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UW CSE 452

• Course on distributed systems for undergraduates and 5th year 
Master's students, enrollment grown to approximately 200

• Lab assignments building fault-tolerant, consistent distributed systems, 
based on assignments developed for MIT 6.824:

1. Exactly-once RPC
2. Primary-backup
3. Paxos-based state machine replication
4. Sharded key-value store
5. Distributed transactions using two-phase commit

• Tests used for grading assignments given to students

Goal: Tests which identify common bugs, provide timely feedback, and 
assist debugging to help students build systems to rigorous standards.



Systems solution for 
teaching distributed 
systems



Testing Distributed Systems is Difficult

• Simple Paxos bug: leader 
checks for quorum with 
matching values (rather than 
proposal numbers).

• Finding such a bug is difficult 
with current tools.

• This false quorum bug could 
be caused by a fundamental 
misunderstanding.
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– CSE 452 Student

"Just 3 days before the deadline of the project, my 
partner and I discovered that our Paxos failed 1 of 

100,000 tests.  …We realized that the bug comes from 
our optimization of duplicate request detection before 

putting request on the Paxos operation log. … We 
needed to rewrite fifty percent of the whole project but we 
did not give up. Finally, after 30 hours of work in 2 days, 

we fixed the design flaw and eliminated the bug. We were 
so excited that we started to dance in the lab.” 



Checking Correctness

• Execution-based testing is insufficient; can miss bugs 
unlikely to occur based on timing.

• Manual review does not scale or provide feedback quickly 
enough.

• Formal verification is difficult and time-consuming, not 
approachable for students.



Checking Correctness: Model Checking

• Researchers and practitioners use model checking to 
validate protocols and software, systematically searching 
through possible executions.

• Some specification languages are difficult to learn, do not 
produce runnable code.

• Naïve methods do not scale well, fail to find rare bugs 
quickly and reliably.



DSLabs

A framework for creating distributed systems labs and test 
suites

… capable of finding common bugs in students' 
implementations quickly and reliably

… using a widely-used programming language (Java) and 
easily-learned tools

… that helps students write correct, efficient, runnable code

… and understand errors when they do arise.



The Rest of This Talk

1. The DSLabs programming model

2. Model checking strategies and optimizations

3. Understandability and Oddity visual debugger

4. Experiences



DSLabs Programming Model

• A distributed system consists 
of a set of nodes which 
communicate over an 
asynchronous network, 
working together to run a 
protocol.

• Nodes are I/O automata; they 
run as single-threaded event 
loops.

• Nodes are split between client 
and server nodes.



DSLabs Programming Model

• A distributed system consists 
of a set of nodes which 
communicate over an 
asynchronous network, 
working together to run a 
protocol.

• Nodes are I/O automata; they 
run as single-threaded event 
loops.

• Nodes are split between client 
and server nodes.

 
{ 
  foo: 42, 
  bar: "towel" 
}

1: init()
2: loop  
3:     e <- rcv_timer() || 
              rcv_msg() 
4:     update_state(e)      
5:     send_msgs() 
6:     set_timers() 
7: endloop
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Programming Model Benefits

• Isolates concurrency to coarsest possible granularity

• Lets students focus on distributed protocols, avoiding 
issues such as deadlock within a node

• Allows for model checking at the protocol level without 
significant modification or overhead
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How can the model checker evaluate states of 
student implementations?

What should the interface be between the 
tests and student implementations?
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Improving Model Checking Performance, Reliability

Model checking faces state-space explosion problem.

Strategies: 

1. Pruning the search space

2. Punctuated search

3. Searching for progress
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states, refusing to expand 
them during the search.
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ignore states in which clients 
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Simplifying Implementation: Testing Determinism

• Key assumption: nodes are 
deterministic.

• Some sources of non-
determinism are non-obvious.

• DSLabs has flag to check 
handler determinism, 
facilitating correct 
implementation.
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deterministic.

• Some sources of non-
determinism are non-obvious.
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implementation.
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Designing Systems for Model Checking

• Performance of model checking is implementation-
dependent; runtime optimizations can reduce checkability.

• Our advice to students:

- Favor simplicity.

- Keep and send minimal state.

- Ensure system can make progress with minimal steps.



Outline

1. The DSLabs programming model

2. Model checking strategies and optimizations

3. Understandability and Oddity visual debugger

4. Experiences



Producing Understandable Traces

• A trace is a linearization of an 
execution returned by model 
checker, demonstrating 
invariant violation.

• BFS used by model checker 
could return any minimal 
length trace.

• DSLabs performs a depth-first 
topological sort of the event 
graph before returning traces 
to students
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Oddity

• Allows exploration from 
initial state or invariant-
violating trace

• Lets students interactively 
explore states, examine 
messages and nodes

• Can "time-travel," explore 
alternate histories
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Can Guided Searches Find Bugs?

• Naïve BFS can't find the 
example false quorum bug.

• Random exploration takes 
an average of 12 hours.

• Guided search for this type 
of bug takes just 18 
seconds.
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Can Guided Search Improve Model Checking Thoroughness?
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Are Students Able to Debug Their Systems?

• Based on opt-in telemetry: over 150 invariant-violations 
examined with Oddity

• Almost all of these fixed before submission

• Only 25 submissions (across all assignments) found to 
violate invariants, 38 unable to pass searches for progress



Can Students Build Runnable, Performant Systems?
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Does DSLabs Encourage "Distributed Thinking"?

• We want to encourage a distributed systems mindset: 
focus on invariants, rather than normal case.

• Model checking centers the distributed programming 
environment, finds "rare" errors.

• Visual debugger reinforces the programming model.



Summary

• DSLabs, a new framework for building distributed systems 
assignments:

✤ Uses efficient model checking based on guided search 
techniques,

✤ Allows instructors to design model checking tests for student 
implementations,

✤ Includes tools for debugging, understanding errors when they 
occur.

• DSLabs has been invaluable at UW, helped us scale 
undergraduate distributed systems to 200 students per quarter.



Thanks for Listening!

https://github.com/emichael/dslabs
Feedback, issues, 
pull-requests welcomeemichael@cs.washington.edu

https://github.com/emichael/dslabs
mailto:emichael@cs.washington.edu

