correlated.

The most correlated pair of techniques, Ochiai and DStar,
is from the SBFL family. The second most correlated pair is
from the slicing family. However, not all techniques from the
same family are strongly correlated. For example, the two
from MBFL family are weakly correlated, and so is inter-
section with other slicing techniques. This finding suggests
that though it may be less promising to combine techniques
from the same family, it is still worth investigating.

4.3 RQ3. Effectiveness of Combining Techniques
Section 4.2 indicates that the techniques are potentially com-
plementary to each other. This section applies the learning
to rank model to combine techniques.

4.3.1 Procedure
Our experiments perform cross-validation to evaluate the
ranking model. Cross-validation estimates model perfor-
mance without losing modeling or test capability despite
small data size. In particular, we used two cross-validation
methods.
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TABLE 6
r2 between Pairs of Techniques. The two pairs of statistically significantly correlated techniques (p-value < 0.05) are highlighted.

Family SBFL MBFL slicing stack trace predicate
switching IR-based history-

based

Family Technique Ochiai DStar Metallaxis MUSE union intersection frequency stack trace predicate
switching BugLocator Bugspots

SBFL Ochiai - 0.753 0.001 0.005 0.000 0.001 0.001 0.000 0.001 0.001 0.000
DStar 0.753 - 0.001 0.004 0.000 0.000 0.000 0.000 0.001 0.001 0.000

MBFL Metallaxis 0.001 0.001 1.000 0.002 0.008 0.005 0.005 0.004 0.003 0.003 0.001
MUSE 0.005 0.004 0.002 1.000 0.012 0.013 0.013 0.015 0.009 0.015 0.024

slicing
union 0.000 0.000 0.008 0.012 - 0.004 0.310 0.009 0.010 0.003 0.000
intersection 0.001 0.000 0.005 0.013 0.004 - 0.015 0.007 0.009 0.004 0.003
frequency 0.001 0.000 0.005 0.013 0.310 0.015 - 0.005 0.009 0.003 0.000

stack trace stack trace 0.000 0.000 0.004 0.015 0.009 0.007 0.005 - 0.014 0.005 0.022

predicate
switching

predicate
switching 0.001 0.001 0.003 0.009 0.010 0.009 0.009 0.014 - 0.007 0.026

IR-based BugLocator 0.001 0.001 0.003 0.015 0.003 0.004 0.003 0.005 0.007 - 0.009

history-
based Bugspots 0.000 0.000 0.001 0.024 0.000 0.003 0.000 0.022 0.026 0.009 -

TABLE 7
Learning to Rank Results. Comparing cross project validation and

k-fold validation.

Validation Method Einspect EXAM@1 @3 @5 @10

10-fold 72 (20%) 137 (38%) 168 (47%) 205 (57%) 0.0173
cross project 68 (19%) 130 (36%) 165 (46%) 197 (55%) 0.0171

• k-fold validation. This simulates within-project train-
ing. The original data were randomly split into k
different sets of the same size and the training-
validation is performed k times, each time training
on k-1 sets and validating on the other set. We set
k = 10 in our experiment.

• Cross-project validation. This simulates cross-project
training. We treat one project as the test set and the
other projects as the training sets, and repeat the
process for each project.

We performed two sets of experiments to evaluate the
combined technique.

• The first experiment measured the performance of
combining all techniques.

• The second experiment evaluated the contribution
of each fault localization family. We excluded one
family at a time and repeated the learning to rank
procedure.

4.3.2 Results and Findings

Finding 3.1: The two cross-validation methods yield similar
evaluation results.

Table 7 shows the results of the first experiment on
validation methods. The evaluation results of the two val-
idation methods are similar. Both of the two validation
methods indicate that the combined technique significantly
outperforms any standalone techniques in Table 3. These
results suggest that the learning to rank model we used
has good generalizability across different projects. Since the
performances of the two methods are close, the rest of the
paper reports only 10-fold validation.

TABLE 8
Learning to Rank Results. Learning to rank is significantly better than
any original technique. The reduction of excluding a family is marked

after the Einspect value. The Ochiai, DStar, and MUSE rows are copied
from Table 3 for comparison.

Family / Einspect EXAMTechnique @1 @3 @5 @10

All Families 72 (20%) 137 (38%) 168 (47%) 205 (57%) 0.0173

w/o SBFL 61 (-11) 120 (-17) 145 (-23) 188 (-27) 0.0225
w/o MBFL 52 (-20) 122 (-15) 148 (-20) 194 (-11) 0.0206
w/o slicing 58 (-14) 129 (-8) 165 (-3) 201 (-4) 0.0190
w/o stack trace 63 (-9) 133 (-4) 161 (-7) 199 (-6) 0.0176
w/o predicate

switching 68 (-4) 136 (-1) 165 (-3) 198 (-7) 0.0178

w/o IR-based 66 (-6) 134 (-3) 162 (-6) 194 (-11) 0.0173
w/o history-based 71 (-1) 136 (-1) 167 (-1) 203 (-2) 0.0173

Ochiai 16 (4%) 81(23%) 111 (31%) 156 (44%) 0.033
DStar 17 (5%) 84 (24%) 111 (31%) 155 (43%) 0.033
MUSE 24 (7%) 44 (12%) 58 (16%) 68 (19%) 0.304

Finding 3.2: The combined technique significantly outper-
forms any standalone technique.

Table 8 shows the results of the two experiments on
combined techniques. The All Families row presents the
results of the first experiment, i.e., the results of combining
all families. The next rows present the results of the second
experiment, where each row shows the performance of
excluding one family at a time. The reduction of excluding a
family is marked after the Einspect value.

The combined technique in the All families row is
significantly better than any standalone techniques. At
Einspect@1, 3, 5, 10, the combined technique improves 200%,
63%, 46% and 31% over the former best, respectively. At
EXAM, it improves from 0.033 to 0.0173, an improvement
of 48% from the former best. These results indicate that
learning to rank is an effective method to combine different
fault localization techniques and the performance of the
combined technique is significantly improved.

Finding 3.3: The contribution of each technique to the
combined result is not determined by its effectiveness as
a standalone technique.

For example, while the IR-based family could not locate
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TABLE 9
Time Consumption of Each Technique (in seconds, to 2 digits of precision)

Time Level Family Technique Average Math Lang Time Chart Closure

Level 1 (Seconds)

history-
based Bugspots 0.54 0.66 0.22 0.20 - 0.67

stack trace stack trace 1.3 0.17 0.15 0.39 0.18 3.1

IR-based BugLocator 5.6 6.6 4.3 4.7 4.6 5.8

Level 2 (Minutes)
slicing

union 80 44 39 29 47 150
intersection 80 44 39 29 47 150
frequency 80 44 39 29 47 150

SBFL Ochiai 200 86 26 85 44 430
DStar 200 86 26 85 44 430

Level 3 (Around ten minutes) predicate
switching

predicate
switching 620 170 73 1100 120 1200

Level 4 (Hours) MBFL Metallaxis 4800 3000 270 12000 5400 7000
MUSE 4800 3000 270 12000 5400 7000

- learning to rank 11 0.32 0.082 0.68 0.42 28

any bugs in Top 1–5 and predicate switching can locate 3–20
bugs in Top 1–5, removing the IR-based family has a larger
impact than predicate switching in Top 1–5. This finding in-
dicates that, when considering a fault localization technique,
it is not enough to evaluate its individual performance: we
need to evaluate it in combination with other techniques.

Finding 3.4: All families contribute to the overall results.
Table 8 shows that removing any family decreases all

metrics. Bugspots, which does not rank any faulty element
into the top 10 when used alone, slightly improved all
Einspect@n values when combined with other techniques.

4.4 RQ4. Time Consumption and Combination Strategy

This research question measures the run-time cost of each
technique. Furthermore, we explored the optimal combina-
tion strategy under different time limitations, corresponding
to various debugging scenarios.

4.4.1 Procedure

We designed two experiments. The first experiment mea-
sured the time consumption for each fault localization tech-
nique. We also measured the run time for the learning to
rank model, which indicates the combination overhead. The
second experiment combined fault localization families one
by one and measured the execution time and the perfor-
mance of the combined technique in order to find optimal
combinations under different time limits.

Our experiments include or exclude an entire family at
a time, rather than including/excluding specific techniques.
The reason is that for each family, all techniques use the
same raw data. Once the raw data is collected, the overhead
for applying an extra technique from the same family is
only re-calculating the scores and re-ranking the program
elements, which is negligible.

4.4.2 Results and Findings

Table 9 shows the time consumption for each technique.
The average column presents the average time consumed per

fault over the whole dataset, and the project name columns
present the run time for the specific project.

Finding 4.1: The training time for learning to rank is small
compared to the fault localization time.

The learning to rank row at the bottom of Table 9 shows
the overhead for the training procedure, which costs around
10 seconds on average. The combination time is always less
than a second except that it is 28 seconds for Closure. A
possible reason is Closure is a JavaScript compiler and FL
techniques would generate a long suspicious list, which
make the learning procedure takes longer run-time. Since
the combination of techniques involves at least two different
techniques, this result suggests the overhead introduced by
learning to rank model is small.

Finding 4.2: The efficiency of families can be categorized
into several levels with different orders of magnitude.

• Level 1: history-based, stack trace, and IR-based.
Bugspots is the fastest technique; it only needs to
examine the development history. Stack trace is also a
fast technique; it needs to execute the test cases, once.
IR-based technique measures the textual similarity
between the bug report and the source files, which
takes a few seconds.

• Level 2: slicing and SBFL. The slicing and SBFL
families have similar mechanisms. They need to trace
the execution of test cases, once. The main difference
that affects the efficiency is that SBFL needs to trace
all the test cases while slicing only needs to trace
failed test cases.

• Level 3: predicate switching. Predicate switching is
slower than the above families; it needs to modify
predicates in the program and execute test cases
multiple times.

• Level 4: MBFL. MBFL is the slowest family; it needs
to modify all possible statements in the program
and execute test cases multiple times.

Finding 4.3: Including preceding level families only slightly
affects the time consumption but always improves the re-
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TABLE 10
Optimal Strategies under Time Consumption Levels

Time Level Technique Estimated Time Einspect EXAM(in seconds) @1 @3 @5 @10

Level 1

history-based 0.54 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0.465
stack trace 1.3 19 (5%) 29 (8%) 35 (10%) 35 (10%) 0.311
stack trace +history-based 13 19 (5%) 29 (8%) 35 (10%) 35 (10%) 0.311
stack trace +history-based +IR-based 19 25 (7%) 42 (12%) 53 (15%) 63 (18%) 0.0421

Level 2
Level 1 +slicing 98 28 (8%) 65 (18%) 95 (27%) 124 (35%) 0.0353
Level 1 +SBFL 220 39 (11%) 105 (29%) 132 (37%) 174 (49%) 0.0244
Level 1 +SBFL +slicing 300 52 (15%) 120 (34%) 146 (41%) 189 (53%) 0.0217

Level 3 Level 2 +predicate switching 920 52 (15%) 122 (34%) 148 (41%) 194 (54%) 0.0206

Level 4 Level 3 +MBFL 5700 72 (20%) 137 (38%) 168 (47%) 205 (57%) 0.0173

sults. Therefore, all techniques in preceding levels should
be included.

Table 10 shows the combinations at different time con-
sumption levels, and the estimated time consumption. If
more than one family is included, the estimated time con-
sumption is the running time for each family and the train-
ing time for learning to rank. For each level, we merged the
corresponding families into the preceding time levels one
by one.

Table 10 shows that performance is significantly im-
proved from level 1 to level 2. This result means slicing and
SBFL brings vital information to the combined technique.
It is also notably improved from level 3 to level 4, which
means MBFL brings useful information to the combined
technique, but it is also very costly.

Using Table 10, developers can pick the best combination
of techniques based on their use case. If the fault is a crash
fault, the developer may try level 1 first, which gives the
result instantly and is effective for crash bugs. For other
real-time debugging, developers should try the combination
at level 2, which only takes a few minutes. Since level 3 is
three times as expensive as level 2 but the results are barely
different, a developer would never choose to run level 3. If
a developer debugs for more than a few minutes, it makes
sense to run level 4 in the background and examine its
results as soon as they are available, since CPU costs are
much lower than human time.

Finding 4.4: Level 2 and Level 4 are two levels with good
balance between effectiveness and efficiency, while Level 1
is a good choice for crash bugs.

4.5 RQ5. Results at Method Granularity

Sections 4.1 to 4.4 answered the RQs at statement gran-
ularity. Some other studies have suggested that method
may be a better granularity for developers [26], [55]. We
repeated the previous experiments at method granularity
and checked whether the answers still hold.

The suspiciousness score for a method is defined as the
maximum score of its statements.

4.5.1 Results and Findings

Finding 5.1: The main findings in RQ1 and RQ3 still hold
at method granularity.

TABLE 11
The Performance of Standalone Techniques, Method Granularity.

Family Technique Einspect EXAM@1 @3 @5 @10

SBFL Ochiai 92 (26%) 180 (50%) 207 (58%) 241 (68%) 0.044
DStar 95 (27%) 182 (51%) 207 (58%) 241 (68%) 0.044

MBFL Metallaxis 83 (23%) 151 (42%) 181 (51%) 208 (58%) 0.108
MUSE 54 (15%) 95 (27%) 112 (31%) 134 (38%) 0.274

slicing
union 35 (10%) 80 (22%) 106 (30%) 131 (37%) 0.259
intersection 35 (10%) 73 (20%) 90 (25%) 114 (32%) 0.279
frequency 39 (11%) 84 (24%) 104 (29%) 133 (37%) 0.259

stack
trace

stack
trace 39 (11%) 59 (17%) 68 (19%) 73 (20%) 0.366

predicate
switching

predicate
switching 15 (4%) 38 (11%) 50 (14%) 60 (17%) 0.390

IR-based BugLocator 0 (0%) 3(1%) 11(3%) 35(10%) 0.275

history-
based Bugspots 0 (0%) 2 (1%) 4 (1%) 13 (4%) 0.498

∗ EXAM here is based on the number of methods.

TABLE 12
Learning to Rank Results, Method Granularity.

Technique Einspect EXAM@1 @3 @5 @10

All techniques 168 (47%) 230 (64%) 247 (69%) 271 (76%) 0.0034

Table 11 shows the Einspect@n and EXAM for each tech-
nique. The EXAM here presents the percentage of methods
needed to inspect before finding the faulty one. The findings
in RQ1 still hold at method granularity:

• SBFL is the most effective fault localization family.
Ochiai and DStar have the best performance on all
metrics.

• Stack trace is the most effective technique on crash
faults. Based on 88 crash faults, stack trace can locate
44% of them at top-1, and 83% at top-10, which is
consistent with the previous study [61].

• The relative performance between techniques have
no significant changes.

Table 12 shows the results of the learning to rank model.
The results are significantly improved from standalone
techniques in Table 11, which is consistent with the main
findings in RQ3.
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TABLE 13
Comparison with other learning to rank techniques, for Einspect@1 at

method granularity. CombineFL is the approach proposed in this paper.

Technique on 357 faults on 210 faults

CombineFL 168 118

MULTRIC [27] 72 -
Savant [26] 63 -
TraPT [27] 142 -
FLUCCS [25] - 106

4.6 RQ6. Comparison with State-of-the-Art Techniques
Other recent learning to rank approaches [24], [25], [26], [27]
improve the performance of fault localization by combining
techniques in one family or by augmenting one family with
additional information. We compared our approach with
these techniques. A detailed discussion of the compared
techniques can be found in Section 5.1.

We obtained the performance of the compared ap-
proaches on Defects4J from previous publications [25], [26],
[27]. Three of them (MULTRIC, Savant, TraPT) were eval-
uated on the whole dataset of Defects4J, while FLUCCS
was evaluated on a subset of Defects4J containing 210
faults. To compare with FLUCCS, we also performed a
cross-validation of our approach over the subset of 210
faults. All results of the compared approaches were obtained
via cross-validation, where FLUCCS uses 10-fold cross-
validation, and MULTRIC, Savant, and TraPT use 357-fold
cross-validation.

This paper used newly defined metrics Einspect at top-n
and others used average rank at top-n. These two metrics are
only equivalent when n = 1, so Table 13 shows that. All
results are at the method granularity as all the compared
approaches support only method granularity.

The result in Table 13 shows that CombineFL, which
is the approach proposed in this paper, is significantly
better than all these techniques. This result indicates that
combining techniques from different families is an effec-
tive way to improve the performance of fault localization
approaches. Furthermore, some information used in the
compared approaches are not used in our approach, so we
may further combine these techniques to achieve potentially
better results in the future.

Notice that the aforesaid discussion only compares the
output between the approaches. In practice, the run-time cost
is also an important metric when comparing approaches.
For example, since FLUCCS does not include the mutation
component, it might require significantly less execution time
than CombineFL. However, the existing papers did not re-
port the run-time cost of these approaches so a comparison
is left for future work.

5 RELATED WORK

To our knowledge, this paper is the first empirical study on
a wide range of fault localization families.

5.1 Learning to Combine
Several studies have applied the learning to rank model to
improve the effectiveness of fault localization techniques.

Xuan and Monperrus [24] proposed a learning-based
approach, MULTRIC, to integrate 25 existing SBFL risk
formulae. They conducted experiments on ten open-source
Java programs with 5386 seeded (artificial) faults, and found
that MULTRIC is more effective than theoretically opti-
mal formulae studied by Xie et al. [1]. In this paper, we
found that different techniques in SBFL family may contain
strongly correlated information on real-world projects. To
further improve the fault localization effectiveness, extra
information sources should be introduced rather than only
considering the SBFL family.

Le et al. [26] presented Savant, which augmented SBFL
with Daikon [70] invariants as an additional feature. They
applied the learning to rank model to integrate SBFL tech-
niques and invariant information. They evaluated Savant
on real-world faults from the Defects4J [21] dataset and
found that Savant outperforms the best four SBFL formulae,
including MULTRIC.

Sohn and Yoo [25] proposed FLUCCS, which extended
SBFL techniques with code change metrics. They applied
two learning to rank techniques, Genetic Programming, and
linear rank Support Vector Machines. They also evaluated
FLUCCS on the Defects4J dataset and found FLUCCS ex-
ceeds state-of-the-art SBFL techniques.

Li and Zhang [27] proposed TraPT, which used the
learning to rank technique to extend MBFL with muta-
tion information gathered from test code and messages.
In their experiments, TraPT outperformed state-of-the-art
MBFL and SBFL techniques.

To sum up, existing studies mainly focus on combining
techniques in one family or augmenting one family with
additional information. Compared with these studies, this
paper is the first comprehensive and systematic study to
combine a wide range of families. Our study includes
eleven techniques from seven families, and we analyzed the
contribution and the cost of each technique. The combined
technique significantly outperforms any standalone tech-
nique. Nevertheless, we also observe that existing studies
use some information that has not been considered in this
paper. The additional information could further improve to
the combined technique.

5.2 Empirical Studies on Fault Localization
Fault localization techniques have been extensively evalu-
ated empirically.

Jones and Harrold [18] introduced the Tarantula SBFL
technique and compared it with three other SBFL techniques
based on test coverage (Set Union, Set Intersection, Nearest-
Neighbor [7]) and with Cause Transitions [71] on the Siemens
test suite [72]. They found that Tarantula is more effective
and efficient than the other techniques.

Abreu et al. [2] introduced Ochiai, another SBFL tech-
nique. They found that Ochiai outperforms two other SBFL
techniques (Jaccard [73] and Tarantula [18]) on the Siemens
test suite.

Le et al. [74] also empirically evaluated several SBFL
techniques on the Siemens test suite, to check whether the the-
oretically and practically best SBFL techniques match. This
study suggested that Ochiai outperforms the theoretically
optimal techniques by Xie et al. [1], because the optimality
assumptions are unmet on their dataset.
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Wong et al. [34] introduced DStar and compared over
thirty SBFL techniques on nine different sets of programs,
including Siemens test suite and several other projects. They
found that DStar is more effective than all other techniques
on all projects.

Pearson et al. [17] evaluated SBFL and MBFL techniques
on both artificial and real-world faults to find whether the
previous findings over artificial faults still hold on real-
world faults. They identify several cases where results on
artificial faults are different from those on real-world faults,
indicating that experimenting over real-world faults is im-
portant. In other words, results from the Siemens test suite
are not characteristic of real-world faults.

Zhang et al. [41] evaluated three dynamic slicing tech-
niques on a set of real-world faults. They found that data
slicing [75] is effective for memory related faults and full
slicing [40] was adequate for other faults. None of the faults
in their dataset required Relevant slicing [76], [77].

To sum up, existing studies mainly focus on evaluating
techniques in one family, in particular, the SBFL family.
Compared with these studies, our work evaluates a wide
range of seven families. In addition, we also evaluate on
large real-world projects and use a new metric to better
measure elements with the same score. Finally, we also
evaluate the combination of different techniques.

6 IMPLICATIONS

This section highlights implications for future research in
fault localization.

6.1 Evaluating Fault Localization Techniques
Traditionally, fault localization techniques are often used
and evaluated individually. This paper shows that it is easy
to combine even very different fault localization techniques.
We recommend that users should not to use a technique
standalone, but instead combine multiple techniques within
a time limit.

This implies that, for researchers evaluating a fault lo-
calization technique, it is more important to understand
how the technique contributes in combination with existing
techniques, than understanding the performance of the tech-
nique in isolation. Understanding the combination includes
two aspects: (1) how much this technique can contribute
to the combination of all existing approaches, and (2) how
much this technique can contribute to the combination
within a specific time limit. That is, both effectiveness and
efficiency should be considered.

6.2 Infrastructure for Evaluating Fault Localization
Techniques
To facilitate evaluation of future fault localization tech-
niques, our infrastructure CombineFL-core and the fault
localization data of the eleven studied fault localiza-
tion techniques are available at https://damingz.github.io/
combinefl/index.html.

Given a user-selected combination of techniques, our in-
frastructure automatically calculates its Einspect and EXAM
scores on Defects4J and measures the execution time. To
integrate a new technique into the dataset, the user only

needs to provide the suspiciousness scores for program
elements in each defect, as well as the execution time,
in a specific format. Then the combinations of the newly
added technique with any other existing techniques are
automatically supported. Both statement granularity and
method granularity are supported.

6.3 Efficiency
In the existing evaluation of fault localization approaches,
efficiency often receives less attention than effectiveness.
However, our study reveals that different techniques have
huge differences in execution time, and some techniques are
infeasible in certain use cases. Thus, efficiency is a critical
issue that must be taken into consideration when evaluating
fault localization techniques. Furthermore, optimizing the
efficiency of fault localization techniques [78], [79] is an
important research direction.

On the other hand, it is so far not clear how exactly
efficiency affects the debugging performance of developers.
This relates to questions such as: is it worthwhile to wait for
the fault localization technique to produce a more accurate
result or should the developer start with a less accurate
result? Future work is needed to answer these questions.

6.4 Information Sources
Our study reveals that, when two techniques use the same
information source, their performance is similar. Thus, in
fault localization research, it seems to be more promising
to find new information sources than optimizing existing
information sources. Recent studies [25], [26], [27] also con-
firm that integrating more information sources significantly
outperforms any techniques in the SBFL family.

6.5 Methods for Combining Approaches
Our study used a learning to rank approach to combine dif-
ferent techniques. This approach treats different techniques
as black boxes and combines the suspiciousness scores lin-
early. This simple approach has multiple limitations. First,
treating different techniques as black boxes disallows fine-
grained combination. For example, different techniques may
contain the same computations, but treating them as black
boxes does not allow us to reuse these computations nor to
utilize any intermediate results. Second, linear combination
may not be optimal, and other possibilities are left to be
explored. Third, this approach requires a training process,
and how much the training data affect the effectiveness
is yet unknown. These limitations call for new research
on novel ways to combine different techniques as well as
understanding more about the learning to rank approach.

7 CONCLUSION

This paper investigates the performance of a wide range
of fault localization techniques, including eleven techniques
from seven families, on 357 real-world faults. We evaluated
the effectiveness of each standalone fault localization tech-
nique. Then we applied learning to rank model to combine
these fault localization techniques. Finally, we also mea-
sured the execution time. Our experiments included both
statement and method granularities.

https://damingz.github.io/combinefl/index.html
https://damingz.github.io/combinefl/index.html
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The combined techniques significantly outperform any
standalone technique. Furthermore, different techniques
have significant different execution time. Based on these
findings, we recommend combining fault localization tech-
niques grouped by different time cost levels, and future
fault localization techniques should also be evaluated in
this setting. To facilitate research and application, our in-
frastructure CombineFL-core and the fault localization data
of the eleven fault localization techniques for evaluating
and combining fault localization techniques is available at
https://damingz.github.io/combinefl/index.html.
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