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ABSTRACT 
This paper reports on our experience teaching introductory 
programming by means of real-world data analysis. We have 
found that students can be motivated to learn programming and 
computer science concepts in order to analyze DNA, predict the 
outcome of elections, detect fraudulent data, suggest friends in a 
social network, determine the authorship of documents, and more. 
The approach is more than just a collection of “nifty 
assignments”; rather, it affects the choice of topics and pedagogy. 

This paper describes how our approach has been used at four 
diverse colleges and universities to teach CS majors and non-
majors alike. It outlines the types of assignments, which are based 
on problems from science, engineering, business, and the 
humanities. Finally, it offers advice for anyone trying to integrate 
the approach into their own institution.  

Categories and Subject Descriptors 
K.3.2 [Computers and Education]: Computer and Information 
Science Education—Computer science education 

General Terms 
Design, Experimentation, Human Factors. 

Keywords 
CS1; introductory computing; data programming; data processing. 

1. INTRODUCTION 
Traditional introductory programming courses often take their 
examples and assignments from the domains of puzzles, games, 
and abstract mathematics. For instance, students might be shown 
how to reverse a list or assigned to compute the Fibonacci 
sequence. This approach works well for some students, but others 
may fail to see how the concepts being taught can be applied to 
the world beyond computing. This lack of connection to the real 
world can have a negative impact on students’ motivation and 
interest in CS. 

Recently there has been an explosion in the number of datasets 
available from every conceivable field, and “Big Data” is in the 
news everywhere [16]. Graduate students find they need to take 
programming courses to solve problems in domains such as 
biology, physics, economics, and the social sciences [e.g. 27].  

We have developed a CS1 course with a “data programming” 
orientation that teaches students introductory programming and 

computing concepts by means of real-world data analysis 
problems. The course is intended for undergraduate students with 
no prior programming experience. The materials were originally 
developed at the University of Washington where the course has 
been taught three times, and they have been adapted and used at 
multiple other institutions. This paper reports on our experience at 
a diverse set of four of these schools. 

The key idea of our approach is that assignments use an existing 
dataset to answer a question that is relevant to science, 
engineering, business, or the humanities. Neither the questions 
nor the datasets are artificial. We have successfully used this 
approach to 

 motivate and excite students about computation, 
 teach computer programming & computer science concepts, 
 enable students to process data to solve real problems of 

interest to them, and 
 serve both CS and non-CS majors. 

Although the approach is not necessarily tied to any one language, 
the offerings we report on have been in the Python programming 
language. Our goal in this paper is not to formally evaluate these 
offerings but rather to describe the courses, show the variety of 
settings where the approach has been applied, and enable other 
instructors to reuse the ideas and/or materials in new settings.  

2. RELATED WORK 
Many educators have suggested alternatives to the puzzles-and-
games approach to CS1. Several have noted the benefits of 
placing CS concepts in contexts students find motivating [5]. 
Well-known examples include media computation [20, 26], 
robotics [15], and animation [6]. Stevenson’s real-world 
programming assignments [23, 24] are a web crawler, spam 
evaluator, and steganography. De-Pasquale [7] presents three data 
sources: stock quotes and the APIs from Google and Slashdot. 
These domains are mostly connected to entertainment and 
computers, whereas our approach shows computation applied to 
science, engineering, business, and the humanities.  

Other educators have sought to show students how the skills they 
are learning can have impact on the world beyond computing. The 
ITiCSE working group [12] offers 14 projects related to “social 
good” that motivate students and provide them with skills to solve 
complex problems; Erkan et al. [11] do the same for a data 
structures course. By contrast, we weave the theme of solving 
problems with real-world impact throughout the course. Some 
courses that address realistic problems and data focus on 
visualization [21], statistics [3], or databases [25]. Ours is a CS1 
course that teaches computational thinking and programming.  

Others have sought to create CS1 courses that demonstrate the 
applicability of CS to STEM fields [2, 29]. Many, though not all 
[18], of these courses use the Python language as we do. Dodds et 
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al. created a breadth-first CS1 course for scientists [8]. 
Hambrusch et al. used problems from scientific domains to teach 
computational thinking [14]. Our course teaches practical 
programming skills, and our strong focus on real datasets has an 
impact on our pedagogy, course topics, and assignment structure. 

3. OUR INSTITUTIONS 
We have successfully implemented this approach in four different 
courses taught by five different instructors at our four institutions. 

3.1 University of Washington (UW) 
UW is a public, R1 university with approximately 40,000 
students. UW has a thriving two-quarter CS1 and CS2 sequence in 
Java that is a prerequisite for admission to the CS major. Entrance 
to the major is competitive and while there is no CS minor at UW, 
there are eight non-majors CS courses available on topics ranging 
from web programming to artificial intelligence.  

The goal of the data programming course at UW is to offer an 
alternative to students who are not attracted to the CS major or to 
the Java CS1 offering. CSE 160 Data Programming has been 
offered three times (Summer 2012, Winter 2013, Winter 2014) by 
two different instructors to classes of approximately 50 students. 
UW is on a ten-week quarter system, and students in CSE 160 
attended three 50-minute lectures and one 50-minute recitation 
section per week. 

CS majors are not permitted to register for CSE 160. Students 
from a variety of other majors have taken the course, and some 
have gone on to double-major in CS as well as their original field 
(e.g. Bioengineering, Oceanography). Students have multiple 
times ranked the course among the 10 best in the College of 
Engineering, and it always has a waiting list. 

3.2 Pacific Union College (PUC) 
Pacific Union College is a private, liberal arts parochial four-year 
college with approximately 1,700 students. 

The data programming approach was used in CPTR 115 
Introduction to Computer Programming during two consecutive 
quarters (Fall 2012 and Winter 2013). This course is a prerequisite 
for a “breadth-first CS1” [4] course for computer science majors 
(usually taught in C) that assumes prior programming knowledge. 
It is also a cognate (requirement outside the major department) 
and usually the only programming course for mathematics, 
biomathematics, engineering, and physics majors, as well as an 
option in the Practical and Applied Arts area of the general 
education requirements at PUC. Thus it is a course required of CS 
majors and taken by students from several other majors 
simultaneously. It met for three 50-minute lectures and one 3-hour 
lab period per week during a ten-week quarter. 

The two offerings of CPTR 115 were taught by the same 
instructor to 16 and 8 students, respectively. Roughly half of those 
students were declared CS majors. A handful were high school 
students in a dual-enrollment program, two of whom went on to 
become CS majors the following year. Focusing on real-world 
data sets in a variety of fields made this course far more engaging 
for its broad audience, compared to previous offerings. Starting 
this focus from the very beginning of the term enabled students to 
tackle a sizable open-ended data analysis project within the 
confines of a 10-week quarter. Anecdotal feedback from students 
indicated a higher-than-usual level of enthusiasm for the kinds of 
problems tackled and a sense of accomplishment at doing real 
data analysis — even for those who had previously done a bit of 
game programming. 

3.3 The Evergreen State College 
The Evergreen State College is a public, liberal arts teaching 
college with approximately 4,400 students. Evergreen is known 
for its unique interdisciplinary approach. The demographic of 
Evergreen students includes a higher percentage of non-traditional 
students than those at an R1 university: older adult students, 
working and single parents, and veterans.  

Data programming was first offered at Evergreen in Fall 2013. 
This course was the first (CS1) of a three-quarter sequence in 
introductory computer programming. The remaining two 
programming courses in the sequence were taught in Java and did 
not use a data programming approach. This sequence is combined 
with two other three-quarter sequences (in computer architecture 
and discrete mathematics) to form a lower-division CS curriculum 
(called a program), which is a prerequisite for an analogous three-
quarter upper-division CS program. Although Evergreen does not 
have official majors and departments, students who take these two 
programs self-identify as CS majors. Evergreen is on a ten-week 
quarter system, and for this course students attended two 2-hour 
lectures and one 2-hour lab per week. 

The 68 students in the CS1 course consisted of both majors (who 
intend to continue onto the upper-division CS program) and non-
majors (students for whom this course will be their only exposure 
to CS). The CS1 course received positive reviews from students, 
students were highly engaged in the class, and the turnover rate to 
the follow-on Java CS2 course was low. 

3.4 Seattle University (SU) 
Seattle University is a private, masters-level university with about 
7,300 students, mostly undergraduates. 

CPSC 192 Data Driven Programming is a new course designed 
for non-CS majors and CS minors. It serves as the first course in 
the CS minor and as the CS requirement for the Environmental 
Science major as well as some tracks of other science majors (i.e. 
Math). Students majoring in CS at SU take a two-quarter 
sequence in C++. All CS courses except the data programming 
course are closed to non-majors, so demand for this course is 
expected to remain high as entry into the CS major is difficult for 
existing students. CPSC 192 was first offered in Spring 2014. The 
course is limited to around 20 students. SU is on a ten-week 
quarter system, and for this course students attended three 75-
minute “lectures” (held in a lab) each week.  

The 18 students taking the course in Spring 2014 were a diverse 
group of non-major students, predominantly science and 
engineering majors, and was a roughly even composition of 
freshmen through seniors. In the course evaluations, the lab time 
and direct instructor interaction was well reviewed. About half of 
the students felt that they might use Python for a future project in 
their discipline. An in-class informal evaluation showed a large 
variance in students’ view of the “fun-factor” of the assignments, 
validating the variety of topics included. 

4. A DATA PROGRAMMING CS1 COURSE 
This section discusses course topics and pedagogy, then describes 
some of the programming assignments used in the course. While 
our experience is with teaching an entire CS1 course oriented 
towards data programming, we expect some instructors may be 
interested in adopting only parts of our approach or individual 
assignments. 



4.1 Effect on Course Topics and Pedagogy 
Supporting students’ experience with realistic datasets requires a 
few changes to the topics, order, and presentation of traditional 
CS1 material. Students learn similar concepts to those in any other 
CS1 course, but a slightly different toolset. Our choice of topics is 
also motivated by viewing our course not just as CS1 but also as 
CS-Omega: it should give a solid foundation for subsequent 
practical and theoretical work, but should also be useful even if 
the student never takes another CS course. 

The overall focus in our course is on providing students with the 
tools necessary to process data provided as files. This focus on 
processing data provided in files guides the choice and ordering of 
topics. For example, we introduce the foreach loop but not the for 
loop with an explicit index. We use file I/O extensively, with only 
limited use of console I/O. We do not create GUIs nor any other 
user interface. Students use complex data structures such as 
dictionaries and graphs, but they do not re-implement basic data 
structures like linked lists nor algorithms like sorting. We 
introduce recursion at the end of the term, as an enrichment topic, 
but it is not used in assignments. We introduce a few concepts that 
are often missing from CS1 courses but are desirable for data 
analysis, such as basic statistics and how to plot a graph.  

Most assignments gave students some supporting code or 
libraries. Early in the course, students are given examples of 
documented, modular code that they may explore at their own 
pace but are not required to understand until later assignments. 
We have found it useful to provide a first assignment consisting of 
a few short programming exercises that does not do any real-
world data analysis while students are becoming familiar with an 
IDE or command line editor and the basics of Python syntax. 

We use the Python language, because it is easy to use and is 
widely adopted in the sciences. Because Python has a significant 
and usable procedural subset, we do not discuss object orientation. 
Python’s rich set of libraries provides the opportunity to give 
students valuable experience reading the documentation for a real 
library and successfully using it. We have used the Python 
networkX graph library, matplotlib, numpy, scipy, and urllib. 
However, the overall approach is not tied to Python, and similar 
assignments could be done with Java, MATLAB, Mathematica, or 
other programming languages.  

At UW, readings were drawn from Introduction to Computation 
and Programming Using Python by Guttag [13], as well as free 
online resources like Think Python by Downey [9] and the Python 
Tutorial [19]. We also prepared documents on topics such as 
Python evaluation rules, using the command line, interacting with 
files, using csv.DictReader, and debugging. At SU, Python 
Programming in Context by Miller and Ranum [17] was the 
recommended text.  

4.2 Sample Programming Assignments 
Below we describe several of the assignments used in the courses 
at our institutions. We list them in the approximate order they 
were given to students and indicate which assignments were used 
at which schools. In addition to these assignments, most schools 
also used a first assignment consisting of a few short exercises 
that did not do any data analysis. Other assignments used included 
Twitter sentiment analysis, image analysis, processing stock 
market data, and linguistic analysis [30].  

DNA Analysis (UW, PUC, Evergreen, SU) 
DNA can be described as a string over the alphabet of base pairs: 
{A, C, G, T}. The GC content (the fraction of nucleotides that are 

either G’s or C’s) is biologically important. For example, GC 
content can identify types of genes and can be used in determining 
classification of species. 

In the DNA Analysis assignment, students are given files from a 
DNA sequencer and are asked to use loops and if statements to 
count nucleotides, categorize organisms, and compute other 
statistics about the files they are given. This is students’ first look 
at reading files, although the code for reading files is given to 
them for this assignment. This is also students’ first look at the 
notion of data cleaning (some DNA sequences contain “junk” 
base pairs) — an important idea for students to be exposed to in 
preparation for examining their own data files. Students and 
instructors have commented that this assignment is a bit simpler 
than the following ones. While this allows students to succeed 
early in the course, it could also lull them into thinking future 
assignments will be as simple. 

Oceanographic Data Integration (UW, PUC)  
In the Oceanographic Data Integration assignment, students work 
with real measurements of physical and biological variables from 
the Puget Sound. The research question they are addressing is 
“Which environmental variables correlate with the abundance of 
Ammonia-Oxidizing Archaea (AOA)?” The dataset students are 
using comes from an NSF-funded project, “Significance of 
nitrification in shaping planktonic biodiversity in the ocean”. 

Students are faced with the common task of having to integrate 
data spread across several CSV files into one file. The provided 
Python code reads CSV files and computes Pearson correlations, 
but is missing the bodies of functions to compute mean and 
standard deviation functions needed by the Pearson code. This 
assignment introduces students to the common situation where the 
format of collected data is not always convenient for analysis, and 
the idea that by reading the data into a program it can be 
transformed to other formats. Students gain practice with Python 
lists, functions, loops, and file I/O. 

Social Networking (UW, Evergreen) 
We are not the first to notice that students are motivated by 
projects related to social networking [22]. In this assignment, 
students address the research question, “Which of two 
collaborative-filtering approaches is better for recommending 
friends?” The dataset is the Facebook New Orleans social 
network. 

Students are introduced to the idea of a graph as a data structure 
and use the networkX library both to create a simple graph by 
hand and to read data from a file into a data structure. We provide 
scaffolding in the form of function signatures that students need to 
fill in, as well as a series of assert statements that show the 
expected output of the functions. Students make use of previous 
knowledge about file I/O, functions, loops, and conditionals. 
Learning objectives include using graphs to solve a problem, as 
well as gaining experience using sets, dictionaries, and sorting. 
Discussion of various sorting approaches is optional; students 
only need to know how to use Python’s built-in sorting methods. 

Election Prediction (UW, Evergreen, SU) 
The 2012 US presidential election was a watershed in the fight 
between pundits and statisticians to accurately predict the 
outcome of political campaigns. The rivalry became front-page 
news, with many pundits loudly proclaiming that the statisticians 
would be humiliated on November 6. In fact, the opposite 
happened: statistician Nate Silver (of the website 
FiveThirtyEight.com) correctly predicted the outcome in every 



state, whereas pundits' predictions varied significantly. In this 
assignment, students replicate Nate Silver’s results by using 
polling data to predict the outcome of the 2012 US presidential 
election. Students solve a complex problem using lists, sets and 
dictionaries and are thus able to appreciate the benefits of good 
problem decomposition, data structure choice, and testing 
practices. Most students found this assignment to be quite 
challenging due to the use of nested data structures. At UW we 
found providing a preliminary quiz forcing students to examine 
the data structures closely helped significantly in this respect. 

Fraud Detection (UW, PUC, SU) 
In the fraud detection assignment, students look for fraud in 
datasets using two different approaches, broken into two separate 
assignments. First, students examine the least significant digits of 
the vote totals in election returns from the disputed 2009 Iranian 
presidential election. We would expect the digits in the ones and 
tens place to be uniformly distributed in a valid dataset but 
students examine the Iranian results themselves and explore issues 
such as the impact of sample size. In addition to the Iranian data, 
other election results (e.g. 2008 U.S. presidential election, 2012 
Egyptian presidential election) can also be brought in for 
comparison. In the second part of the assignment, students use 
Benford’s law to evaluate the validity of two datasets: 1) US 
Census data showing the population of US cities and 2) 
populations of fictional places from literature and pop culture.  

In both parts of the assignment students are guided through an 
approach to statistics and hypothesis testing through simulation. 
The basic question posed in this assignment and that students are 
likely to wrestle with in their own work is “I have observed 
something. Was it unusual? How unusual?” Our approach to 
answering this question is to have students write code to generate 
many possible datasets, then measure the thing of interest in those 
datasets to produce p-values. Students also plot their results using 
matplotlib.pyplot. For this assignment students are not given any 
supporting code thus are asked to write a Python program in good 
style without a provided template. They make use of loops and 
lists, as well as string and numerical manipulation. 

Estimating Avogadro's Number (SU)  
Estimating Avogadro’s number using microscopy data and the 
concept of Brownian motion was a student favorite at SU. In this 
assignment students were given a sequence of images of 
polystyrene beads in water and are asked to track the beads to 
estimate self-diffusion. This was adapted from a Nifty assignment 
[28] to act as a final project with exposure to post CS1 topics. The 
objective was threefold: to give students the enthusiasm to try 
their own future projects, to see some cool science, and to think 
about data structures. Students were required to conform to 
complex third party data structures (both B/W & color images), 
and to create their own data structures (tracking blobs/beads). The 
introduction of data structures that are open-ended, e.g., “What 
data do you need to track a bead?”, encourages students to stretch 
their minds around design and data management. As a bonus, a 
discussion of algorithmic efficiency from too many nested loops 
can be addressed with more advanced students. Students enjoyed 
seeing the science in action and the freedom to create and 
manipulate data in their own way. 

Open-ended Final Project (UW, PUC) 
At UW and PUC, the final assignment was a multi-week open-
ended project addressing a research question of each student’s 
choice. Students could work together in groups of two students. 
Completion of this project demonstrated a key goal of the course 
— enabling students to process data to solve real problems of 

interest to them. At the beginning of the course, we told students 
about the project and showed example topics addressed by 
students in previous iterations of the course. This served to 
motivate students to acquire the tools necessary to accomplish this 
task throughout the quarter, and it got them thinking about project 
ideas from day one. Topics addressed by students included the 
decay mechanisms of the Higgs Boson, the correlation between 
firearm ownership and violent crimes, school district performance 
vs. financing, the home court advantage in sports, music 
classification via note analysis, and forecasting company health 
from financial statements.  

One of the biggest hurdles to picking a research question is 
finding an appropriate dataset. We required students to use 
publicly available datasets to enable the course staff to evaluate 
their work. We provided students with links to quite a few 
possible datasets to get them started. 

We have found it useful to break the project into multiple phases 
to prevent students from waiting until the last minute and to allow 
for re-direction of project ideas that are too simple or too 
ambitious. The first checkpoint requires students to locate a 
dataset and propose a research question. Later checkpoints ask 
them to provide background and motivation, flesh out their 
technique and evaluation method, and finally to present and 
discuss their results. We have used the final exam period in the 
course for project presentations. This session became a 
celebration of the students’ accomplishments. Allowing students 
to see what their peers have accomplished in this manner serves to 
support the notion that what they have learned in the course can 
be applied to answer questions from a wide variety of domains. 

5. ADAPTING TO YOUR CONTEXT 
The first version of the course was piloted at UW in Summer 
2012. Since then it has been offered at multiple other institutions. 
Assignments and course structure were adapted by each instructor 
to their unique context. Below we discuss issues of interest to 
instructors wishing to adopt our approach at their institution. 

5.1 CS1 with Minimal Infrastructure 
At most schools CS1 is one of the largest CS courses offered. 
Students new to programming are often aided by armies of TAs 
who have previously taken the course themselves. There may be a 
dedicated lab that is manned with course staff many hours of the 
day or there may be hands-on lab sessions scheduled for credit 
hours. When offering a new or alternative CS1 course, your first 
few offerings may need to survive without these amenities.  

At SU, the course format of “lab in every lecture” offered 
supervised coding practice in every period. In a 75-minute period, 
lecture was limited to 45 minutes, and labs were assigned 
typically at the end of lecture. Overall there were approximately 
20 coding exercises used, graded on an effort-only basis. This 
approach addressed several issues. Given the diversity of 
backgrounds of these non-major students in terms of major, class 
standing, and coding experience, it was imperative to require extra 
coding practice. Additionally, as the tutors at SU know mostly 
C++ or C#, they were not ideal for helping with the course. This 
in-class lab time allowed the instructor to fill the tutoring gap for 
students. Finally, since many students at SU work, they are not 
able to attend tutoring or office hours regularly, so for some this 
was the only time to get in-person assistance. Most students 
appreciated having this time, as it helped reinforce the lecture 
topics. This mandated extra practice also improved students’ 
coding confidence. This seemed to be especially true for some 



female students that were initially hesitant to get started for fear of 
writing “wrong” code on their first attempt. Ultimately, holding 
lecture in a lab room every period allowed for the flexibility to 
adapt the time spent on labs to the needs of an individual group of 
students, and the extra mandated coding was a boon particularly 
to the weakest students. 

Other strategies used at UW and Evergreen to support students 
new to programming without requiring significant infrastructure 
included pointing students to online Python resources such as 
Codecademy.com and CodingBat.com to provide more hands-on 
practice and immediate feedback. The courses at PUC and UW 
also used pythontutor.com to help students visualize the structure 
of data and the effect of control constructs. Overall this is an area 
to pay attention to as students are likely to be aware of the 
resources provided to students in your “main” CS1 course and 
may feel they are being asked to get by with less support. 

5.2 Adjusting Assignments to Your Students 
As described in Section 4.2, the authors have successfully adapted 
many of the original assignments from UW for use at their 
institutions. Here we discuss some of the adjustments made. 

In all offerings of the course, students were provided considerable 
starter code at the beginning of the term, then less and less starter 
code as the term progressed. (No code was provided for the fraud 
detection assignment, nor for the final project.) The goal was to 
make students read well-structured and well-documented code, 
and to reduce their workload. 

However, some students were frustrated when the provided code 
did not make intuitive sense to them. These students found the 
assignments’ provision of a problem approach and starter code 
restrictive rather than helpful. At SU, we improved their 
completion rate by increasing the flexibility of assignments: 
providing less code, shortening the assignment write-ups, and, in 
the later part of the course, allowing students to 
add/remove/rename functions and function parameters. 

This introduced students more rapidly to the experiences of 
problem analysis and program organization, including choosing 
how to store and manipulate data. It also forced students to better 
comprehend the assignment goals, specifically to begin by 
addressing the structure of the data as pre and post conditions.  
This flexibility made the starter code smaller and more 
approachable. On the other hand, these sparser specifications 
required more in-class time be spent on explanations, they 
reduced the utility of staff test suites, and they required more 
effort to grade. 

In all offerings, we found the “wishful thinking” approach to 
problem decomposition effective: when faced with an unsolved 
part of the problem, the students could name and specify a routine 
that would solve it, use that hypothetical routine, and come back 
later to implement it [1]. A live coding lecture demonstrating 
“wishful thinking” was effective in encouraging students to write 
additional functions. We grounded this method in practices that 
are common to students, such as outlining a paper before writing. 

At Evergreen, the difficulty of the material was challenging to 
students, some of whom worked multiple jobs or had to support 
families. These students could not devote their full attention to 
learning as much as younger students at traditional universities. 
To adapt the original data programming course, we only selected 
four of the assignments and subdivided each of those in half to 
create eight mini-assignments. Turn-in dates were flexible, and 

students were allowed to time-box their efforts (for example, 11 
hours of outside time per week) to attempt as many problems as 
possible within that time. The extent to which students were able 
to complete assignments provided valuable data to adjust the 
difficulty of assignments for this demographic in the future. 

None of our offerings have used all of the assignments we have 
collected. Thus, expanding the course from a quarter to a semester 
can be easily accomplished by adding assignments, expanding the 
final project, or reducing the pace. One could also add enrichment 
topics, such as an introduction to object orientation — so long as 
the focus is on how it is useful for real-world data analysis. 

5.3 Non-majors and Non-traditional Students 
The course delivery at SU was specifically focused on catering to 
non-majors, which presented the additional challenge of 
motivating students who view the course as only secondarily 
important. The style of this course, which focuses on practicality 
for students taking only one CS course, was helpful in that 
respect. However, many students were surprised by how much 
time it took to master data programming. Interesting assignments 
were key to motivating students outside of class. Interactive in-
class activities were the solution of choice to keep students alert 
and attentive during lecture. Methods that were successful and 
minimally interruptive at SU included code something very small 
and report before continuing lecture (using the interpreter), have 
everyone stand and then vote by sitting, using a suit of cards to 
define a sorting algorithm, and writing algorithms on paper. 

At Evergreen, the data programming approach was especially 
appealing to both non-majors (who were initially interested in 
applying CS to other sciences such as biochemistry) and non-
traditional students. Older adult students appreciated the real-life 
applications, which seemed less contrived or condescending than 
“hello world” examples or toy problems. Subdividing assignments 
into smaller pieces and keeping due dates flexible were important 
for keeping this group of students motivated and engaged. 

5.4 Articulation into (a non-Python) CS2 
While designed to serve students well as both the first and last 
programming course they may take, we have found the course has 
also worked well for students pursuing more CS courses, usually 
offered in a language other than Python. Several institutions use 
Python in their CS1 courses and some have reported on their 
experience with students articulating into a non-Python CS2 [10]. 

At UW, where the course has now been taught three times, we 
have seen a number of students from the class go on to major in 
CS (and serve as TAs for the course). During the first offering of 
the course, we held a parallel one-credit Java basics course with 
the goal of helping prepare students to take CS2 in Java. At UW 
we also offer a one-quarter combined CS1/CS2 course in Java that 
is an ideal follow-on course for students interested in majoring in 
CS after taking our course, since they already have most of the 
conceptual background provided by the CS1 course but are not 
familiar with the Java terminology and toolset. 

At Evergreen, where the data programming course served as the 
first course for both CS majors and non-majors alike, the change 
from Python in the fall quarter to Java in the winter quarter 
required several adjustments. One difference is that our data 
programming assignments provided more supporting code than is 
typical for a CS1 or CS2 course. When moving to the next course, 
Evergreen students had to adjust to implement more from scratch. 



At SU, CS majors take CS1 and CS2 courses offered in C++ (the 
primary language used in the major). SU plans to offer an 
alternative CS2 to follow the data programming course which will 
include an introduction to C++. The goal is to serve CS minors 
and non-majors who have to take additional CS courses. This will 
mean that people wanting to switch to the CS major after taking 
data programming can do so without having “wasted” a course.  
This alternate path is garnering significant interest from previous 
and prospective students of the data programming course. 

At PUC, the next course students take after the data programming 
course is a “breadth-first CS1” [4] that assumes prior 
programming experience. This second course expects that 
students do not come in knowing the language required for the 
course and includes a transition to another language, usually C. 

6. CONCLUSION 
Students in CS1 can do real-world data analysis. We have 
described how multiple diverse schools have successfully 
implemented the data programming approach. We welcome other 
instructors to join in the fun! Course syllabi, assignments, and 
other resources can be found at our instructor resources site [30]. 
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