
Evaluating and improving fault localization
Spencer Pearson∗, José Campos∗∗, René Just†, Gordon Fraser∗∗, Rui Abreu‡, Michael D. Ernst∗, Deric Pang∗, Benjamin Keller∗

*U. of Washington, USA **U. of Sheffield, UK †U. of Massachusetts, USA
‡Palo Alto Research Center, USA
U. of Porto/HASLab, Portugal

suspense@cs.washington.edu, jose.campos@sheffield.ac.uk, rjust@cs.umass.edu, gordon.fraser@sheffield.ac.uk,
rui@computer.org, mernst@cs.washington.edu, dericp@cs.washington.edu, bjkeller@cs.washington.edu

Abstract—Most fault localization techniques take as input
a faulty program, and produce as output a ranked list of
suspicious code locations at which the program may be defective.
When researchers propose a new fault localization technique,
they typically evaluate it on programs with known faults. The
technique is scored based on where in its output list the defective
code appears. This enables the comparison of multiple fault
localization techniques to determine which one is better.

Previous research has evaluated fault localization techniques
using artificial faults, generated either by mutation tools or man-
ually. In other words, previous research has determined which
fault localization techniques are best at finding artificial faults.
However, it is not known which fault localization techniques are
best at finding real faults. It is not obvious that the answer is
the same, given previous work showing that artificial faults have
both similarities to and differences from real faults.

We performed a replication study to evaluate 10 claims in
the literature that compared fault localization techniques (from
the spectrum-based and mutation-based families). We used 2995
artificial faults in 6 real-world programs. Our results support 7 of
the previous claims as statistically significant, but only 3 as having
non-negligible effect sizes. Then, we evaluated the same 10 claims,
using 310 real faults from the 6 programs. Every previous result
was refuted or was statistically and practically insignificant. Our
experiments show that artificial faults are not useful for predict-
ing which fault localization techniques perform best on real faults.

In light of these results, we identified a design space that
includes many previously-studied fault localization techniques
as well as hundreds of new techniques. We experimentally
determined which factors in the design space are most important,
using an overall set of 395 real faults. Then, we extended this
design space with new techniques. Several of our novel techniques
outperform all existing techniques, notably in terms of ranking
defective code in the top-5 or top-10 reports.

I. INTRODUCTION

A fault localization technique (for short, FL technique)
directs a programmer’s attention to specific parts of a program.
Given one or more failing test cases and zero or more passing
test cases, a FL technique outputs a (typically, sorted) list of
suspicious program locations, such as lines, statements, or dec-
larations. The FL technique uses heuristics to determine which
program locations are most suspicious—that is, most likely to
be erroneous and associated with the fault. A programmer can
save time during debugging by focusing attention on the most
suspicious locations [15]. Another use is to focus a defect repair
tool on the parts of the code that are most likely to be buggy.

Dozens of fault localization techniques have been proposed
[45]. It is desirable to evaluate and compare these techniques,
both so that practitioners can choose the ones that help them
solve their debugging problems, and so that researchers can
better build new fault localization techniques.

A fault localization technique is valuable if it works on
real faults. Although some real faults (mostly 35 faults in the
single small numerical program space [41]) have been used in
previous comparisons [45] of fault localization techniques, the
vast majority of faults used in such comparisons are fake faults,
mostly mutants. The artificial faults were mutants automatically
created by a tool [26], [27], [49], or mutant-like manually-
seeded faults created by students [44], [46] or researchers [16].

Artificial faults such as mutants differ from real faults
in many respects, including their size, their distribution in
code, and their difficulty of being detected by tests [22].
It is possible that an evaluation of FL techniques on real
faults would yield different outcomes than previous evaluations
on mutants. If so, previous recommendations would need to
be revised, and practitioners and researchers should choose
different techniques to use and improve. It is also possible
that an evaluation of FL techniques on real faults would yield
the same recommendations, thus resolving a cloud of doubt
that currently hangs over the field. Either result would be of
significant scientific interest. The results also have implications
beyond fault localization itself. For instance, it would help to
indicate which fault localization approaches, if any, should be
used to guide automated program repair techniques [37].

This paper compares fault localization techniques on real vs.
artificial faults. Techniques that localize artificial faults best
do not perform best on real faults. Our experiments are based
on 7 previously-studied fault localization techniques from the
spectrum-based and mutation-based families.

The contributions of this paper include:
• A replication study that repeats and extends previous exper-

iments, comparing 7 fault localization techniques on 2995
artificial faults. We mitigated threats to internal validity by
re-implementing all the techniques in a single infrastructure
and using the same experimental scripts, faults, and other ex-
perimental variables. Our results confirm 70% of previously-
reported comparisons (such as “Ochiai is better than
Tarantula” [26], [27], [31], [44], [49]) and refute 30%.

• A new study that compares the 7 fault localization tech-
niques on 310 real faults. The ranking does not agree
with any previous results from artificial faults! 40% of the
previous results are reversed; for example, Metallaxis is
better than Ochiai on artificial faults [33], but Ochiai is
better than Metallaxis on real faults. The other 60% of the
results are statistically insignificant; for example, DStar is
better than Tarantula on artificial faults [19], [26], [44], but
on real faults there is no significant difference between the
two techniques. These results indicate that artificial faults

(e.g., mutants) are not an adequate substitute for real faults,
for the task of evaluating a fault localization technique.

• An explication of the design space of fault localization
techniques. Previous work made different, sometimes undoc-
umented, choices for factors other than the formula. We ex-
haustively evaluated all these factors. We found that formula,
which most papers have exclusively focused on, is one of
the least important factors. We also added new factors to the
design space, thereby creating new hybrid fault localization
techniques that combine the best of previous techniques.

• An evaluation of all the FL techniques generated by the
design space, with respect to how well they localize real
faults. We found new techniques that are statistically
significantly better than any previous technique, though
with small effect sizes. More importantly, they do much
better in terms of including the correct answer (the actual
faulty statement) within the top-5 or top-10 statements of
their output. Our results indicate how to make the most
of current approaches, and they indicate that significant
advances in fault localization will come from focusing on
different issues than in the past.

• Our methodology addresses multi-line faults, faults of
omission, and other real-world issues, both in the design
of FL techniques and in the experimental protocol for
evaluating them.

A technical report [35] has more examples, data, & analyses.

II. EVALUATING FAULT LOCALIZATION

Many studies have evaluated and compared FL techniques
[2]–[5], [18], [19], [26], [27], [30], [31], [33], [38], [44], [49].
Table I summarizes these studies. The majority of studies
revolve around the same set of programs and use largely
artificial faults. This section explains how a fault localization
technique’s output can be evaluated.

A. Evaluation metrics

A fault localization technique T takes as input a program P
and a test suite with at least one failing test, and it produces
as output a sorted list of suspicious program locations, such as
lines, statements, or declarations. For concreteness, this paper
uses statements as the locations, but the ideas also apply to
other levels of granularity.

Given a fault localization technique T and a program P of
size N with a single known defective statement d, a numerical
measure of the quality of the fault localization technique can
be computed as follows [36], [40]: (1) run the FL technique to
compute the sorted list of suspicious statements; (2) let n be the
rank of d in the list; (3) use a metric proposed in the literature
to evaluate the effectiveness of a FL technique, e.g., LIL [30],
T-score [28], Expense [18], or EXAM score [43].1 For concrete-
ness this paper uses EXAM score, which is the most popular met-
ric, but our results generalize to the others. The EXAM score is
n/N , where N is the number of statements in the program. The
score ranges between 0 and 1, and smaller numbers are better.

1These scores are different than the “suspiciousness score” the FL technique
may use for constructing the sorted list of suspicious program statements.

B. Extensions to fault localization evaluation

The standard technique for evaluating fault localization,
described in section II-A, handles defects that consist of a
change to one executable statement in the program, as is the
case for mutants. To evaluate fault localization on real faults,
we had to extend the methodology to account for ties in the
suspiciousness score, multi-line statements, multi-statement
faults, faults of omission, and defective non-executable code
such as declarations.

1) Ties in the suspiciousness score: We assume that the
sorting function breaks ties arbitrarily. When multiple state-
ments have the same suspiciousness score, then all of them
are treated as being the nth element in the output, where n is
their average rank [40], [45].

2) Multi-line program statements: Any FL tool report that
is within a statement is automatically converted to being a
report about the first line of the smallest enclosing statement.

3) Multi-statement faults: 76% of real-world bug fixes
span multiple statements [21]. Our study evaluates the fault
localization techniques for three debugging scenarios:
1) Best-case: Any one defective statement needs to be local-

ized to understand and repair the defect.
2) Worst-case: All defective statements need to be localized

to understand and repair the defect.
3) Average-case: 50% of the defective statements need to be

localized to understand and repair the defect.
Note that these debugging scenarios are equivalent for single-
statement faults. All of our the experimental results are
generally consistent for the three scenarios.

4) Faults of omission: In 30% of cases [21], a bug fix
consists of adding new code rather than changing existing code.
The defective program contains no defective statement, but
some are missing. Previous studies have not reported whether
and how this issue was addressed.

A FL technique communicates with the programmer in terms
of the program’s representation: statements of source code. A
FL technique is most useful if it identifies the statement in the
source code the programmer needs to change. However, many
FL techniques have a serious limitation: they do not rank or
report lines consisting of scoping braces, such as the final }
of a method definition, even though that would be the best
program location to report when the insertion is at the end of
a method. To avoid disadvantaging such techniques, we also
count the current last statement as a correct report. A technical
report [35] shows examples.

A more serious complication is that the developer inserted
the new code at some statement, but other statements might be
equally valid choices for a bug fix. Consider the following ex-
ample, drawn from the patch for Closure-15 in Defects4J [21]:

1 if (n.isCall() && ...)
2 return true;
3 if (n.isNew() && ...)
4 return true;
5+ if (n.isDelProp())
6+ return true;
7 for (Node c = n.getFirstChild(); ...) {
8 ...

TABLE I
SELECTED FAULT-LOCALIZATION STUDIES. OUR RESULTS (BOTTOM) UPHOLD PREVIOUS RESULTS ON ARTIFICIAL FAULTS BUT NOT ON REAL FAULTS.

Ref. Lang. Ranking (from best to worst) Programs Artif. Real
kLOC faults faults

[18] C Tarantula Siemens 3 122 x -
[3] C Ochiai, Tarantula Siemens 3 120 x -
[2] C Ochiai, Tarantula Siemens, space 12 128 x 34
[4] C Barinel, Ochiai, Tarantula Siemens, space, gzip, sed 31 141 x 38
[5] C Tarantula Concordance 2 200� 13
[31] C Op2, Ochiai, Tarantula Siemens, space 12 132 x 32
[33] C Metallaxis, Ochiai Siemens, space, flex, grep, gzip 45 859 x,� 12
[27] C Ochiai, Tarantula Siemens, space, NanoXML, XML-Security 41 164 x 35
[44] C DStar, Ochiai, Tarantula Siemens, space, ant, flex, grep, gzip, make, sed, Unix 155 436 x 34
[30] C MUSE, Op2, Ochiai space, flex, grep, gzip, sed 54 11 x 3
[49] Java Ochiai, Tarantula JExel, JParsec, Jaxen, Commons Codec, Commons Lang, Joda-Time 108 1800� -
[19] C &

Java
DStar, Tarantula printtokens, printtokens2, schedule, schedule2, totinfo, Jtcas, Sorting,

NanoXML, XML-Security
32 104 x -

[26] C DStar, Ochiai, Tarantula Siemens, space, NanoXML, XML-Security 41 165 x 35

this Java Metallaxis, Op2, DStar, Ochiai, Barinel,
Tarantula, MUSE

JFreeChart, Closure, Commons Lang, Commons Math, Joda-Time 321 2995� -

this Java {DStar ≈ Ochiai ≈ Barinel ≈ Tarantula},
Op2, Metallaxis, MUSE

JFreeChart, Closure, Commons Lang, Commons Math, Joda-Time 321 - 310

x represents manually-seeded artificial faults, and � represents mutation-based artificial faults. The Siemens set is printtokens, printtokens2, replace, schedule,
schedule2, tcas, and totinfo. The Unix set is Cal, Checkeq, Col, Comm, Crypt, Look, Sort, Spline, Tr, and Uniq.

The programmer could have inserted the missing conditional
before line 1, between lines 2 and 3, or where it actually was
inserted. A FL technique that reports any of those statements is
just as useful as one that reports the statement the programmer
happened to choose.

For every real fault of omission, we manually determined
the set of candidate locations at which a code block could
be inserted to fix the defect (lines 1, 3, and 5 in the example
above). We consider a fault localization technique to identify
an omitted statement as soon as any candidate location appears
in the FL technique’s output.

5) Faults in non-ranked statements: Some fault localization
techniques have limitations in that they fail to report some
statements in the program. Here are examples:
Non-executable code (declarations) such as a supertype dec-

laration or the data type in a field or variable declaration. In
the Defects4J database of real-world faults [21], 4% of
real faults involve some non-executable code locations and
3% involve only non-executable code locations.

Non-mutatable statements: the mutation-based FL tech-
niques that we evaluate have a weakness in that they
only output a list of mutatable statements. Some faulty,
executable statements are not mutatable due to compiler
restrictions. For example, deleting or incorrectly moving a
break or return statement might cause compilation errors.
In the Defects4J database of real-world faults [21], 10% of
real faults involve a non-mutatable yet executable statement.

Previous studies on the effectiveness of fault localization
have not considered faults in non-ranked statements. We ensure
that the ranked list of statements produced by a FL technique
always contains every statement in the program, by adding any
missing statement at the end of the ranking.

6) Multiple defects: Large real-world programs, like those
in Defects4J, almost always contain multiple defects coexisting
with each other. However, no action is needed to correct for this

when performing fault localization, as long as the failing tests
only reveal one of these defects (as is the case in Defects4J).

III. SUBJECTS OF INVESTIGATION

A. Fault localization techniques

This paper evaluates 2 families of fault localization tech-
niques: spectrum-based fault localization (SBFL techniques
for short) [3], [18], [31], [44], which is the most studied and
evaluated FL technique; and mutation-based fault localization
(MBFL techniques for short), which is reported to significantly
outperform SBFL techniques [30], [33]. A survey paper lists
other types of fault localization techniques [45].

Most fault localization techniques, including all that we
examine in this paper, yield a ranked list of program statements
sorted by the suspiciousness score S(s) of the statement s. A
high suspiciousness score means the statement is more likely
to be defective—that is, to be the root cause of the failures.

1) Spectrum-based FL techniques: Spectrum-based fault
localization techniques [3], [18], [31], [44] depend on statement
execution frequencies. The more often a statement is executed
by failing tests, and the less often it is executed by passing
tests, the more suspicious the statement is considered.

This paper considers 5 of the best-studied SBFL techniques
[45]. In the following, let totalpassed be the number of passed
test cases and passed(s) be the number of those that executed
statement s (similarly for totalfailed and failed(s)).

Tarantula [18]: S(s) = failed(s)/totalfailed
failed(s)/totalfailed+passed(s)/totalpassed

Ochiai [2]: S(s) = failed(s)√
totalfailed·(failed(s)+passed(s))

Op2 [31]: S(s) = failed(s)− passed(s)
totalpassed+1

Barinel [4]: S(s) = 1− passed(s)
passed(s)+failed(s)

DStar† [44]: S(s) = failed(s)∗

passed(s)+(totalfailed−failed(s))
†variable ∗ > 0. We used ∗ = 2, the most thoroughly-explored value.

2) Mutation-based FL techniques: Mutation-based fault
localization techniques [30], [33] extend SBFL techniques
by considering not just whether a statement is executed, but
whether that statement’s execution is important to the test’s
success or failure—that is, whether a change to that statement
changes the test outcome. The more often a statement s affects
failing tests, and the less often it affects passing tests, the more
suspicious the statement is considered.

The key idea of MBFL is to assign suspiciousnesses to
injected mutants, based on the assumption that test cases
that kill mutants carry diagnostic power. A test case kills a
mutant if executing the test on the mutant yields a different test
outcome than executing it on the original program. Our study
considered two well-known MBFL techniques: MUSE [30] and
Metallaxis [33]. Each one generates a set of mutants mut(s) for
each statement s, assigns each mutant a suspiciousness M(m),
and aggregates the M(m) to yield a statement suspiciousness
score S(s).

MUSE’s ranking [30] can be obtained by setting M(m) =
failed(m)− f2p

p2f · passed(m) where failed(m) is the number of
failing tests that passed with m inserted, and f2p is the number
of cases in the whole program where a mutant caused any
failing test to pass. passed(m) and p2f are defined similarly.
MUSE sets S(s) = avgm∈mut(s) M(m).

Metallaxis [33] uses the same suspiciousness formula as
Ochiai: Ochiaif (the superscript f denoting a reference to the
formula rather than the SBFL technique) for the suspiciousness
of each mutant:

M(m) = failed(m)√
totalfailed·(failed(m)+passed(m))

where failed(m) is the number of failing tests whose outcomes
are changed at all by the insertion of m (e.g., by failing
at a different point or with a different error message) and
totalfailed is the number of tests that fail on the original test
suite (passed(m) and totalpassed are defined similarly). The
suspiciousness of statement s is S(s) = maxm∈mut(s) M(m).

Since MBFL requires running the test suite once per possible
mutant, it is much more expensive than SBFL: even with the
optimizations described in our technical report [35] that reduced
the runtime by more than an order of magnitude, running every
test necessary to compute every MBFL technique’s score on
all 3390 faults took over 100,000 CPU-hours.

3) Implementation: We re-implemented all the fault local-
ization techniques using shared infrastructure. This ensures
that our results reflect differences in the techniques, rather than
differences in their implementations. We collected coverage
data using an improved version of GZoltar [8]. We collected mu-
tation analysis data using the Major mutation framework [20]
(v1.2.1), using all mutation operators it offers.

B. Programs

We used the programs in the Defects4J [21] dataset (v1.1.0),
which consists of 395 real faults from 6 open source projects:
JFreeChart, Google Closure compiler, Apache Commons Lang,
Apache Commons Math, Mockito, and Joda-Time. For each
fault, Defects4J provides faulty and fixed program versions

TABLE II
HOW WE SELECTED FAULTS FOR OUR REPLICATION STUDIES.

faults
Action Real Artif.

Consider all faults from Defects4J 395 4834
Every real fault must correspond to some artificial fault

Discard faults with deletion-only fix 386 4834
Discard undetectable artificial faults 358 3723

Impose 100,000h timeout 310 2995

Final 310 2995

with a minimized change that represents the isolated bug fix.
This change indicates which lines in a program are defective.

Defects4J’s patch minimization was performed by three au-
thors of this paper, using both automated analysis (such as delta
debugging [50]) and manual analysis to find a minimal patch
that they agreed preserved the spirit of the programmer’s fix.

Given a minimized patch, we used an automated anal-
ysis to obtain all removed, inserted, and changed lines,
but ignoring changes to declarations without an initial-
izer, addition and removal of compound statement delim-
iters (curly braces {}), annotations, and import statements.
These statements do not affect the program’s algorithm
or are trivial to add, and therefore a FL tool should not
report them. Any other statement modified by the patch
is a defective statement that a FL tool should report.

To reduce CPU costs, we applied each fault localization
technique only to the fault-relevant classes. A fault-relevant
class for a defect is any class that is loaded by any fault-
triggering test for that defect. This optimization is sound, and a
programmer could use it with little or no effort when debugging
a failure. We did not use slicing, impact analysis, or other
approaches to further localize or isolate the defective code.

C. Test suites

All investigated fault localization techniques require, as an
input, at least one test case that can expose the fault. For
each real fault, Defects4J provides a developer-written test
suite containing at least one such fault-triggering test case. To
verify that each artificial fault has at least one fault-triggering
test case as well, we executed the corresponding developer-
written test suite and discarded the 23% of artificial faults that
were not exposed by any test case. This is on the same order
as the results of a study [39] finding that 16% of mutants
were undetectable, 45% of which do not change the program
semantics.

IV. REPLICATION: ARTIFICIAL FAULTS

One goal of our work is to repeat previous evaluations of
fault localization techniques on artificial faults, using shared
infrastructure between all of the techniques to reflect differences
in the techniques, not in their implementations. This section
describes the techniques and faults we studied, our methodology
for assessing them, and the results of the comparison.

A. Methodology

1) Research questions:
RQ 1: Which FL techniques are significantly better than which

others, on artificial faults?
RQ 2: Do the answers to RQ1 agree with previous results?

2) Data: artificial faults: We used the Major tool [23] to
generate artificial faults, by mutating the fixed program versions
in Defects4J. We could have generated an artificial fault for
every possible mutation of every statement in the program, but
many of these artificial faults would be in parts of the program
completely unrelated to the corresponding real fault, where
fault localization might be easier or harder. Therefore, we only
generated artificial faults for formerly-defective statements of
the fixed program version—that is, those that would need to
be modified or deleted to reintroduce the real fault.

In more detail: each real fault in Defects4J is associated
with a faulty and a fixed program version. For each of these
pairs of program versions, Defects4J provides a patch which,
when applied to the fixed version, would reintroduce the real
fault. We call the statements modified or deleted by this patch
the fixed statements of the real fault. We generated artificial
faults by mutating the fixed statements.

Our methodology of comparing real faults to artificial faults
requires that for every real fault, there is at least one artificial
fault for comparison. We discarded 37 real faults that did not
fit this criterion, as shown in table II. First, we discarded 9 real
faults whose fixes only deleted erroneous code, so there were
no fixed statements and no artificial faults can be generated.
Then, we discarded artificial faults that are not detected by any
tests; we also discarded artificial faults that cause the test suite
to time out (e.g., because they introduce infinite loops). This
discarded all artificial faults for 28 real faults, so we removed
those 28 real faults from the study.

Some faults that do not introduce an infinite loop nonetheless
take a very long time during mutation testing. We ran our
experiments for about 100,000 hours, and discarded faults
whose MBFL analysis had not yet completed.

The output of this process was a set of 2995 artificial faults,
corresponding to 310 different real faults, each artificial fault
existing in a fixed statement of the corresponding real fault
and detectable by the same developer-written test suite. We
computed the EXAM score for each artificial fault and FL
technique.

3) Experimental design: We answered our research ques-
tions through the following analyses:
RQ 1: We used three independent, complementary evaluation

metrics to rank FL techniques from best to worst:
1) mean EXAM score across all artificial faults.
2) tournament ranking: comparing the sets of EXAM scores

of each pair of techniques, awarding 1 point to the winner
if it is statistically significantly better, and ranking by
number of points.

3) mean FLT rank: using each fault to rank the techniques
from 1 to 7, and averaging across all artificial faults.
“FLT” stands for “fault localization technique”.

TABLE III
FAULT LOCALIZATION TECHNIQUES SORTED BY MEAN EXAM SCORE OR

TOURNAMENT RANKING. “# WORSE” IS THE NUMBER OF OTHER
TECHNIQUES THAT ARE STATISTICALLY SIGNIFICANTLY WORSE IN THE

TOURNAMENT RANKING.

Artificial Faults Real Faults
Technique EXAM # Worse Technique EXAM # Worse

Metallaxis 0.0432 5 DStar 0.0404 4
Op2 0.0503 5 Ochiai 0.0405 4
DStar 0.0510 4 Barinel 0.0416 3
Ochiai 0.0514 3 Tarantula 0.0429 2
Barinel 0.0562 2 Op2 0.0476 2
Tarantula 0.0569 1 Metallaxis 0.0753 1
MUSE 0.0781 0 MUSE 0.2061 0

RQ 2: For each pair of techniques compared by prior
work (table I), we determined whether the two techniques’
distributions of EXAM scores are significantly different.

For all statistical comparisons between any two techniques in
this paper, we performed a paired t-test for two reasons. First,
our experiments have a matched pairs design—fault localization
results are grouped per defect. Second, while the exam scores
are not normally distributed, the differences between the exam
scores of any two techniques are close to being normally
distributed. Given that we have a large sample size and no
serious violation of the normality assumption, we chose the
t-test for its statistical power.

B. Results

1) Best FL technique on artificial faults: The mean EXAM
score metric and tournament ranking metric were perfectly
consistent with each other, and produce the ordering shown
in the left half of table III. The third metric (mean FLT rank)
also agrees perfectly with the others, except that MUSE does
best by mean FLT rank and worst by the other two metrics.

As shown by the peaks for the dotted lines in fig. 1, MBFL
techniques very often rank the artificially-faulty statement in
the top 5. One reason for this is that many artificial faults
we generate are caused by “reversible” mutants: mutants
that can be exactly canceled by applying a second mutant
(e.g., a+b→a-b→a+b). Reversible artificial faults guarantee
that MBFL will consider some mutant in the faulty statement
that fixes every failing test and that receives a very high
suspiciousness score.

2) Agreement with previous results: For each of the 10 pairs
of techniques that the prior work in table I has compared, we
performed a two-tailed t-test comparing the two techniques’
scores for artificial faults. The left column of table IV shows
the results of prior comparisons, and the middle columns show
our results. Notable features include:

Small effect sizes. All 10 pairs of techniques have statis-
tically significant differences: the “agree?” column of table IV
is unparenthesized. However, the practical differences (that
is, effect sizes) are all small or negligible: the “d” column is
parenthesized. All spectrum-based techniques (except Tarantula)
are nearly indistinguishable in fig. 1. We only see statistical
significance because of our large number of artificial faults.

Consistency with prior SBFL-SBFL comparisons. Our
results agree with all previous comparisons between SBFL

TABLE IV
PREVIOUSLY-REPORTED COMPARISONS, AND OUR RESULTS FOR THOSE COMPARISONS, IN THE BEST-CASE DEBUGGING SCENARIO.

The conclusions are the same for all debugging scenarios [35]. Emphasis on whether our study agrees indicates p-value: p<0.01, p<0.05, (p≥0.05). Emphasis
on Cohen’s d indicates effect size: large, medium, (small), (negligible). The column “95% CI” gives the confidence interval for the difference in means. The
column “(b – eq – w)” gives the counts for: per defect, was the winner better, equal to, or worse compared to the loser, ignoring the magnitude of the difference.

Previous comparisons Our study on artificial faults Our study on real faults
Winner > loser agree? d (eff. size) 95% CI (b – eq – w) agree? d (eff. size) 95% CI (b – eq – w)

Ochiai > Tarantula [26], [27], [31], [44], [49] yes (-0.23) [-0.006, -0.005] (1255–1739–1) (insig.) (-0.1) [-0.005, 0.000] (66–232–12)
Barinel > Ochiai [4] no (0.25) [0.004, 0.005] (1–1742–1252) (insig.) (0.09) [-0.000, 0.003] (12–233–65)
Barinel > Tarantula [4] yes (-0.05) [-0.001, -0.000] (9–2986–0) (insig.) (-0.06) [-0.003, 0.001] (1–309–0)
Op2 > Ochiai [31] yes (-0.08) [-0.002, -0.001] (456–2525–14) no (0.14) [0.002, 0.013] (60–219–31)
Op2 > Tarantula [30], [31] yes (-0.23) [-0.008, -0.006] (1316–1665–14) (insig.) (0.09) [-0.001, 0.012] (71–206–33)
DStar > Ochiai [26], [44] yes (-0.12) [-0.001, -0.000] (259–2736–0) (insig.) (-0.02) [-0.001, 0.001] (26–273–11)
DStar > Tarantula [19], [26], [44] yes (-0.24) [-0.007, -0.005] (1265–1729–1) (insig.) (-0.1) [-0.005, 0.000] (66–229–15)

Metallaxis > Ochiai [33] yes (-0.04) [-0.016, -0.001] (1900–228–867) no (0.2) [0.012, 0.042] (168–18–124)
MUSE > Op2 [30] no (0.12) [0.020, 0.036] (1874–120–1001) no 0.8 [0.131, 0.173] (115–2–193)
MUSE > Tarantula [30] no (0.09) [0.013, 0.029] (2055–79–861) no 0.86 [0.137, 0.178] (109–2–199)

Artificial faults Real faults

0.0

0.2

0.4

0.6

1.00000.10000.01000.00100.0001 1.00000.10000.01000.00100.0001
EXAM score (log scale)

D
en

si
ty

FL technique: Barinel DStar Metallaxis MUSE Ochiai Op2 Tarantula Family: MBFL SBFL

Artificial faults Real faults

0.0

0.2

0.4

0.6

0.8

1 10 100 1000 10000 1 10 100 1000 10000
Absolute score (log scale)

D
en

si
ty

FL technique: Barinel DStar Metallaxis MUSE Ochiai Op2 Tarantula Family: MBFL SBFL

Fig. 1. Distributions of EXAM and absolute scores for all FL techniques, considering the best-case debugging scenario and artificial vs. real faults. The
absolute score is the first location of any defective statement in the suspiciousness ranking of program statements, computed by a fault localization technique.

techniques, except the claim that Barinel outperforms Ochiai,
which our results contradict.

Disagreement with prior SBFL-MUSE comparisons.
Prior comparisons found MUSE superior to SBFL techniques.
Our results do not support that finding: although MUSE is
better on many artificial faults, it does much worse on others.
Overall, the differences are practically insignificant.

V. REPLICATION: REAL FAULTS

A. Subjects

We evaluated the same techniques, programs, and test suites
as described in section III, except that instead of evaluating each
technique on the 2995 artificial faults described in section IV,
we evaluate them on the corresponding 310 real faults.

B. Methodology

Our methodology is exactly like that described in sec-
tion IV-A, except evaluated on real faults, to answer:

RQ 3: Which FL techniques are significantly better than which
others, on real faults?

RQ 4: Do the answers to RQ3 agree with previous results?

C. Results

1) Best FL techniques on real faults: The right-hand
columns in table III show the FL technique rankings for real
faults produced by either the mean EXAM score metric or the
tournament ranking metric. The mean FLT rank gives almost
the same ranking, except that Metallaxis ranks first instead
of nearly last. Metallaxis usually has slightly higher scores
than any other technique (as shown in fig. 1), giving it a good
FLT rank, but it also has more extreme outliers than SBFL
techniques, greatly damaging its mean EXAM score. For more
details, see our technical report [35].

2) Agreement with previous results: The right-hand columns
of table IV compare our results on real faults to the results of
the studies we replicated. Notably:

Insignificant differences between SBFL techniques. All
effect sizes are negligible: column “d” is italicized.

Practical significance: MUSE performs poorly. The only
practically significant differences show that MUSE performs
poorly on real faults (see fig. 1). This is due to almost no real
faults being reversible by a single mutant (see section IV-B1).

D. Comparison to artificial faults

The most important feature of tables III and IV is that there
is no significant relationship between the results for real
and artificial faults. This suggests that artificial faults are not
useful for the purpose of determining which FL technique is
best at localizing mistakes that programmers actually make.

Another notable feature is that while Metallaxis performs
best on artificial faults, it does worse than spectrum-based
techniques on real faults. One reason for this may be that
10% of real-world faults involve non-mutatable statements,
which appear last in mutation-based techniques’ suspiciousness
rankings. These outlier scores greatly degrade the technique’s
mean score. On real faults, Metallaxis has the best mean FLT
rank but one of the worst mean EXAM scores.

We repeated the analysis of RQ1, restricted to different
categories of real faults. Again, there are no statistically
significant relationships between rankings on real and artificial
faults, even for single-line faults—which one would expect
to be the most similar to mutants—or faults of omission, on
which some FL techniques might perform poorly.

E. Controlling for number of samples

Table IV shows statistically significant results for artificial
faults, but mostly insignificant results on real faults. It is
possible that the results are insignificant because there are
so few data points—there are many more artificial than real
faults. To investigate this, we averaged results for each artificial
fault that corresponds to a single real fault, so there are only
310 datapoints for artificial faults. The results for artificial faults
remained statistically significant [35], showing that having 310
data points does not prevent statistically significant results.
Furthermore, the effect sizes for real faults are negligible for
SBFL comparisons, and the confidence intervals are tight
(table IV). Artificial faults are not a good proxy for any
single technique: the correlation between each technique’s
performance on artificial faults and real faults is at most
moderate—mostly weak or negligible.

VI. EXPLORING A DESIGN SPACE

To better understand these differences in performance and
their causes, we developed a design space that encompasses
all of these techniques, and evaluated the techniques in that
space on our overall set of 395 real faults.

A. Subjects

All the techniques of section III-A have the same structure:
1) For each program element (i.e., statements or mutants),

count the number of passing/failing tests that interact with
(i.e., execute or kill) that element.

2) Calculate a suspiciousness for each element, by applying a
formula to the numbers of passing/failing tests that interact.

3) If necessary, group those elements by statement, and
aggregate across the elements’ suspiciousnesses to compute
the statement’s suspiciousness.

4) Rank statements by their suspiciousness.
We developed a taxonomy for describing any of these

techniques in terms of 4 different parameters:
Formula: the formula used to compute elements’ suspicious-

ness values (e.g., Ochiaif)
Total Definition: the method for weighting passing/failing test

interactions in the formula
Interaction Definition: what it means for a test to interact

with an element (i.e., coverage for SBFL, killing for MBFL)
Aggregation Definition: for MBFL, the way of aggregating

elements’ suspiciousness by statement (e.g., max, average)
These parameters are described in more detail below. For

SBFL techniques, the “elements” are simply statements. A test
interacts with a statement by executing it, and no aggregation
of elements by statement is necessary, so the only two relevant
parameters are formula and total definition.

The following subsections detail the possible values for each
of these parameters. By taking all sensible combinations of
them, we arrive at a design space containing 156 techniques.

1) Formula: We consider the formulas for the SBFL
techniques Tarantula, Ochiai, DStar, Barinel, and Op2, as well
as the formula used by MUSE, which can be cast as

S(s) = failed(s)− totalfailed
totalpassed · passed(s) .

When combined with the appropriate values of the other
parameters, this formula produces MUSE’s statement-ranking.

2) Total definition: Almost all of the prior FL techniques
make use of totalpassed and totalfailed in their suspiciousness
formulas, representing the numbers of passing/failing tests.
MUSE, though (recall from section III-A2), instead refers to
p2f and f2p, representing the number of mutants killed by
passing/failing tests. Motivated by the resemblance between
these quantities, we introduced a parameter that determines
whether totalpassed, in the FL technique’s formula, refers to
the number of tests or the number of elements interacted with
by the tests (and similarly for totalfailed).

3) Interaction definition: For SBFL there is one clear
definition for whether a test interacts with a statement: coverage,
or executing the statement. For MBFL, the definition of whether
a test “kills” a mutant is not firmly established. MUSE requires
that the mutant change whether the test passes or fails, while
Metallaxis merely requires that the mutant cause any change
to the test’s output (for example, change the message of an
exception thrown by a failing test). We used the following
framework to describe the spectrum of possible definitions.

A test kills a mutant if it changes the test outcome—more
specifically, if it changes the outcome’s equivalence class. We
give 6 ways to define the equivalence classes. All of them
define one class each for “pass”, “timeout”, “JVM crash”, and
several classes for “exception” (including AssertionError).
The 6 definitions differ in how they partition exceptions:

1) exact: exceptions with the same stack trace are equivalent;
2) type+fields+location: exceptions with the same type, mes-

sage, and location are equivalent;
3) type+fields: exceptions with the same type and same

message are equivalent;
4) type: exceptions with the same type are equivalent;
5) all: all exceptions are equivalent;
6) passfail: all exceptions are equivalent to one another and

to the “time out” and “crash” classes (so there are only
two possible equivalence classes: “pass” and “fail”).

Metallaxis uses the “exact” definition. MUSE uses the
“passfail” definition.

4) Aggregation definition: MBFL computes an aggregate
statement suspiciousness S(s) from the suspiciousnesses of
individual mutants by taking either the average (like Metallaxis)
or the maximum (like MUSE). Unmutatable statements are not
assigned any suspiciousness, and therefore do not appear in the
technique’s ranking. (Approximately 10% of Defects4J’s faults
contain at least one unmutatable faulty statement. This causes
MBFL to do quite poorly in the worst-case debugging scenario,
when its goal is to find the position of all faulty statements.)

B. Methodology

RQ 5: Which technique in this design space performs best on
real faults? For each of our evaluation metrics (EXAM score,
FLT rank) and debugging scenarios (best-case, average-case,
worst-case), we identified the technique that performed
best, averaged across all 395 real faults. To quantify how
often these techniques significantly outperform others, we
performed pairwise comparisons between them and each
of the other 155 techniques, using a paired t-test.

RQ 6: What are the most significant design decisions for a
FL technique? We performed an analysis of variance to
determine the influence of the 4 design space parameters,
the debugging scenario, and the defect on the EXAM score.
In other words, we compute how much variance in the
EXAM score is explained by each factor.

C. Results

1) What is the best fault localization technique?: For the
best-case debugging scenario, the DStar technique has the
smallest mean EXAM score (see table V, with more details in
[35]); DStar is statistically significantly better than almost
every other technique in the design space (see table VI),
and its score is almost twice as good as the best MBFL
technique, which closely resembles Metallaxis. For the other
two debugging scenarios, Barinel and Ochiai perform best,
when instantiated with the “number of statements covered”
definition of totalpassed and totalfailed.

Judged by the mean EXAM score, all 12 SBFL techniques
are better than the best MBFL technique. However, judged by
mean FLT rank, this reverses, and many MBFL techniques are
better than any SBFL technique. As seen in table VI, the best
MBFL technique by FLT rank for two debugging scenarios
uses MUSE’s formula and total-definition, but Metallaxis’s
aggregation and interaction (kill)-definition. (Recall from

TABLE V
BEST FL TECHNIQUES PER FAMILY ACCORDING TO MEAN EXAM SCORE.

THE FIRST COLUMN IS RANK AMONG THE 156 TECHNIQUES.

Family Formula Total def. Interact. def. Agg. def EXAM score

best-case debugging scenario (localize any defective statement)
1 SBFL DStarf tests – – 0.040

13 MBFL Ochiaif elements exact max 0.078

worst-case debugging scenario (localize all defective statements)
1 SBFL Barinelf elements – – 0.191

13 MBFL Ochiaif elements exact max 0.245

average-case debugging scenario (localize 50% of the defective statements)
1 SBFL Ochiaif elements – – 0.088

13 MBFL DStarf tests exact max 0.129

TABLE VI
PAIRWISE COMPARISON OF THE BEST TECHNIQUE PER EVALUATION METRIC
WITH ALL OTHER TECHNIQUES IN THE DESIGN SPACE. “# BETTER THAN”

GIVES THE NUMBER OF COMPARISONS FOR WHICH THE BEST TECHNIQUE IS
SIGNIFICANTLY BETTER, AND “d̄” GIVES THE AVERAGE EFFECT SIZE.

Evaluation
metric

Best FL technique # Better
than

d̄

Family Formula Total Inter. Agg.
def. def. def.

best-case debugging scenario (localize any defective statement)
Mean EXAM score SBFL DStarf tests – – 151/155 −0.47
Mean Rank MBFL DStarf tests type avg 128/155 −0.18

worst-case debugging scenario (localize all defective statements)
Mean EXAM score SBFL Barinelf elements – – 149/155 −0.42
Mean Rank MBFL MUSEf elements exact max 135/155 −0.22

average-case debugging scenario (localize 50% of the defective statements)
Mean EXAM score SBFL Ochiaif elements – – 149/155 −0.47
Mean Rank MBFL MUSEf elements exact max 146/155 −0.25

section IV-B that MUSE’s kill-definition tied its performance
to fault reversibility. Using a different kill-definition damages
its performance on reversible faults, but makes it much better
on real faults [35].)

DStar is statistically significantly better than all but four tech-
niques in the design space, and the best MBFL technique is sta-
tistically significantly better than about 80% of the design space.

DStar is the best fault localization technique in the design
space. However, it is statistically indistinguishable from four
other SBFL techniques, including Ochiai and Barinel.

2) Which parameters matter in the design of a FL tech-
nique?: We analyzed the influence of the 4 different parameters
on the EXAM score. Table VII shows the results, indicating that
all factors (including all FL technique parameters, as well as the
defect and debugging scenario) have a statistically significant
effect on the EXAM score.

It is unsurprising that most of the variance in scores (“sum
of squares” column) is accounted for by which defect is being
localized: some faults are easy to localize and some are difficult.

Interestingly, although prior studies have mostly focused on
the formula and neglected other factors, we find that the formula
has relatively little effect on how well a FL technique performs.
The choice of the formula accounts for no more than 2% of
the non-defect variation in the EXAM scores. Furthermore, a
post-hoc Tukey test showed that the differences between all
formulas are insignificant for SBFL techniques.

TABLE VII
ANOVA ANALYSIS OF THE EFFECT OF ALL FACTORS ON THE EXAM SCORE

FOR REAL FAULTS. R2 GIVES THE COEFFICIENT OF DETERMINATION.

Factor Deg. of freedom Sum of squares F-value p

sbfl (R2 = 0.65)
Defect 394 387 58 <0.05
Debugging scenario 2 57.9 1703 <0.05

Formula 5 0.374 4 <0.05
Total definition 1 0.00623 0 (insig.)

mbfl (R2 = 0.67)
Defect 394 5508 725 <0.05
Debugging scenario 2 718 18614 <0.05

Interaction definition 5 324 3357 <0.05
Formula 5 20.4 211 <0.05
Aggregation definition 1 1.33 69 <0.05
Total definition 1 0.145 8 <0.05

sbfl + mbfl (R2 = 0.64)
Defect 394 5595 686 <0.05
Debugging scenario 2 776 18734 <0.05

Family 12 426 1716 <0.05
Formula 5 20.3 196 <0.05
Total definition 1 0.15 7 <0.05

All studied parameters have a statistically significant effect
on the EXAM score, but the only FL technique parameters
with a practically significant effect are family (SBFL vs.
MBFL) and interaction (kill) definition (for MBFL only).

VII. NEW TECHNIQUES

Beyond the quantitative results discussed so far, our studies
exposed three limitations of MBFL techniques. (i) MBFL
techniques perform poorly on defects that involve unmutatable
statements. (ii) MBFL techniques perform poorly when some
mutants are covered but not killed. (iii) The run time of MBFL
techniques is several orders of magnitude larger than for SBFL
techniques, because mutation analysis requires running the
entire test suite many times (once per mutant).

We designed several new variants of MBFL to address these
limitations, by using coverage information to augment the
mutation information:

• MCBFL (“mutant-and-coverage-based FL”), which in-
creases the suspiciousness of mutants covered by failing
tests, thus ensuring that mutants covered-but-not-killed by
failing tests are more suspicious than ones not even covered;

• MCBFL-hybrid-failover, which uses SBFL to assign suspi-
ciousnesses to unmutatable statements, thus placing them
more accurately in the ranking than MBFL can;

• MCBFL-hybrid-avg, which averages each statement’s
MBFL suspiciousness with the suspiciousness calculated
by a SBFL technique;

• MCBFL-hybrid-max, which does the same, but takes the
greater of the two suspiciousnesses; and

• MRSBFL, which uses mutation coverage information to
replace the kill information in MBFL, thus requiring only
a single run of the test suite, making it as inexpensive as
SBFL.

TABLE VIII
PERCENTAGE OF DEFECTS WHOSE DEFECTIVE STATEMENTS APPEAR

WITHIN THE TOP-5, TOP-10, AND TOP-200 OF THE TECHNIQUES’
SUSPICIOUSNESS RANKING.

Debugging scenario
Best-case dbg. scen. Worst-case dbg. scen. Avg-case dbg. scen.

Technique Top-5 Top-10 Top-200 Top-5 Top-10 Top-200 Top-5 Top-10 Top-200

MCBFL-hybrid-avg 36% 45% 85% 19% 26% 58% 23% 31% 71%
Metallaxis 29% 39% 77% 16% 22% 47% 18% 27% 63%
DStar 30% 39% 82% 17% 23% 57% 18% 26% 69%

We evaluated these novel techniques on our overall set of
395 real faults, considering all debugging scenarios. Overall,
MCBFL-hybrid-avg is better than any other technique in all
debugging scenarios, but the difference in EXAM score and
FLT rank is not practically significant (a technical report gives
full experimental results [35]).

Table VIII compares our new MCBFL-hybrid-avg technique
to the best SBFL and MBFL techniques in terms of how
often they report defective statements in the top 5, 10, or 200
statements. This is relevant because a recent study [24] showed
that 98% of practitioners consider a fault localization technique
to be useful only if it reports the defective statement(s) within
the top-10 of the suspiciousness ranking. Another analysis [29]
shows that automatic program repair systems perform best
when they consider only the top-200 suspicious statements.

While the SBFL and MBFL techniques perform equally
well under this light, they complement each other. This leads
our new MCBFL-hybrid-avg technique to clearly report more
defective statements near the top of the suspiciousness ranking
than any previous technique.

VIII. THREATS TO VALIDITY

Generalization. Defects4J’s data set spans 6 programs, writ-
ten by different developers and targeting different application
domains. Our set of 395 real faults is much larger than all
previous studies combined (less than 60 faults). Nonetheless,
future research should verify whether our results generalize to
other programs and test suites.

Based on the consistency of our results so far (table III),
we believe that artificial faults are not good proxies for real
faults, for evaluating any SBFL or MBFL techniques. However,
slice-based or model-based techniques (see section IX) are
sufficiently different that our results may not carry over to them.

Applicability. The EXAM score may not be the best metric
for comparing usefulness of FL techniques by humans: in
one study, expert programmers diagnosed faults more quickly
with FL tools than without, but better EXAM scores did not
always result in significantly faster debugging [34]. Our study
revolves around the comparison of FL techniques rather than
their absolute performances. Furthermore, our “mean FLT rank”
metric is agnostic to whether absolute or relative scores are
being compared. Other metrics may be better correlated with
programmer performance, such as defective statements in the
top-10 (section VII). It is unknown which metrics are best for
other uses of fault localization, such as automated program
repair. Even for the use case of human debugging, our study

yields insights into the construction and evaluation of FL
techniques, and what user studies should be done in the future.

Verifiability. All of our results can be reproduced by an
interested reader. Our data and scripts are publicly avail-
able at https://bitbucket.org/rjust/fault-localization-data. Our
methodology builds upon other tools, which are also publicly
available. Notable examples are the Defects4J database of
real faults (https://github.com/rjust/defects4j), the GZoltar fault
localization tool (http://www.gzoltar.com/), and the Major
mutation framework (http://mutation-testing.org/).

IX. RELATED WORK

According to a recent survey [45], the most studied and
evaluated fault localization techniques are spectrum-based [3],
[18], [25], [44], slice-based [42], [48], model-based [1], [47],
and mutation-based [30], [33]. For reasons of space, we discuss
the most closely related work; our technical report [35] contains
extensive additional discussion.

A. Evaluation of fault localization techniques

Table I references many previous comparisons of FL tech-
niques. Most compare only SBFL techniques, though Jones
and Harrold [18] compare Tarantula against other families
(slice-based and cause transitions), and the papers presenting
MBFL techniques compare against prior SBFL techniques.
These studies predominantly use artificial faults. Our findings
agree with the results of almost all of these studies on artificial
faults, but differ dramatically on real faults.

B. Artificial vs. real faults

It has been very common to evaluate and compare fault
localization techniques using manually-seeded artificial faults
(e.g., Siemens set [3], [18], [33], [38]) or mutations (e.g., [12],
[38], [44]) as a proxy to real faults. However, it remains an
open question whether results on small artificial faults (whether
hand-seeded or automatically-generated) are characteristic of
results on real faults.

To the best of our knowledge, previous evaluations of FL
techniques on real faults only used one small numerical subject
program with simple control flow: space [41], in which 35 real
faults were detected during development. Those faults were
characterized as: logic omitted or incorrect (e.g., missing condi-
tion), computation problems (e.g., incorrect equations), incom-
plete or incorrect interfaces, and data handling problems (e.g.,
incorrectly access/store data). In previous studies, space’s real
faults have been considered alongside artificially inserted faults,
but no comparison between the two kinds was done. In contrast,
we used larger programs (22–96 KLOC), and we independently
evaluated the performance of each FL technique on a larger
number of real faults and artificial faults (see section V-A).

The use of mutants as a replacement for real faults has
been investigated in other domains. In the context of test
prioritization, Do et al. [13] concluded from experiments on
six Java programs that mutants are better suited than manually
seeded faults for studies of prioritization techniques, as small
numbers of hand-selected faults may lead to inappropriate

assessments of those techniques. Cifuentes et al. [9] found that
5 static bug detection tools achieved an average accuracy of
20% on real bugs but 46% on synthetic bugs.

The more general question of whether mutants are represen-
tative of real faults has been subject to thorough investigation.
While Gopinath et al. [14] found that mutants and real faults
are not syntactically similar, several independent studies have
provided evidence that mutants and real faults are coupled.
DeMillo et al. [11] studied 296 errors in TeX and found simple
mutants to be coupled to complex faults. Daran et al. [10] found
that the errors caused by 24 mutants on an industrial software
program are similar to those of 12 real faults. Andrews et al. [6]
compared manually-seeded faults with mutants and concluded
that mutants are a good representation of real faults for testing
experiments, in contrast to manually-seeded faults. Andrews
et al. [7] further evaluated the relation of real faults from the
space program and 736 mutants using four mutation operators,
and again found that mutants are representative of real faults.
Just et al. [22] studied the real faults of the Defects4J [21] data
set, and identified a positive correlation of mutant detection
with real fault detection. However, they also found that 27% of
the real faults in Defects4J [21] are not coupled with commonly
used mutation operators [17], suggesting a need for stronger
mutation operators.

However, Namin et al. [32] studied the same set of programs
as previous studies [6], and cautioned of the substantial
external threats to validity when using mutants for experiments.
Therefore, it is important to study the impact of the use of
mutants for specific types of software engineering experiments,
such as fault localization, as conducted in this paper.

X. CONCLUSION

Fault localization techniques’ performance has mostly been
evaluated using artificial faults (e.g., mutants). Artificial faults
differ from real faults, so previous studies do not establish
which techniques are best at finding real faults.

This paper evaluates the performance of 7 previously-studied
fault localization techniques. We replicated previous studies in
a systematic way on a larger number of artificial faults and
on larger subject programs; this confirmed 70% of previous
results and falsified 30%. We also evaluated the FL techniques
on hundreds of real faults, and we found that artificial faults
are not useful for predicting which fault localization techniques
perform best on real faults. Of the previously-reported results
on artificial faults, 60% were statistically insignificant on real
faults and the other 40% were falsified; most notably, MBFL
techniques are relatively less useful for real faults.

We analyzed the similarities and differences among the FL
techniques to synthesize a design space that encompasses them.
We evaluated 156 techniques to determine what aspects of a
FL technique are most important.

We created new hybrid techniques that outperform previous
techniques on the important metric of reporting defects in
the top-10 slots of the ranking. The hybrids combine existing
techniques in a way that preserves the complementary strengths
of each while mitigating their weaknesses.

https://bitbucket.org/rjust/fault-localization-data
https://github.com/rjust/defects4j
http://www.gzoltar.com/
http://mutation-testing.org/

ACKNOWLEDGMENTS

This material is based on research sponsored by Air Force
Research Laboratory and DARPA under agreement numbers
FA8750-12-2-0107, FA8750-15-C-0010, and FA8750-16-2-
0032. The U.S. Government is authorized to reproduce and
distribute reprints for Governmental purposes notwithstanding
any copyright notation thereon. This material is based upon
work supported by the ERDF’s COMPETE 2020 Programme
under project No. POCI-01-0145-FEDER-006961 and FCT
under project No. UID/EEA/50014/2013.

REFERENCES

[1] R. Abreu and A. J. van Gemund. A low-cost approximate minimal
hitting set algorithm and its application to model-based diagnosis. In
Symposium on Abstraction, Reformulation, and Approximation (SARA),
volume 9, pages 2–9, 2009.

[2] R. Abreu, P. Zoeteweij, R. Golsteijn, and A. J. Van Gemund. A practical
evaluation of spectrum-based fault localization. Journal of Systems and
Software, 82(11):1780–1792, 2009.

[3] R. Abreu, P. Zoeteweij, and A. J. Van Gemund. On the accuracy of
spectrum-based fault localization. In Testing: Academic and Indus-
trial Conference Practice and Research Techniques-MUTATION, 2007.
TAICPART-MUTATION 2007, pages 89–98. IEEE, 2007.

[4] R. Abreu, P. Zoeteweij, and A. J. Van Gemund. Spectrum-based multiple
fault localization. In Automated Software Engineering, 2009. ASE’09.
24th IEEE/ACM International Conference on, pages 88–99. IEEE, 2009.

[5] S. Ali, J. H. Andrews, T. Dhandapani, and W. Wang. Evaluating the
accuracy of fault localization techniques. In ASE, pages 76–87, Nov.
2009.

[6] J. H. Andrews, L. C. Briand, and Y. Labiche. Is mutation an appropriate
tool for testing experiments? In ICSE, pages 402–411, May 2005.

[7] J. H. Andrews, L. C. Briand, Y. Labiche, and A. S. Namin. Using
Mutation Analysis for Assessing and Comparing Testing Coverage
Criteria. IEEE Trans. Softw. Eng., 32(8):608–624, Aug. 2006.

[8] J. Campos, A. Riboira, A. Perez, and R. Abreu. GZoltar: An Eclipse
plug-in for testing and debugging. In Proceedings of the 27th IEEE/ACM
International Conference on Automated Software Engineering, ASE 2012,
pages 378–381, New York, NY, USA, 2012. ACM.

[9] C. Cifuentes, C. Hoermann, N. Keynes, L. Li, S. Long, E. Mealy,
M. Mounteney, and B. Scholz. BegBunch: Benchmarking for C bug
detection tools. In DEFECTS, pages 16–20, July 2009.

[10] M. Daran and P. Thévenod-Fosse. Software Error Analysis: A Real
Case Study Involving Real Faults and Mutations. In Proceedings of the
1996 ACM SIGSOFT International Symposium on Software Testing and
Analysis, ISSTA ’96, pages 158–171, New York, NY, USA, 1996. ACM.

[11] R. A. DeMillo and A. P. Mathur. On the Use of Software Artifacts to
Evaluate the Effectiveness of Mutation Analysis in Detecting Errors
in Production Software. Technical Report SERC-TR-92-P, Purdue
University, West Lafayette, Indiana, 1992.

[12] N. DiGiuseppe and J. A. Jones. Fault density, fault types, and spectra-
based fault localization. Empirical Softw. Engg., 20(4):928–967, Aug.
2015.

[13] H. Do and G. Rothermel. On the Use of Mutation Faults in Empirical
Assessments of Test Case Prioritization Techniques. IEEE Trans. Softw.
Eng., 32(9):733–752, Sep. 2006.

[14] R. Gopinath, C. Jensen, and A. Groce. Mutations: How close are they
to real faults? In Software Reliability Engineering (ISSRE), 2014 IEEE
25th International Symposium on, pages 189–200. IEEE, 2014.

[15] C. Gouveia, J. Campos, and R. Abreu. Using HTML5 visualizations in
software fault localization. In Proceedings of the 29th IEEE International
Conference on Software Maintenance, ICSM 2013, Washington, DC,
USA, 2013. IEEE Computer Society.

[16] M. Hutchins, H. Foster, T. Goradia, and T. Ostrand. Experiments of
the Effectiveness of Dataflow-and Controlflow-Based Test Adequacy
Criteria. In Proceedings of the 16th international conference on Software
engineering, pages 191–200. IEEE Computer Society Press, 1994.

[17] Y. Jia and M. Harman. An analysis and survey of the development of
mutation testing. IEEE Trans. Softw. Eng., 37(5):649–678, Sep. 2011.

[18] J. A. Jones and M. J. Harrold. Empirical evaluation of the Tarantula
automatic fault-localization technique. In ASE, pages 273–282, Nov.
2005.

[19] X. Ju, S. Jiang, X. Chen, X. Wang, Y. Zhang, and H. Cao. HSFal:
Effective Fault Localization Using Hybrid Spectrum of Full Slices and
Execution Slices. Journal of Systems and Software, 90:3–17, Apr. 2014.

[20] R. Just. The Major mutation framework: Efficient and scalable mutation
analysis for Java. In ISSTA, pages 433–436, July 2014.

[21] R. Just, D. Jalali, and M. D. Ernst. Defects4J: A Database of existing
faults to enable controlled testing studies for Java programs. In ISSTA,
pages 437–440, July 2014. Tool demo.

[22] R. Just, D. Jalali, L. Inozemtseva, M. D. Ernst, R. Holmes, and G. Fraser.
Are mutants a valid substitute for real faults in software testing? In FSE,
pages 654–665, Nov. 2014.

[23] R. Just, F. Schweiggert, and G. M. Kapfhammer. MAJOR: An efficient
and extensible tool for mutation analysis in a Java compiler. In
Proceedings of the International Conference on Automated Software
Engineering (ASE), pages 612–615, November 9–11 2011.

[24] P. S. Kochhar, X. Xia, D. Lo, and S. Li. Practitioners’ Expectations on
Automated Fault Localization. In Proceedings of the 25th International
Symposium on Software Testing and Analysis, ISSTA 2016, pages 165–
176, New York, NY, USA, 2016. ACM.

[25] G. Laghari, A. Murgia, and S. Demeyer. Improving spectrum based
fault localisation techniques. In In Proceedings of the 14th Belgian-
Netherlands Software Evolution Seminar (BENEVOL’2015), December
2015.

[26] T.-D. B. Le, D. Lo, and F. Thung. Should i follow this fault localization
tool’s output? Empirical Softw. Engg., 20(5):1237–1274, Oct. 2015.

[27] T.-D. B. Le, F. Thung, and D. Lo. Theory and practice, do they match?
A case with spectrum-based fault localization. In ICSM, pages 380–383,
Sep. 2013.

[28] C. Liu, L. Fei, X. Yan, J. Han, and S. P. Midkiff. Statistical debugging:
A hypothesis testing-based approach. Software Engineering, IEEE
Transactions on, 32(10):831–848, 2006.

[29] F. Long and M. Rinard. An analysis of the search spaces for generate
and validate patch generation systems. In Proceedings of the 38th
International Conference on Software Engineering, pages 702–713. ACM,
2016.

[30] S. Moon, Y. Kim, M. Kim, and S. Yoo. Ask the mutants: Mutating faulty
programs for fault localization. In ICST, pages 153–162, Apr. 2014.

[31] L. Naish, H. J. Lee, and K. Ramamohanarao. A model for spectra-based
software diagnosis. ACM Transactions on software engineering and
methodology (TOSEM), 20(3):11, 2011.

[32] A. S. Namin and S. Kakarla. The use of mutation in testing experiments
and its sensitivity to external threats. In Proceedings of the 2011
International Symposium on Software Testing and Analysis, ISSTA ’11,
pages 342–352, New York, NY, USA, 2011. ACM.

[33] M. Papadakis and Y. Le Traon. Metallaxis-FL: Mutation-based fault
localization. STVR, 25(5-7):605–628, Aug.–Nov. 2015.

[34] C. Parnin and A. Orso. Are automated debugging techniques actually
helping programmers? In ISSTA, pages 199–209, July 2011.

[35] S. Pearson, J. Campos, R. Just, G. Fraser, R. Abreu, M. D. Ernst, D. Pang,
and B. Keller. Evaluating & improving fault localization techniques.
Technical Report UW-CSE-16-08-03, U. Wash. Dept. of Comp. Sci. &
Eng., Seattle, WA, USA, Sep. 2016. Revised Feb. 2017.

[36] B. Pytlik, M. Renieris, S. Krishnamurthi, and S. P. Reiss. Automated fault
localization using potential invariants. In AADEBUG, pages 273–276,
Sep. 2003.

[37] Y. Qi, X. Mao, Y. Lei, and C. Wang. Using automated program repair
for evaluating the effectiveness of fault localization techniques. In
Proceedings of the 2013 International Symposium on Software Testing
and Analysis, ISSTA 2013, pages 191–201, New York, NY, USA, 2013.
ACM.

[38] R. Santelices, J. Jones, Y. Yu, and M. J. Harrold. Lightweight fault-
localization using multiple coverage types. In Proceedings of the
International Conference on Software Engineering (ICSE), pages 56–66,
2009.

[39] D. Schuler and A. Zeller. Covering and uncovering equivalent mutants.
Software Testing, Verification and Reliability, 23(5):353–374, 2013.

[40] F. Steimann, M. Frenkel, and R. Abreu. Threats to the validity and value
of empirical assessments of the accuracy of coverage-based fault locators.
In ISSTA, pages 314–324, July 2013.

[41] F. I. Vokolos and P. G. Frankl. Empirical evaluation of the textual
differencing regression testing technique. In Proceedings of the
International Conference on Software Maintenance, ICSM ’98, pages
44–, Washington, DC, USA, 1998. IEEE Computer Society.

[42] M. Weiser. Program slices: formal, psychological, and practical
investigations of an automatic program abstraction method. PhD thesis,
University of Michigan, Ann Arbor, 1979.

[43] E. Wong, T. Wei, Y. Qi, and L. Zhao. A Crosstab-based Statistical Method
for Effective Fault Localization. In Proceedings of the 2008 International
Conference on Software Testing, Verification, and Validation, ICST ’08,
pages 42–51, Washington, DC, USA, 2008. IEEE Computer Society.

[44] W. E. Wong, V. Debroy, R. Gao, and Y. Li. The DStar method for
effective software fault localization. IEEE Trans. Reliab., 63(1):290–308,
Mar. 2014.

[45] W. E. Wong, R. Gao, Y. Li, R. Abreu, and F. Wotawa. A survey of
software fault localization. IEEE Transactions on Software Engineering
(TSE), 2016.

[46] W. E. Wong, J. R. Horgan, S. London, and A. P. Mathur. Effect of Test
Set Minimization on Fault Detection Effectiveness. In Proceedings of
the 17th International Conference on Software Engineering, ICSE ’95,

pages 41–50, New York, NY, USA, 1995. ACM.
[47] F. Wotawa, M. Stumptner, and W. Mayer. Model-based debugging or

how to diagnose programs automatically. In Proceedings of the 15th
International Conference on Industrial and Engineering Applications
of Artificial Intelligence and Expert Systems: Developments in Applied
Artificial Intelligence, IEA/AIE ’02, pages 746–757, London, UK, UK,
2002. Springer-Verlag.

[48] B. Xu, J. Qian, X. Zhang, Z. Wu, and L. Chen. A brief survey of
program slicing. SIGSOFT Softw. Eng. Notes, 30(2):1–36, Mar. 2005.

[49] J. Xuan and M. Monperrus. Test case purification for improving fault
localization. In Proceedings of the 22Nd ACM SIGSOFT International
Symposium on Foundations of Software Engineering, FSE 2014, pages
52–63, New York, NY, USA, 2014. ACM.

[50] A. Zeller and R. Hildebrandt. Simplifying and isolating failure-inducing
input. IEEE TSE, 28(3):183–200, Feb. 2002.

