
Boolean Formulas for the Static Identification of
Injection Attacks in Java

Michael D. Ernst1, Alberto Lovato2, Damiano Macedonio3, Ciprian Spiridon3,
and Fausto Spoto2,3

1 University of Washington, Seattle, USA
2 Dipartimento di Informatica, Università di Verona, Italy

3 Julia Srl, Verona, Italy

Abstract. The most dangerous security-related software errors, accord-
ing to CWE 2011, are those leading to injection attacks — user-provided
data that result in undesired database access and updates (SQL-injec-
tions), dynamic generation of web pages (cross-site scripting-injections),
redirection to user-specified web pages (redirect-injections), execution
of OS commands (command-injections), class loading of user-specified
classes (reflection-injections), and many others. This paper describes a
flow- and context-sensitive static analysis that automatically identifies if
and where injections of tainted data can occur in a program. The analy-
sis models explicit flows of tainted data. Its notion of taintedness applies
also to reference (non-primitive) types dynamically allocated in the heap,
and is object-sensitive and field-sensitive. The analysis works by trans-
lating the program into Boolean formulas that model all possible flows.
We implemented it within the Julia analyzer for Java and Android. Julia
found injection security vulnerabilities in the Internet banking service
and in the customer relationship management of a large Italian bank.

1 Introduction

Dynamic web pages and web services react to user input coming from the net-
work, and this introduces the possibility of an attacker injecting special text
that induces unsafe, unexpected behaviors of the program. Injection attacks are
considered the most dangerous software error [19] and can cause free database
access and corruption, forging of web pages, loading of classes, denial-of-service,
and arbitrary execution of commands. Most analyses to spot such attacks are
dynamic and unsound (see Sec. 3).

This article defines a sound static analysis that identifies if and where a
Java bytecode program lets data flow from tainted user input (including servlet
requests) into critical operations that might give rise to injections. Data flow is a
prerequisite to injections, but the user of the analysis must later gage the actual
risk of the flow. Namely, analysis approximations might lead to false alarms and
proper input validation might make actual flows harmless.

Our analysis works by translating Java bytecode into Boolean formulas that
express all possible explicit flows of tainted data. The choice of Java bytecode

simplifies the semantics and its abstraction (many high-level constructs must
not be explicitly considered) and lets us analyze programs whose source code
is not available, as is typically the case in industrial contexts that use software
developed by third parties, such as banks.

Our contributions are the following:

– an object-sensitive formalization of taintedness for reference types, based on
reachability of tainted information in memory;

– a flow-, context- and field-sensitive static analysis for explicit flows of tainted
information based on that notion of taintedness, which is able to deal with
data dynamically allocated in the heap (not just primitive values);

– its implementation inside the Julia analyzer, through binary decision dia-
grams, and its experimental evaluation.

Sec. 6 shows that our analysis can analyze large real Java software. Compared to
other tools available on the market, ours is the only one that is sound, yet precise
and efficient. Our analysis is limited to explicit flows [25]; as is common in the
literature, it does not yet consider implicit flows (arising from conditional tests)
nor hidden flows (such as timing channels). In particular, considering implicit
flows is relatively simple future work (we could apply our previous work [10],
unchanged) but would likely degrade the precision of the analysis of real software.

This article is organized as follows. Sec. 2 gives an example of injection and
clarifies the importance of a new notion of taintedness for values of reference
type. Sec. 3 discusses related work. Sec. 4 defines a concrete semantics for Java
bytecode. Sec. 5 defines our new object-sensitive notion of taintedness for values
of reference type and its use to induce an object- and field-sensitive abstract
interpretation of the concrete semantics. Sec. 6 presents experiments with the
implementation of the analysis. Extended definitions and proofs are in a technical
report [8].

2 Example

Fig. 1 is a Java servlet that suffers from SQL-injection and cross-site scripting-
injection attacks. (For brevity, the figure omits exception-handling code.)

A servlet (lines 1 and 2) is code that listens to HTTP network connection re-
quests, retrieves its parameters, and runs some code in response to each request.
The response (line 2) may be presented as a web page, XML, or JSON. This
is a standard way of implementing dynamic web pages and web services. The
user of a servlet connects to the web site and provides the parameters through
the URL, as in http://my.site.com/myServlet?user=spoto. Code retrieves these
through the getParameter method (line 5). Lines 9 and 10 establish a connec-
tion to the database of the application, which is assumed to define a table User
(line 27) of the users of the service. Line 27 builds an SQL query from the user
name provided as parameter. This query is reported to the response (line 15)
and executed (line 17). The result is a relational table of all users matching the

1 public class MyServlet extends HttpServlet {
2 protected void doGet(HttpServletRequest request, HttpServletResponse response) {
3 response.setContentType("text/html;charset=UTF-8");
4
5 String user = request.getParameter("user"), url = "jdbc:mysql://192.168.2.128:3306/";
6 String dbName = "anvayaV2", driver = "com.mysql.jdbc.Driver";
7 String userName = "root", password = "";
8
9 Class.forName(driver).newInstance();

10 try (Connection conn = DriverManager.getConnection(url + dbName, userName, password);
11 PrintWriter out = response.getWriter()) {
12
13 Statement st = conn.createStatement();
14 String query = wrapQuery(user);
15 out.println("Query : " + query);
16
17 ResultSet res = st.executeQuery(query);
18 out.println("Results:");
19 while (res.next())
20 out.println("\t\t" + res.getString("address"));
21
22 st.executeQuery(wrapQuery("dummy"));
23 }
24 }
25
26 private String wrapQuery(String s) {
27 return "SELECT * FROM User WHERE userId=’" + s + "’";
28 }
29 }

Fig. 1. A Java servlet that suffers from SQL and cross-site scripting-injections.

given criterion (the user parameter might be a specific name or a wildcard that
matches more users). This table is then printed to the response (lines 17–20).

The interesting point here is that the user of this servlet is completely free
to specify the value of the user parameter. In particular, she can provide a
string that actually lets line 17 run any possible database command, including
malicious commands that erase its content or insert new rows. For instance,
if the user supplies the string “’; DROP TABLE User; --” as user, the resulting
concatenation is an SQL command that erases the User table from the database.
In literature, this is known as an SQL-injection attack and follows from the fact
that user (tainted) input flows from the request source into the executeQuery
sink method. There is no SQL-injection at line 22, although it looks very much
like line 17, since the query there is not computed from user-provided input.

Another risk exists at lines 15 and 20. There, data is printed to the response
object, and is typically interpreted by the client as HTML contents. A mali-
cious user might have provided a user parameter that contains arbitrary HTML
tags, including tags that will let the client execute scripts (such as Javascript).
This might result in evil. For instance, if the user injects a crafted URL such as
“http://my.site.com/myServlet?user=<script>malicious</script>”, the param-
eter user holds “<script>malicious</script>”. At line 15 this code is sent to the
user’s browser and interpreted as Javascript, running any malicious Javascript.
In literature, this is known as cross-site scripting-injection and follows from the
fact that user (tainted) input from the request source flows into the sink out-
put writer of the response object. The same might happen at line 20, where the
flow is more complex: in other parts of the application, the user might save her

address to the database and store malicious code instead; line 20 will fetch this
malicious code and send it to the browser of the client to run it.

Many kinds of injections exist. They arise from information flows from what
the user can specify (the parameter of the request, input from console, data on
a database) to specific methods, such as executeQuery (SQL-injection), print
(cross-site scripting-injection), reflection methods (that allow one to load any
class or execute any method and lead to a reflection-injection), execute (that
allows one to run any operating system command and leads to a command-
injection), etc. This article focuses on the identification of flows of tainted infor-
mation, not on the exact enumeration of sources and sinks. Our approach can
be instantiated from well-known lists of sources and sinks in the literature.

3 Related Work

The identification of possible injections and the inference of information flows
are well-studied topics. Nevertheless, no previous sound techniques work on real
Java code, even only for explicit flows. Most injection identification techniques
are dynamic and/or unsound. Existing static information-flow analyses are not
satisfactory for languages with reference types.

Identification of Injections. Data injections are security risks, so there
is high industrial and academic interest in their automatic identification. Here,
we have space to mention only the most recent works regarding SQL-injection.
Almost all techniques aim at the dynamic identification of the injection when it
occurs [14, 12, 18, 35, 21, 7, 30, 28] or at the generation of test cases of attacks [1,
17] or at the specification of good coding practices [29].

By contrast, static analysis has the advantage of finding the vulnerabilities
before running the code, and a sound static analysis proves that injections only
occur where it issues a warning. A static analysis is sound if it finds all places
where an injection might occur (for instance, it must spot line 17 in Fig. 1); it is
precise if it minimizes the number of false alarms (for instance, it should not issue
a warning at line 22 in Fig. 1). Beyond Julia, static analyzers that identify in-
jections in Java are FindBugs (http://findbugs.sourceforge.net), Google’s
CodePro Analytix (https://developers.google.com/java-dev-tools/
codepro), and HP Fortify SCA (on-demand web interface at https://trial.
hpfod.com/Login). These tools do not formalize the notion of taintedness (as
we do in Def. 4). For the example in Fig. 1, Julia is correct and precise: it warns
at lines 15, 17, and 20 but not at 22; FindBugs incorrectly warns at line 17 only;
Fortify SCA incorrectly warns at lines 15 and 17 only; CodePro Analytix warns
at lines 15, 17, 20, and also, imprecisely, at the harmless line 22. Sec. 6 compares
those tools with Julia in more detail. We also cite FlowDroid [2], that however
works for Android packages, not on Java bytecode, and TAJ [33], that is part of
a commercial product. Neither comes with a soundness proof nor a definition of
taintedness for variables of reference type.

Modelling of Information Flow.Many static analyses model explicit and
often also implicit information flows [25] in Java-like or Java bytecode programs.

There are data/control-flow analyses [5, 15, 26, 20]; type-based analyses [31, 34, 3,
4, 13, 9] and analyses based on abstract interpretation [10]. They are satisfactory
for variables of primitive type but impractical for heap-allocated data of refer-
ence type, such as strings. Most analyses [4, 5, 13, 9, 15, 20, 26, 34] assume that
the language has only primitive types; others [3, 10] are object-insensitive, i.e.,
for each field f , assume that a.f and b.f are both tainted or both untainted,
regardless of the container objects a and b. Even if a user specifies, by hand,
which f is tainted (unrealistic for thousands of fields, including those used in
the libraries), object-insensitivity leads to a very coarse abstraction that is in-
dustrially useless. Consider the String class, which holds its contents inside a
private final char[] value field. If any string’s value field is tainted, then ev-
ery string’s value field must be tainted, and this leads to an alarm at every use
of strings in a sensitive context in the program, many of which may be false
alarms. The problem applies to any data structure that can carry tainted data,
not just strings. Our analysis uses an object-sensitive and deep notion of taint-
edness, that fits for heap-allocated data of reference type. It can be considered
as data-flow, formalized through abstract interpretation. This has the advantage
of providing its correctness proof in a formal and standard way.

4 Denotational Semantics of Java Bytecode

This section presents a denotational semantics for Java bytecode, which we will
use to define an abstraction for taintedness analysis (Sec. 5). The same semantics
has been used for nullness analysis [32] and has been proved equivalent [23] to
an operational semantics. The only difference is that, in this article, primitive
values are decorated with their taintedness.

We assume a Java bytecode program P given as a collection of graphs of basic
blocks of code, one for each method. Bytecodes that might throw exceptions are
linked to a handler starting with a catch, possibly followed by bytecodes selecting
the right kind of exception. For simplicity, we assume that the only primitive
type is int and the only reference types are classes; we only allow instance fields
and methods; and method parameters cannot be reassigned inside their body.
Our implementation handles full Java bytecode.

Definition 1 (Classes). The set of classes K is partially ordered w.r.t. the
subclass relation ≤. A type is an element of K ∪ {int}. A class κ ∈ K defines
instance fields κ.f : t (field f of type t defined in κ) and instance methods
κ.m(t1, . . . , tn) : t (method m with arguments of type t1, . . . , tn, returning a
value of type t, possibly void). We consider constructors as methods returning
void. If it does not introduce confusion, we write f and m for fields and methods.

A state provides values to program variables. Tainted values are computed from
servlet/user input; others are untainted. Taintedness for reference types (such as
string request in Fig. 1) will be defined later as a reachability property from the
reference (Def. 4); primitive tainted values are explicitly marked in the state.

Definition 2 (State). A value is an element of Z∪ Z ∪L∪{null}, where Z are
untainted integers, Z are tainted integers, and L is a set of locations. A state is
a triple 〈l || s ||µ〉 where l are the values of the local variables, s the values of the
operand stack, which grows leftwards, and µ a memory that binds locations to
objects. The empty stack is written ε. Stack concatenation is ::with s ::ε written
as just s. An object o belongs to class o.κ ∈ K (is an instance of o.κ) and maps
identifiers (the fields f of o.κ and of its superclasses) into values o.f . The set of
states is Ξ. We write Ξi,j when we want to fix the number i of local variables
and j of stack elements. A value v has type t in a state 〈l || s ||µ〉 if v ∈ Z ∪ Z
and t = int, or v = null and t ∈ K, or v ∈ L, t ∈ K and µ(v).κ ≤ t.

Example 1. Let state σ = 〈[3, null, 4 , `] || 3 :: `′′ :: `′′ ||µ〉 ∈ Ξ4,3, with µ = [` 7→
o, `′ 7→ o′, `′′ 7→ o′′], o.f = `′, o.g = 13, o′.g = 17 and o′′.g = 10. Local 0
holds the integer 3 and local 2 holds the integer 4, marked as computed from
servlet/user input. The top of the stack holds 3, marked as computed from
servlet/user input. The next two stack elements are aliased to `′′. Location ` is
bound to object o, whose field f holds `′ and whose field g holds the untainted
integer 13. Location `′ is bound to o′ whose field g holds a tainted integer 17 .
Location `′′ is bound to o′′ whose field g holds the untainted value 10.

The Java Virtual Machine (JVM) allows exceptions. Hence we distinguish
normal states σ ∈ Ξ, arising during the normal execution of a piece of code, from
exceptional states σ ∈ Ξ, arising just after a bytecode that throws an exception.
The latter have only one stack element, i.e., the location of the thrown exception
object, also in the presence of nested exception handlers [16]. The semantics of
a bytecode is then a denotation from an initial to a final state.

Definition 3 (JVM State and Denotation). The set of JVM states (from
now just states) with i local variables and j stack elements is Σi,j = Ξi,j ∪Ξi,1.
A denotation is a partial map from an input or initial state to an output or final
state; the set of denotations is ∆ or ∆i1,j1→i2,j2=Σi1,j1→Σi2,j2 to fix the number
of local variables and stack elements. The sequential composition of δ1, δ2 ∈ ∆
is δ1; δ2 = λσ.δ2(δ1(σ)), which is undefined when δ1(σ) or δ2(δ1(σ)) is undefined.

In δ1; δ2, the idea is that δ1 describes the behaviour of an instruction ins1, δ2
that of an instruction ins2 and δ1; δ2 that of the execution of ins1 and then ins2.

At each program point, the number i of local variables and j of stack elements
and their types are statically known [16], hence we can assume the semantics of
the bytecodes undefined for input states of wrong sizes or types. Readers can find
the denotations of bytecode instructions in a technical report [8], together with
the construction of the concrete fixpoint collecting semantics of Java bytecode,
explicitly targeted at abstract interpretation, since it only requires to abstract
three concrete operators ;, ∪, and extend on ℘(∆), i.e., on the subsets of ∆
and the denotation of each single bytecode distinct from call. The operator
extend plugs a method’s denotation at its calling point and implements call.
The concrete fixpoint computation is in general infinite, but its abstractions
converge in a finite number of steps if, as in Sec. 5, the abstract domain has no
infinite ascending chain.

5 Taintedness Analysis

This section defines an abstract interpretation [6] of the concrete semantics of
Sec. 4, whose abstract domain is made of Boolean formulas whose models are
consistent with all possible ways of propagating taintedness in the concrete se-
mantics. The concrete semantics works over ℘(∆) and is built from singletons
(sets made of a single δ ∈ ∆), one for each bytecode, with three operators ;, ∪,
and extend . Hence we define here correct abstractions of those sets and operators.

Our analysis assumes that three other analyses have been performed in ad-
vance. (1) reach(v , v ′) is true if (the location held in) v′ is reachable from (the
location held in) v. (2) share(v, v′) is true if from v and v′ one can reach a com-
mon location. (3) updatedM (lk) is true if some call in the program to method M
might ever modify an object reachable from local variable lk. All three analyses
are conservative overapproximations of the actual (undecidable) relations. Our
implementation computes these predicates as in [22], [27], and [11], respectively.

Primitive values are explicitly marked as tainted (Def. 2), while taintedness
for references is indirectly defined in terms of reachability of tainted values.
Hence, this notion allows a.f and b.f to have distinct taintedness, depending of
the taintedness of variables a and b (object-sensitivity).

Definition 4 (Taintedness). Let v ∈ Z∪ Z ∪L∪{null} be a value and µ
a memory. The property of being tainted for v in µ is defined recursively as:
v ∈ Z or (v ∈ L and o = µ(v) and there is a field f such that o(f) is tainted in
µ).

A first abstraction step selects the variables that, in a state, hold tainted data.
It yields a logical model where a variable is true if it holds tainted data.

Definition 5 (Tainted Variables). Let σ ∈ Σi,j. Its tainted variables are

tainted(σ)=



{lk | l[k] is tainted in µ, 0≤k<i}∪{sk | vk is tainted in µ, 0≤k<j}
if σ = 〈l || vj−1 :: · · · ::v0 ||µ〉

{lk | l[k] is tainted in µ, 0 ≤ k < i} ∪ {e}
if σ = 〈l || v0 ||µ〉 and v0 is tainted in µ

{lk | l[k] is tainted in µ, 0 ≤ k < i}
if σ = 〈l || v0 ||µ〉 and v0 is not tainted in µ.

Example 2. Consider σ from Ex. 1. We have tainted(σ) = {l2, l3, s2}, since
tainted data is reachable from both locations ` and `′, but not from `′′.

To make the analysis flow-sensitive, distinct variables abstract the input
(marked with)̌ and output (marked with)̂ of a denotation. If S is a set of
identifiers, then Š = {v̌ | v ∈ S} and Ŝ = {v̂ | v ∈ S}. The abstract domain con-
tains Boolean formulas that constraint the relative taintedness of local variables
and stack elements. For instance, ľ1 → ŝ2 states that if local variable l1 is tainted
in the input of a denotation, then the stack element s2 is tainted in its output.

(const v)
T

= U ∧ ¬ě ∧ ¬ê ∧ ¬ŝj (load k t)
T

= U ∧ ¬ě ∧ ¬ê ∧ (ľk ↔ ŝj)

(store k t)
T

= U ∧ ¬ě ∧ ¬ê ∧ (šj−1 ↔ l̂k) (add)
T

= U ∧ ¬ě ∧ ¬ê ∧ (ŝj−2 ↔ (šj−2 ∨ šj−1))

(throw κ)
T

= U ∧ ¬ě ∧ ê ∧ (ŝ0 → šj−1) (new κ)
T

= U ∧ ¬ě ∧ (¬ê→ ¬ŝj) ∧ (ê→ ¬ŝ0)

(catch)
T

= U ∧ ě ∧ ¬ê (getfield κ.f : t)
T

= U ∧ ¬ě ∧ (¬ê→ (ŝj−1 → šj−1)) ∧ (ê→ ¬ŝ0)

(putfield κ.f : t)
T

= ∧v∈LRj(v) ∧ (¬ê→ ∧v∈SRj(v)) ∧ (ê→ ¬ŝ0) ∧ ¬ě.

Fig. 2. Bytecode abstraction for taintedness, in a program point with j stack elements.
Bytecodes not reported in this figure are abstracted into the default U ∧ ¬ě ∧ ¬ê.

Definition 6 (Taintedness Abstract Domain T). Let i1, j1, i2, j2 ∈ N. The
taintedness abstract domain Ti1,j1→i2,j2 is the set of Boolean formulas over
{ě, ê}∪{ľk | 0 ≤ k < i1}∪{šk | 0 ≤ k < j1}∪{l̂k | 0 ≤ k < i2}∪{ŝk | 0 ≤ k < j2}
(modulo logical equivalence).

Example 3. φ=(ľ1 ↔ l̂1)∧(ľ2 ↔ l̂2)∧(ľ3 ↔ l̂3)∧¬ě∧¬ê∧(š0 ↔ l̂0)∈T4,1→4,0.

The concretization map γ states that a φ ∈ T abstracts those denotations
whose behavior, w.r.t. the propagation of taintedness, is a model of φ.

Proposition 1 (Abstract Interpretation). Ti1,j1→i2,j2 is an abstract inter-
pretation of ℘(∆i1,j1→i2,j2) with γ : Ti1,j1→i2,j2 → ℘(∆i1,j1→i2,j2) given by

γ(φ) =

{
δ ∈ ∆i1,j1→i2,j2

∣∣∣∣ for all σ ∈ Σi1,j1 s.t. δ(σ) is defined
ˇtainted(σ) ∪ ˆtainted(δ(σ)) |= φ

}
.

Example 4. Consider φ from Ex. 3 and bytecode store 0 at a program point with
i = 4 locals and j = 1 stack elements. Its denotation store 0 ∈ γ(φ) since that
bytecode does not modify locals 1, 2 and 3, hence their taintedness is unchanged
((ľ1 ↔ l̂1) ∧ (ľ2 ↔ l̂2) ∧ (ľ3 ↔ l̂3)); it only runs if no exception is thrown just
before it (¬ě); it does not throw any exception (¬ê); and the output local 0 is
an alias of the topmost and only element of the input stack (š0 ↔ l̂0).

Fig. 2 defines correct abstractions for the bytecodes from Sec. 4, but call.
A formula U (for unchanged) is a frame condition for input local variables and
stack elements, that are also in the output and with unchanged value: their
taintedness is unchanged. For the stack, this is only required when no exception
is thrown, since otherwise the only output stack element is the exception.

Definition 7. Let sets S (of stack elements) and L (of local variables) be the
input variables that after all executions of a given bytecode in a given program
point (only after the normal executions for S) survive with unchanged value.
Then U = ∧v∈L(v̌ ↔ v̂) ∧ (¬ê→ ∧v∈S(v̌ ↔ v̂)).

Consider Fig. 2. Bytecodes run only if the preceding one does not throw any ex-
ception (¬ě) but catch requires an exception to be thrown (ě). Bytecode const v
pushes an untainted value on the stack: its abstraction says that no variable

changes its taintedness (U), the new stack top is untainted (¬ŝj) and const v
never throws an exception (¬ê). Most abstractions in Fig. 2 can be explained
similarly. The result of add is tainted if and only if at least one operand is
tainted (ŝj−2 ↔ (šj−2 ∨ šj−1)). For new κ, no variable changes its taintedness
(U), if its execution does not throw any exception then the new top of the stack
is an untainted new object (¬ê → ¬ŝj); otherwise the only stack element is
an untainted exception (ê → ¬ŝ0). Bytecode throw κ always throws an excep-
tion (ê); if this is tainted, then the top of the initial stack was tainted as well
(ŝ0 → šj−1). The abstraction of getfield says that if it throws no exception
and the value of the field is tainted, then the container of the field was tainted
as well (¬ê → (ŝj−1 → šj−1)). This follows from the object-sensitivity of our
notion of taintedness (Def. 4). Otherwise, the exception is untainted (ê→ ¬ŝ0).
For putfield, we cannot use U and must consider each variable v to see if it
might reach the object whose field is modified (šj−2). If that is not the case, v’s
taintedness is not affected (v̌ ↔ v̂); otherwise, if its value is tainted then either
it was already tainted before the bytecode or the value written in the field was
tainted ((v̌∨ šj−1)← v̂). In this last case, we must use← instead of↔ since our
reachability analysis is a possible approximation of actual (undecidable) reacha-
bility. This is expressed by formula Rj(v), used in Fig. 2, where Rj(v) = v̌ ↔ v̂
if ¬reach(v, sj−2), and Rj(v) = (v̌ ∨ šj−1)← v̂, if reach(v, sj−2).

Example 5. According to Fig. 2, the abstraction of store 0 at a program point
with i = 4 local variables and j = 1 stack elements is the formula φ of Ex. 3.

Example 6. Consider a putfield f at a program point p where there are i = 4
local variables, j = 3 stack elements and the only variable that reaches the
receiver s1 is the underlying stack element s0. A possible state at p in Ex. 1.
According to Fig. 2, the abstraction of that bytecode at p is φ′ = (ľ0 ↔ l̂0)∧(ľ1 ↔
l̂1)∧ (ľ2 ↔ l̂2)∧ (ľ3 ↔ l̂3)∧ (¬ê→ ((š0 ∨ š2)← ŝ0))∧ (ê→ ¬ŝ0)∧¬ě ∈ T4,3→4,1.

Proposition 2. The approximations in Fig. 2 are correct w.r.t. the denotations
of Sec. 4, i.e., for all bytecode ins distinct from call we have ins ∈ γ(insT).

Denotations are composed by ; and their abstractions by ;T. The definition of
φ1;T φ2 matches the output variables of φ1 with the corresponding input variables
of φ2. To avoid name clashes, they are renamed apart and then projected away.

Definition 8. Let φ1, φ2 ∈ T. Their abstract sequential composition φ1;T φ2 is
∃V (φ1[V /V̂] ∧ φ2[V /V̌]), where V are fresh overlined variables.

Example 7. Consider the execution of putfield f at program point p and then
store 0, as in Ex. 6. The former is abstracted by φ′ from Ex. 6; the latter by φ
from Ex. 5. Their sequential composition is φ′;T φ = ∃V (φ′[V /V̂] ∧ φ[V /V̌]) =
∃V ([(ľ0 ↔ l0)∧ (ľ1 ↔ l1)∧ (ľ2 ↔ l2)∧ (ľ3 ↔ l3)∧ (¬e→ ((š0 ∨ š2)← s0))∧ (e→
¬s0) ∧ ¬ě] ∧ [(l1 ↔ l̂1) ∧ (l2 ↔ l̂2) ∧ (l3 ↔ l̂3) ∧ ¬e ∧ ¬ê ∧ (s0 ↔ l̂0)]) which
simplifies into (ľ1 ↔ l̂1)∧(ľ2 ↔ l̂2)∧(ľ3 ↔ l̂3) ∧ ((š0 ∨ š2)← l̂0) ∧ ¬ě ∧ ¬ê.

The second semantical operator is ∪ of two sets, approximated as ∪T = ∨.
The third is extend , that makes the analysis context-sensitive by plugging the
behavior of a method at each distinct calling context. Let φ approximate the
taintedness behaviour of methodM = κ.m(t1, . . . , tn) : t; φ’s variables are among
ľ0, . . . , ľn (the actual arguments including this), ŝ0 (if M does not return void),
l̂0, l̂1 . . . (the final values of M ’s local variables), ě and ê. Consider a call M at a
program point where the n+ 1 actual arguments are stacked over other b stack
elements. The operator plugs φ at the calling context: the return value ŝ0 (if
any) is renamed into ŝb; each formal argument ľk of the callee is renamed into
the actual argument šk+b of the caller; local variable l̂k at the end of the callee
is temporarily renamed into lk. Then a frame condition is built: the set SAb,M,v

contains the formal arguments of the caller that might share with variable v
of the callee at call-time and might be updated during the call. If this set is
empty, then nothing reachable from v is modified during the call and v keeps its
taintedness unchanged. This is expressed by the first case of formula Ab,M (v).
Otherwise, if v is tainted at the end of the call then either it was already tainted
at the beginning or at least one of the variables in SAb,M,v has become tainted
during the call. The second case of formula Ab,M (v) uses the temporary variables
to express that condition, to avoid name clashes with the output local variables of
the caller. The frame condition for the b lowest stack elements of the caller is valid
only if no exception is thrown, since otherwise the stack contains the exception
object only. At the end, all temporary variables {l0, . . . , li′} are projected away.

Definition 9. Let i, j ∈ N and M = κ.m(t1, . . . , tn) : t with j = b + n + 1 and
b ≥ 0. We define (extend i,jM)T:Tn+1,0→i′,r→Ti,j→i,b+r with r = 0 if t = void and
r = 1 otherwise, as (extend i,jM)T(φ) = ¬ě ∧ ∃{l0,...,li′}

(
φ[ŝb/ŝ0][lk/l̂k | 0 ≤ k <

i′][šk+b/ľk | 0 ≤ k ≤ n] ∧
∧

0≤k<iAb,M (lk) ∧
(
¬ê →

∧
0≤k<bAb,M (sk)

))
, with

SAb,M,v = {lk | 0 ≤ k ≤ n, ¬share(v, sb+k) or ¬updatedM (lk)}, Ab,M (v) = v̌ ↔
v̂ if SAb,M,v = ∅ and Ab,M (v) = ((v̌ ∨ (

∨
w∈SAb,M,v

w))← v̂) otherwise.

Proposition 3. The operators ;T, extendT and ∪T are correct.

Since the number of Boolean formulas over a given finite set of variables is
finite (modulo equivalence), the abstract fixpoint is reached in a finite number of
iterations. Hence this abstract semantics is a static analysis tool if one specifies
the sources of tainted information and the sinks where it should not flow.
Sources. Some formal parameters or return values must be considered as sources
of tainted data, that can be freely provided by the external world. Our imple-
mentation uses a database of library methods for that, such as the request ar-
gument of doGet and doPost methods of servlets and the return value of console
and database methods. Moreover, it lets users specify their own sources through
annotations. The abstract denotation in Fig. 2 is modified at receiver_is (a spe-
cial bytecode at the beginning of each method) and return to force to true those
formal arguments and return values that are injected tainted data, respectively.
Sinks. Our implementation has a database of library methods that need un-
tainted parameters (users can add their own through annotations). Hence it

knows which calls in P need an untainted parameter v (such as executeQuery
in Fig. 1). But a denotational semantics is an input/output description of the
behavior of P ’s methods and does not say what is passed at a call. For that, a
magic-sets transformation [23] of P adds new blocks of code whose denotation
gives information at internal program points, as traditional in denotational static
analysis. It computes a formula ψ that holds at the call. If ψ entails ¬v̂ then
the call receives untainted data for v. Otherwise, the analysis issues a warning.

5.1 Making the Analysis Field-Sensitive

The approximation of getfield f in Fig. 2 specifies that if the value of field f
(pushed on the stack) is tainted then the container of f must be tainted as well
(ŝj−1 → šj−1). Read the other way round, if the container is untainted then f ’s
value is untainted, otherwise it is conservatively assumed as tainted. This choice
is sound and object-sensitive, but field-insensitive: when šj−1 is tainted, both its
fields f and g are conservatively assumed as tainted. But if the program never
assigns tainted data to f , then f ’s value can only be untainted, regardless of
the taintedness of šj−1. If the analyzer could spot such situations, the resulting
analysis would be field-sensitive and hence more precise (fewer false positives).

We apply here a technique pioneered in [32]: it uses a set of fields O (the
oracle) that might contain tainted data. For getfield f , it uses a better approx-
imation than in Fig. 2: it assumes that f ’s value is tainted if its container is
tainted and f ∈ O. The problem is now the computation of O. As in [32], this is
done iteratively. The analyzer starts with O = ∅ and runs the analysis in Sec. 5,
but with the new abstraction for getfield f seen in this paragraph. Then it adds to
O those fields g such that there is at least one putfield g that stores tainted data.
The analysis is repeated with this larger O. At its end, O is further enlarged with
other fields g such that there is at least one putfield g that stores tainted data.
The process is iterated until no more fields are added to O. As proved in [32],
this process converges to a sound overapproximation of O and the last analysis
of the iteration is sound. In practice, repeated analyses with larger and larger O
are made efficient by caching abstract computations. On average, this process
converges in around 5 iterations, also for large programs. By using caching, this
only doubles the time of the analysis. Since preliminary analyses are more ex-
pensive than information flow analysis, this technique increases the total time
by around 25% on average. (Sec. 6 shows effects on cost and precision.) This
technique is not identical to statically, manually classifying fields as tainted and
untainted, as [3, 10] do. The classification of the fields is here dynamic, depend-
ing on the program under analysis, and completely automatic. Moreover, a field
might be in O (and hence be potentially tainted) but the analyzer might still
consider its value untainted, because its container is untainted.

6 Experiments

We have implemented our analysis inside Julia (http://www.juliasoft.com/
julia). Julia represents Boolean formulas via BDDs (binary decision diagrams).

Test Tool True Positives False Positives False Negatives Analysis Time

C
W

E
89

CodePro Analytix 1332 0 888 20 minutes
FindBugs 1776 2400 444 2 minutes
Fortify SCA 700 0 1520 2.5 days
Julia fs/fi 2220/2220 0/0 0/0 79/65 minutes

W
eb

G
oa
t CodePro Analytix 26 7 1 1 minute

FindBugs 22 12 5 20 seconds
Fortify SCA 23 0 4 164 minutes
Julia fs/fi 27/27 14/15 0/0 3/2 minutes

Fig. 3. Experiments with the identification of SQL injections.

We have compared Julia with other tools that identify injections (Sec. 3). For
Julia we have compared a field-sensitive analysis with an oracle (Sec. 5.1, Julia
fs) with a field-insensitive analysis without oracle (Julia fi).

Test LoC
WebGoat 25070
CWE80 68967
CWE81 34317
CWE83 34317
CWE89 748962

Our experiments analyze third-party tests devel-
oped to assess the power of a static analyzer to
identify injection attacks: WebGoat 6.0.1 (https:
//www.owasp.org/index.php/Category:OWASP_WebGoa
t_Project) and 4 tests from the Samate suite (http:
//samate.nist.gov/SARD/testsuite.php). The table on
the right reports their number of non-blank, non-comment
lines of application source code (LoC), without supporting libraries.

Fig. 3 reports the evaluation for SQL injections using CWE89 and WebGoat.
It shows that only Julia is sound (no false negatives: if there is an injection,
Julia finds it). Julia issued no false positives to CWE89: possibly these tests just
propagate information, without side-effects that degrade the precision of Julia
(Def. 9; we do not know if and how other tools deal with side-effects). Julia issued
14 false alarms for WebGoat, often where actual information flows from source
to sink exist, but constrained in such a way to be unusable to build an SQL-
injection attack. Only here the field-insensitive version of Julia is slightly less
precise (one false positive more). In general, its cost is around 25% higher than
the field-sensitive version. The conclusion is that field sensitivity is not relevant
when object sensitivity is used to distinguish different objects. Analysis time
indicates the efficiency, roughly: CodePro Analytix and FindBugs work on the
client machine in Eclipse, Fortify SCA on its cloud like Julia, that is controlled
from an Eclipse client. Times include all supporting analyses.

We evaluated the same tools for the identification of cross-site scripting in-
jections in CWE80/81/83, and WebGoat. As shown in Fig. 4, Julia is perfectly
precise. It missed 11 cross-site scripting attacks in JSP (not in the main Java
code of the application), found only by Fortify SCA. If we translate JSP’s into
Java through Jasper (as a servlet container would do, automatically) and include
its bytecode in the analysis, Julia finds the missing 11 attacks. Nevertheless, this
process is currently manual and we think fairer to count 11 false negatives.

We have run Julia on real code from our customers. Julia found 6 real SQL-
injections in the Internet banking services (575995 LoC) of a large Italian bank,

Test Tool True Positives False Positives False Negatives Analysis Time

C
W

E
80

CodePro Analytix 180 0 486 9 minutes
FindBugs 19 0 647 18 seconds
Fortify SCA 282 0 384 590 minutes
Julia fs/fi 666/666 0/0 0/0 5/4 minutes

C
W

E
81

CodePro Analytix 0 0 333 10 seconds
FindBugs 19 0 314 4 seconds
Fortify SCA 141 0 192 303 minutes
Julia fs/fi 333/333 0/0 0/0 3/2 minutes

C
W

E
83

CodePro Analytix 90 0 243 5 minutes
FindBugs 19 0 314 4 seconds
Fortify SCA 141 0 192 296 minutes
Julia fs/fi 333/333 0/0 0/0 3/2 minutes

W
eb

G
oa
t CodePro Analytix 5 0 11 1 minute

FindBugs 0 0 16 20 seconds
Fortify SCA 15 21 1 164 minutes
Julia fs/fi 5/5 0/0 11/11 3/2 minutes

Fig. 4. Experiments with the identification of XSS injections.

and found 5 more in its customer relation management system (346170 LoC).
The analysis never took more than one hour. This shows that Julia is already
able to scale to real software and automatically find evidence of security attacks.

7 Conclusion

We have formalized an object-sensitive notion of taintedness that can be applied
to reference types. We have built a new, flow-, context- and field-sensitive static
taintedness analysis based on this notion, proved it sound, implemented it, and
evaluated it. It scales to real code and gives useful results. As far as we know,
this is the first object-sensitive taintedness analysis. As usual in static analysis,
soundness is jeopardized by the use of reflection or non-standard class loaders.
However, soundness is still relevant since it increases the confidence on the re-
sults, up to those features. Julia deals instead with the full bytecode generated
by Java 8, including the new invokedynamic.

The novelty of the approach stems from Def. 4 of a property of reference types
as a reachability property, whose relevance goes beyond the case of taintedness
analysis. Here, we mean reachability of data from a memory reference, which
is not reachability of abstract states through execution paths as in [24]. Def. 4
results in an object-sensitive analysis: the taintedness of an object determines
that of its fields; a drawback is that a sound analysis must consider side-effects at
putfield and call. The analysis becomes then field sensitive through an oracle-
based approach (Sec. 5.1), already used for nullness analysis [32]. Hence the
oracle is a general technique for building sound field-sensitive static analyses.

The extension of this work to implicit and hidden flows would provide a
stronger guarantee against injections of tainted information into a set of sinks.

The problem is complex: implicit flows in Java are not just due to conditionals
but also to exception branches and dynamic resolution of method calls. The risk
is that a sound analysis w.r.t. implicit flows would end up being very conserva-
tive and imprecise. Declassification might be helpful here, but its meaning for
reference types (not just primitive values) must be studied. The extension of this
work to the analysis of JSP, that are non-Java code mixed and interacting with
Java code, currently not analyzed by Julia (only partially by concurrent tools),
would avoid missed alarms, as Sec. 6 shows. It is also important to explain the
warnings to the users, with an execution trace where data flows from sources
into sinks. Fortify SCA already provides some support in that direction.

Acknowledgments This material is based upon work supported by the United
States Air Force under Contract No. FA8750-12-C-0174.

References

1. D. Appelt, C. D. Nguyen, L. C. Briand, and N. Alshahwan. Automated Testing
for SQL Injection Vulnerabilities: An Input Mutation Approach. In ISSTA, pages
259–269, San Jose, CA, USA, 2014.

2. S. Arzt, S. Rasthofer, C. Fritz, E. Bodden, A. Bartel, J. Klein, Y. Le Traon,
D. Octeau, and P. McDaniel. Flowdroid: Precise Context, Flow, Field, Object-
Sensitive and Lifecycle-aware Taint Analysis for Android Apps. In PLDI, page 29,
Edinburgh, UK, June 2014.

3. G. Barthe, D. Pichardie, and T. Rezk. A Certified Lightweight non-Interference
Java Bytecode Verifier. Mathematical Structures in Computer Science, 23(5):1032–
1081, 2013.

4. G. Barthe, T. Rezk, and A. Basu. Security Types Preserving Compilation. Com-
puter Languages, Systems & Structures, 33(2):35–59, 2007.

5. D. Clark, C. Hankin, and S. Hunt. Information Flow for ALGOL-like Languages.
Computer Languages, 28(1):3–28, April 2002.

6. P. Cousot and R. Cousot. Abstract Interpretation: A Unified Lattice Model for
Static Analysis of Programs by Construction or Approximation of Fixpoints. In
POPL, pages 238–252, 1977.

7. J. C. Doshi, M. Christian, and B. H. Trivedi. SQL FILTER - SQL Injection
Prevention and Logging using Dynamic Network Filter. In SSCC, pages 400–406,
Delhi, India, 2014.

8. Michael D. Ernst, Alberto Lovato, Damiano Macedonio, Ciprian Spiridon, and
Fausto Spoto. Boolean Formulas for the Static Identification of Injection Attacks in
Java. Technical Report UW-CSE-15-09-03, University of Washington Department
of Computer Science and Engineering, Seattle, WA, USA, September 2015.

9. S. Genaim, R. Giacobazzi, and I. Mastroeni. Modeling Secure Information Flow
with Boolean Functions. In Peter Ryan, editor, WITS’04, April 2004.

10. S. Genaim and F. Spoto. Information Flow Analysis for Java Bytecode. In
R. Cousot, editor, VMCAI, pages 346–362, Paris, France, 2005. Springer-Verlag.

11. S. Genaim and F. Spoto. Constancy Analysis. In M. Huisman, editor, FTfJP,
Paphos, Cyprus, July 2008. Radboud University.

12. Y.-S. Jang and J.-Y. Choi. Detecting SQL Injection Attacks using Query Result
Size. Computers & Security, 44:104–118, 2014.

13. N. Kobayashi and K. Shirane. Type-based Information Flow Analysis for Low-
Level Languages. In APLAS, 2002.

14. D. G. Kumar and M. Chatterjee. MAC based Solution for SQL Injection. Journal
of Computer Virology and Hacking Techniques, 11(1):1–7, 2015.

15. P. Laud. Semantics and Program Analysis of Computationally Secure Information
Flow. In ESOP, pages 77–91. Springer-Verlag, 2001.

16. T. Lindholm, F. Yellin, G. Bracha, and A. Buckley. The Java Virtual Machine
Specification, Java SE 7 Edition. Addison-Wesley Professional, 1st edition, 2013.

17. L. Liu, J. Xu, M. Li, and J. Yang. A Dynamic SQL Injection Vulnerability Test
Case Generation Model Based on the Multiple Phases Detection Approach. In
COMPSAC, pages 256–261, Kyoto, Japan, 2013.

18. A. Makiou, Y. Begriche, and A. Serhrouchni. Improving Web Application Firewalls
to Detect Advanced SQL Injection Attacks. In IAS, pages 35–40, Okinawa, Japan,
2014.

19. MITRE/SANS. Top 25 Most Dangerous Software Errors. http://cwe.mitre.org/
top25, September 2011.

20. M. Mizuno. A Least Fixed Point Approach to Inter-Procedural Information Flow
Control. In NCSC, pages 558–570, 1989.

21. N. M. Naghmeh Moradpoor Sheykhkanloo. Employing Neural Networks for the
Detection of SQL Injection Attack. In SIN, page 318, Glasgow, Scotland, UK,
2014.

22. Ð. Nikolić and F. Spoto. Reachability Analysis of Program Variables. ACM Trans-
actions on Programming Languages and Systems, 35(4):14, 2013.

23. É. Payet and F. Spoto. Magic-Sets Transformation for the Analysis of Java Byte-
code. In SAS, pages 452–467. Springer, 2007.

24. T. W. Resp, S. Horwitz, and S. Sagiv. Precise Interprocedural Dataflow Analysis
via Graph Reachability. In POPL’95, pages 49–61, San Francisco, California, USA,
January 1995.

25. A. Sabelfeld and A. C. Myers. Language-based Information-Flow Security. IEEE
Journal on Selected Areas in Communications, 21(1):5–19, 2003.

26. A. Sabelfeld and D. Sands. A PER Model of Secure Information Flow in Sequential
Programs. Higher-Order and Symbolic Computation, 14(1):59–91, 2001.

27. S. Secci and F. Spoto. Pair-Sharing Analysis of Object-Oriented Programs. In
SAS, pages 320–335. Springer, 2005.

28. H. Shahriar and M. Zulkernine. Information-Theoretic Detection of SQL Injection
Attacks. In HASE, pages 40–47, Omaha, NE, USA, 2012.

29. L. K. Shar and K. Tan, H. B. Defeating SQL Injection. IEEE Computer, 46(3):69–
77, 2013.

30. B. Simic and J. Walden. Eliminating SQL Injection and Cross Site Scripting using
Aspect Oriented Programming. In ESSoS, pages 213–228, Paris, France, 2013.

31. C. Skalka and S. Smith. Static Enforcement of Security with Types. In ICFP,
pages 254–267. ACM press, 2000.

32. F. Spoto. Nullness Analysis in Boolean Form. In SEFM, pages 21–30, Washington,
DC, USA, 2008. IEEE.

33. O. Tripp, M. Pistoia, S. J. Fink, M. Sridharan, and O. Weisman. TAJ: Effective
Taint Analysis of Web Applications. SIGPLAN Notices, 44(6):87–97, June 2009.

34. D. Volpano, G. Smith, and C. Irvine. A Sound Type System for Secure Flow
Analysis. Journal of Computer Security, 4(2,3):167–187, 1996.

35. T.-Y. Wu, J.-S. Pan, C.-M. Chen, and C.-W. Lin. Towards SQL Injection Attacks
Detection Mechanism using Parse Tree. In ICGEC, pages 371–380, Nanchang,
China, 2014.

