
A Data Programming CS1 Course

Ruth E. Anderson,
Michael D. Ernst

University of Washington
Seattle, WA

{rea, mernst}@cse.uw.edu

Robert Ordóñez
Southern Adventist

University
Collegedale, TN

rordonez@southern.edu

Paul Pham
The Evergreen State

College
Olympia, WA

phamp@evergreen.edu

Ben Tribelhorn
Seattle University

Seattle, WA
tribelhb@seattleu.edu

ABSTRACT
This paper reports on our experience teaching introductory
programming by means of real-world data analysis. We have
found that students can be motivated to learn programming and
computer science concepts in order to analyze DNA, predict the
outcome of elections, detect fraudulent data, suggest friends in a
social network, determine the authorship of documents, and more.
The approach is more than just a collection of “nifty
assignments”; rather, it affects the choice of topics and pedagogy.

This paper describes how our approach has been used at four
diverse colleges and universities to teach CS majors and non-
majors alike. It outlines the types of assignments, which are based
on problems from science, engineering, business, and the
humanities. Finally, it offers advice for anyone trying to integrate
the approach into their own institution.

Categories and Subject Descriptors
K.3.2 [Computers and Education]: Computer and Information
Science Education—Computer science education

General Terms
Design, Experimentation, Human Factors.

Keywords
CS1; introductory computing; data programming; data processing.

1. INTRODUCTION
Traditional introductory programming courses often take their
examples and assignments from the domains of puzzles, games,
and abstract mathematics. For instance, students might be shown
how to reverse a list or assigned to compute the Fibonacci
sequence. This approach works well for some students, but others
may fail to see how the concepts being taught can be applied to
the world beyond computing. This lack of connection to the real
world can have a negative impact on students’ motivation and
interest in CS.

Recently there has been an explosion in the number of datasets
available from every conceivable field, and “Big Data” is in the
news everywhere [16]. Graduate students find they need to take
programming courses to solve problems in domains such as
biology, physics, economics, and the social sciences [e.g. 27].

We have developed a CS1 course with a “data programming”
orientation that teaches students introductory programming and

computing concepts by means of real-world data analysis
problems. The course is intended for undergraduate students with
no prior programming experience. The materials were originally
developed at the University of Washington where the course has
been taught three times, and they have been adapted and used at
multiple other institutions. This paper reports on our experience at
a diverse set of four of these schools.

The key idea of our approach is that assignments use an existing
dataset to answer a question that is relevant to science,
engineering, business, or the humanities. Neither the questions
nor the datasets are artificial. We have successfully used this
approach to

 motivate and excite students about computation,
 teach computer programming & computer science concepts,
 enable students to process data to solve real problems of

interest to them, and
 serve both CS and non-CS majors.

Although the approach is not necessarily tied to any one language,
the offerings we report on have been in the Python programming
language. Our goal in this paper is not to formally evaluate these
offerings but rather to describe the courses, show the variety of
settings where the approach has been applied, and enable other
instructors to reuse the ideas and/or materials in new settings.

2. RELATED WORK
Many educators have suggested alternatives to the puzzles-and-
games approach to CS1. Several have noted the benefits of
placing CS concepts in contexts students find motivating [5].
Well-known examples include media computation [20, 26],
robotics [15], and animation [6]. Stevenson’s real-world
programming assignments [23, 24] are a web crawler, spam
evaluator, and steganography. De-Pasquale [7] presents three data
sources: stock quotes and the APIs from Google and Slashdot.
These domains are mostly connected to entertainment and
computers, whereas our approach shows computation applied to
science, engineering, business, and the humanities.

Other educators have sought to show students how the skills they
are learning can have impact on the world beyond computing. The
ITiCSE working group [12] offers 14 projects related to “social
good” that motivate students and provide them with skills to solve
complex problems; Erkan et al. [11] do the same for a data
structures course. By contrast, we weave the theme of solving
problems with real-world impact throughout the course. Some
courses that address realistic problems and data focus on
visualization [21], statistics [3], or databases [25]. Ours is a CS1
course that teaches computational thinking and programming.

Others have sought to create CS1 courses that demonstrate the
applicability of CS to STEM fields [2, 29]. Many, though not all
[18], of these courses use the Python language as we do. Dodds et

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned
by others than ACM must be honored. Abstracting with credit is permitted. To
copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from
permissions@acm.org.
SIGCSE’15, March 4–7, 2015, Kansas City, MO, USA.
Copyright © 2015 ACM 978-1-4503-2966-8/15/03…$15.00.
http://dx.doi.org/10.1145/2676723.2677309

al. created a breadth-first CS1 course for scientists [8].
Hambrusch et al. used problems from scientific domains to teach
computational thinking [14]. Our course teaches practical
programming skills, and our strong focus on real datasets has an
impact on our pedagogy, course topics, and assignment structure.

3. OUR INSTITUTIONS
We have successfully implemented this approach in four different
courses taught by five different instructors at our four institutions.

3.1 University of Washington (UW)
UW is a public, R1 university with approximately 40,000
students. UW has a thriving two-quarter CS1 and CS2 sequence in
Java that is a prerequisite for admission to the CS major. Entrance
to the major is competitive and while there is no CS minor at UW,
there are eight non-majors CS courses available on topics ranging
from web programming to artificial intelligence.

The goal of the data programming course at UW is to offer an
alternative to students who are not attracted to the CS major or to
the Java CS1 offering. CSE 160 Data Programming has been
offered three times (Summer 2012, Winter 2013, Winter 2014) by
two different instructors to classes of approximately 50 students.
UW is on a ten-week quarter system, and students in CSE 160
attended three 50-minute lectures and one 50-minute recitation
section per week.

CS majors are not permitted to register for CSE 160. Students
from a variety of other majors have taken the course, and some
have gone on to double-major in CS as well as their original field
(e.g. Bioengineering, Oceanography). Students have multiple
times ranked the course among the 10 best in the College of
Engineering, and it always has a waiting list.

3.2 Pacific Union College (PUC)
Pacific Union College is a private, liberal arts parochial four-year
college with approximately 1,700 students.

The data programming approach was used in CPTR 115
Introduction to Computer Programming during two consecutive
quarters (Fall 2012 and Winter 2013). This course is a prerequisite
for a “breadth-first CS1” [4] course for computer science majors
(usually taught in C) that assumes prior programming knowledge.
It is also a cognate (requirement outside the major department)
and usually the only programming course for mathematics,
biomathematics, engineering, and physics majors, as well as an
option in the Practical and Applied Arts area of the general
education requirements at PUC. Thus it is a course required of CS
majors and taken by students from several other majors
simultaneously. It met for three 50-minute lectures and one 3-hour
lab period per week during a ten-week quarter.

The two offerings of CPTR 115 were taught by the same
instructor to 16 and 8 students, respectively. Roughly half of those
students were declared CS majors. A handful were high school
students in a dual-enrollment program, two of whom went on to
become CS majors the following year. Focusing on real-world
data sets in a variety of fields made this course far more engaging
for its broad audience, compared to previous offerings. Starting
this focus from the very beginning of the term enabled students to
tackle a sizable open-ended data analysis project within the
confines of a 10-week quarter. Anecdotal feedback from students
indicated a higher-than-usual level of enthusiasm for the kinds of
problems tackled and a sense of accomplishment at doing real
data analysis — even for those who had previously done a bit of
game programming.

3.3 The Evergreen State College
The Evergreen State College is a public, liberal arts teaching
college with approximately 4,400 students. Evergreen is known
for its unique interdisciplinary approach. The demographic of
Evergreen students includes a higher percentage of non-traditional
students than those at an R1 university: older adult students,
working and single parents, and veterans.

Data programming was first offered at Evergreen in Fall 2013.
This course was the first (CS1) of a three-quarter sequence in
introductory computer programming. The remaining two
programming courses in the sequence were taught in Java and did
not use a data programming approach. This sequence is combined
with two other three-quarter sequences (in computer architecture
and discrete mathematics) to form a lower-division CS curriculum
(called a program), which is a prerequisite for an analogous three-
quarter upper-division CS program. Although Evergreen does not
have official majors and departments, students who take these two
programs self-identify as CS majors. Evergreen is on a ten-week
quarter system, and for this course students attended two 2-hour
lectures and one 2-hour lab per week.

The 68 students in the CS1 course consisted of both majors (who
intend to continue onto the upper-division CS program) and non-
majors (students for whom this course will be their only exposure
to CS). The CS1 course received positive reviews from students,
students were highly engaged in the class, and the turnover rate to
the follow-on Java CS2 course was low.

3.4 Seattle University (SU)
Seattle University is a private, masters-level university with about
7,300 students, mostly undergraduates.

CPSC 192 Data Driven Programming is a new course designed
for non-CS majors and CS minors. It serves as the first course in
the CS minor and as the CS requirement for the Environmental
Science major as well as some tracks of other science majors (i.e.
Math). Students majoring in CS at SU take a two-quarter
sequence in C++. All CS courses except the data programming
course are closed to non-majors, so demand for this course is
expected to remain high as entry into the CS major is difficult for
existing students. CPSC 192 was first offered in Spring 2014. The
course is limited to around 20 students. SU is on a ten-week
quarter system, and for this course students attended three 75-
minute “lectures” (held in a lab) each week.

The 18 students taking the course in Spring 2014 were a diverse
group of non-major students, predominantly science and
engineering majors, and was a roughly even composition of
freshmen through seniors. In the course evaluations, the lab time
and direct instructor interaction was well reviewed. About half of
the students felt that they might use Python for a future project in
their discipline. An in-class informal evaluation showed a large
variance in students’ view of the “fun-factor” of the assignments,
validating the variety of topics included.

4. A DATA PROGRAMMING CS1 COURSE
This section discusses course topics and pedagogy, then describes
some of the programming assignments used in the course. While
our experience is with teaching an entire CS1 course oriented
towards data programming, we expect some instructors may be
interested in adopting only parts of our approach or individual
assignments.

4.1 Effect on Course Topics and Pedagogy
Supporting students’ experience with realistic datasets requires a
few changes to the topics, order, and presentation of traditional
CS1 material. Students learn similar concepts to those in any other
CS1 course, but a slightly different toolset. Our choice of topics is
also motivated by viewing our course not just as CS1 but also as
CS-Omega: it should give a solid foundation for subsequent
practical and theoretical work, but should also be useful even if
the student never takes another CS course.

The overall focus in our course is on providing students with the
tools necessary to process data provided as files. This focus on
processing data provided in files guides the choice and ordering of
topics. For example, we introduce the foreach loop but not the for
loop with an explicit index. We use file I/O extensively, with only
limited use of console I/O. We do not create GUIs nor any other
user interface. Students use complex data structures such as
dictionaries and graphs, but they do not re-implement basic data
structures like linked lists nor algorithms like sorting. We
introduce recursion at the end of the term, as an enrichment topic,
but it is not used in assignments. We introduce a few concepts that
are often missing from CS1 courses but are desirable for data
analysis, such as basic statistics and how to plot a graph.

Most assignments gave students some supporting code or
libraries. Early in the course, students are given examples of
documented, modular code that they may explore at their own
pace but are not required to understand until later assignments.
We have found it useful to provide a first assignment consisting of
a few short programming exercises that does not do any real-
world data analysis while students are becoming familiar with an
IDE or command line editor and the basics of Python syntax.

We use the Python language, because it is easy to use and is
widely adopted in the sciences. Because Python has a significant
and usable procedural subset, we do not discuss object orientation.
Python’s rich set of libraries provides the opportunity to give
students valuable experience reading the documentation for a real
library and successfully using it. We have used the Python
networkX graph library, matplotlib, numpy, scipy, and urllib.
However, the overall approach is not tied to Python, and similar
assignments could be done with Java, MATLAB, Mathematica, or
other programming languages.

At UW, readings were drawn from Introduction to Computation
and Programming Using Python by Guttag [13], as well as free
online resources like Think Python by Downey [9] and the Python
Tutorial [19]. We also prepared documents on topics such as
Python evaluation rules, using the command line, interacting with
files, using csv.DictReader, and debugging. At SU, Python
Programming in Context by Miller and Ranum [17] was the
recommended text.

4.2 Sample Programming Assignments
Below we describe several of the assignments used in the courses
at our institutions. We list them in the approximate order they
were given to students and indicate which assignments were used
at which schools. In addition to these assignments, most schools
also used a first assignment consisting of a few short exercises
that did not do any data analysis. Other assignments used included
Twitter sentiment analysis, image analysis, processing stock
market data, and linguistic analysis [30].

DNA Analysis (UW, PUC, Evergreen, SU)
DNA can be described as a string over the alphabet of base pairs:
{A, C, G, T}. The GC content (the fraction of nucleotides that are

either G’s or C’s) is biologically important. For example, GC
content can identify types of genes and can be used in determining
classification of species.

In the DNA Analysis assignment, students are given files from a
DNA sequencer and are asked to use loops and if statements to
count nucleotides, categorize organisms, and compute other
statistics about the files they are given. This is students’ first look
at reading files, although the code for reading files is given to
them for this assignment. This is also students’ first look at the
notion of data cleaning (some DNA sequences contain “junk”
base pairs) — an important idea for students to be exposed to in
preparation for examining their own data files. Students and
instructors have commented that this assignment is a bit simpler
than the following ones. While this allows students to succeed
early in the course, it could also lull them into thinking future
assignments will be as simple.

Oceanographic Data Integration (UW, PUC)
In the Oceanographic Data Integration assignment, students work
with real measurements of physical and biological variables from
the Puget Sound. The research question they are addressing is
“Which environmental variables correlate with the abundance of
Ammonia-Oxidizing Archaea (AOA)?” The dataset students are
using comes from an NSF-funded project, “Significance of
nitrification in shaping planktonic biodiversity in the ocean”.

Students are faced with the common task of having to integrate
data spread across several CSV files into one file. The provided
Python code reads CSV files and computes Pearson correlations,
but is missing the bodies of functions to compute mean and
standard deviation functions needed by the Pearson code. This
assignment introduces students to the common situation where the
format of collected data is not always convenient for analysis, and
the idea that by reading the data into a program it can be
transformed to other formats. Students gain practice with Python
lists, functions, loops, and file I/O.

Social Networking (UW, Evergreen)
We are not the first to notice that students are motivated by
projects related to social networking [22]. In this assignment,
students address the research question, “Which of two
collaborative-filtering approaches is better for recommending
friends?” The dataset is the Facebook New Orleans social
network.

Students are introduced to the idea of a graph as a data structure
and use the networkX library both to create a simple graph by
hand and to read data from a file into a data structure. We provide
scaffolding in the form of function signatures that students need to
fill in, as well as a series of assert statements that show the
expected output of the functions. Students make use of previous
knowledge about file I/O, functions, loops, and conditionals.
Learning objectives include using graphs to solve a problem, as
well as gaining experience using sets, dictionaries, and sorting.
Discussion of various sorting approaches is optional; students
only need to know how to use Python’s built-in sorting methods.

Election Prediction (UW, Evergreen, SU)
The 2012 US presidential election was a watershed in the fight
between pundits and statisticians to accurately predict the
outcome of political campaigns. The rivalry became front-page
news, with many pundits loudly proclaiming that the statisticians
would be humiliated on November 6. In fact, the opposite
happened: statistician Nate Silver (of the website
FiveThirtyEight.com) correctly predicted the outcome in every

state, whereas pundits' predictions varied significantly. In this
assignment, students replicate Nate Silver’s results by using
polling data to predict the outcome of the 2012 US presidential
election. Students solve a complex problem using lists, sets and
dictionaries and are thus able to appreciate the benefits of good
problem decomposition, data structure choice, and testing
practices. Most students found this assignment to be quite
challenging due to the use of nested data structures. At UW we
found providing a preliminary quiz forcing students to examine
the data structures closely helped significantly in this respect.

Fraud Detection (UW, PUC, SU)
In the fraud detection assignment, students look for fraud in
datasets using two different approaches, broken into two separate
assignments. First, students examine the least significant digits of
the vote totals in election returns from the disputed 2009 Iranian
presidential election. We would expect the digits in the ones and
tens place to be uniformly distributed in a valid dataset but
students examine the Iranian results themselves and explore issues
such as the impact of sample size. In addition to the Iranian data,
other election results (e.g. 2008 U.S. presidential election, 2012
Egyptian presidential election) can also be brought in for
comparison. In the second part of the assignment, students use
Benford’s law to evaluate the validity of two datasets: 1) US
Census data showing the population of US cities and 2)
populations of fictional places from literature and pop culture.

In both parts of the assignment students are guided through an
approach to statistics and hypothesis testing through simulation.
The basic question posed in this assignment and that students are
likely to wrestle with in their own work is “I have observed
something. Was it unusual? How unusual?” Our approach to
answering this question is to have students write code to generate
many possible datasets, then measure the thing of interest in those
datasets to produce p-values. Students also plot their results using
matplotlib.pyplot. For this assignment students are not given any
supporting code thus are asked to write a Python program in good
style without a provided template. They make use of loops and
lists, as well as string and numerical manipulation.

Estimating Avogadro's Number (SU)
Estimating Avogadro’s number using microscopy data and the
concept of Brownian motion was a student favorite at SU. In this
assignment students were given a sequence of images of
polystyrene beads in water and are asked to track the beads to
estimate self-diffusion. This was adapted from a Nifty assignment
[28] to act as a final project with exposure to post CS1 topics. The
objective was threefold: to give students the enthusiasm to try
their own future projects, to see some cool science, and to think
about data structures. Students were required to conform to
complex third party data structures (both B/W & color images),
and to create their own data structures (tracking blobs/beads). The
introduction of data structures that are open-ended, e.g., “What
data do you need to track a bead?”, encourages students to stretch
their minds around design and data management. As a bonus, a
discussion of algorithmic efficiency from too many nested loops
can be addressed with more advanced students. Students enjoyed
seeing the science in action and the freedom to create and
manipulate data in their own way.

Open-ended Final Project (UW, PUC)
At UW and PUC, the final assignment was a multi-week open-
ended project addressing a research question of each student’s
choice. Students could work together in groups of two students.
Completion of this project demonstrated a key goal of the course
— enabling students to process data to solve real problems of

interest to them. At the beginning of the course, we told students
about the project and showed example topics addressed by
students in previous iterations of the course. This served to
motivate students to acquire the tools necessary to accomplish this
task throughout the quarter, and it got them thinking about project
ideas from day one. Topics addressed by students included the
decay mechanisms of the Higgs Boson, the correlation between
firearm ownership and violent crimes, school district performance
vs. financing, the home court advantage in sports, music
classification via note analysis, and forecasting company health
from financial statements.

One of the biggest hurdles to picking a research question is
finding an appropriate dataset. We required students to use
publicly available datasets to enable the course staff to evaluate
their work. We provided students with links to quite a few
possible datasets to get them started.

We have found it useful to break the project into multiple phases
to prevent students from waiting until the last minute and to allow
for re-direction of project ideas that are too simple or too
ambitious. The first checkpoint requires students to locate a
dataset and propose a research question. Later checkpoints ask
them to provide background and motivation, flesh out their
technique and evaluation method, and finally to present and
discuss their results. We have used the final exam period in the
course for project presentations. This session became a
celebration of the students’ accomplishments. Allowing students
to see what their peers have accomplished in this manner serves to
support the notion that what they have learned in the course can
be applied to answer questions from a wide variety of domains.

5. ADAPTING TO YOUR CONTEXT
The first version of the course was piloted at UW in Summer
2012. Since then it has been offered at multiple other institutions.
Assignments and course structure were adapted by each instructor
to their unique context. Below we discuss issues of interest to
instructors wishing to adopt our approach at their institution.

5.1 CS1 with Minimal Infrastructure
At most schools CS1 is one of the largest CS courses offered.
Students new to programming are often aided by armies of TAs
who have previously taken the course themselves. There may be a
dedicated lab that is manned with course staff many hours of the
day or there may be hands-on lab sessions scheduled for credit
hours. When offering a new or alternative CS1 course, your first
few offerings may need to survive without these amenities.

At SU, the course format of “lab in every lecture” offered
supervised coding practice in every period. In a 75-minute period,
lecture was limited to 45 minutes, and labs were assigned
typically at the end of lecture. Overall there were approximately
20 coding exercises used, graded on an effort-only basis. This
approach addressed several issues. Given the diversity of
backgrounds of these non-major students in terms of major, class
standing, and coding experience, it was imperative to require extra
coding practice. Additionally, as the tutors at SU know mostly
C++ or C#, they were not ideal for helping with the course. This
in-class lab time allowed the instructor to fill the tutoring gap for
students. Finally, since many students at SU work, they are not
able to attend tutoring or office hours regularly, so for some this
was the only time to get in-person assistance. Most students
appreciated having this time, as it helped reinforce the lecture
topics. This mandated extra practice also improved students’
coding confidence. This seemed to be especially true for some

female students that were initially hesitant to get started for fear of
writing “wrong” code on their first attempt. Ultimately, holding
lecture in a lab room every period allowed for the flexibility to
adapt the time spent on labs to the needs of an individual group of
students, and the extra mandated coding was a boon particularly
to the weakest students.

Other strategies used at UW and Evergreen to support students
new to programming without requiring significant infrastructure
included pointing students to online Python resources such as
Codecademy.com and CodingBat.com to provide more hands-on
practice and immediate feedback. The courses at PUC and UW
also used pythontutor.com to help students visualize the structure
of data and the effect of control constructs. Overall this is an area
to pay attention to as students are likely to be aware of the
resources provided to students in your “main” CS1 course and
may feel they are being asked to get by with less support.

5.2 Adjusting Assignments to Your Students
As described in Section 4.2, the authors have successfully adapted
many of the original assignments from UW for use at their
institutions. Here we discuss some of the adjustments made.

In all offerings of the course, students were provided considerable
starter code at the beginning of the term, then less and less starter
code as the term progressed. (No code was provided for the fraud
detection assignment, nor for the final project.) The goal was to
make students read well-structured and well-documented code,
and to reduce their workload.

However, some students were frustrated when the provided code
did not make intuitive sense to them. These students found the
assignments’ provision of a problem approach and starter code
restrictive rather than helpful. At SU, we improved their
completion rate by increasing the flexibility of assignments:
providing less code, shortening the assignment write-ups, and, in
the later part of the course, allowing students to
add/remove/rename functions and function parameters.

This introduced students more rapidly to the experiences of
problem analysis and program organization, including choosing
how to store and manipulate data. It also forced students to better
comprehend the assignment goals, specifically to begin by
addressing the structure of the data as pre and post conditions.
This flexibility made the starter code smaller and more
approachable. On the other hand, these sparser specifications
required more in-class time be spent on explanations, they
reduced the utility of staff test suites, and they required more
effort to grade.

In all offerings, we found the “wishful thinking” approach to
problem decomposition effective: when faced with an unsolved
part of the problem, the students could name and specify a routine
that would solve it, use that hypothetical routine, and come back
later to implement it [1]. A live coding lecture demonstrating
“wishful thinking” was effective in encouraging students to write
additional functions. We grounded this method in practices that
are common to students, such as outlining a paper before writing.

At Evergreen, the difficulty of the material was challenging to
students, some of whom worked multiple jobs or had to support
families. These students could not devote their full attention to
learning as much as younger students at traditional universities.
To adapt the original data programming course, we only selected
four of the assignments and subdivided each of those in half to
create eight mini-assignments. Turn-in dates were flexible, and

students were allowed to time-box their efforts (for example, 11
hours of outside time per week) to attempt as many problems as
possible within that time. The extent to which students were able
to complete assignments provided valuable data to adjust the
difficulty of assignments for this demographic in the future.

None of our offerings have used all of the assignments we have
collected. Thus, expanding the course from a quarter to a semester
can be easily accomplished by adding assignments, expanding the
final project, or reducing the pace. One could also add enrichment
topics, such as an introduction to object orientation — so long as
the focus is on how it is useful for real-world data analysis.

5.3 Non-majors and Non-traditional Students
The course delivery at SU was specifically focused on catering to
non-majors, which presented the additional challenge of
motivating students who view the course as only secondarily
important. The style of this course, which focuses on practicality
for students taking only one CS course, was helpful in that
respect. However, many students were surprised by how much
time it took to master data programming. Interesting assignments
were key to motivating students outside of class. Interactive in-
class activities were the solution of choice to keep students alert
and attentive during lecture. Methods that were successful and
minimally interruptive at SU included code something very small
and report before continuing lecture (using the interpreter), have
everyone stand and then vote by sitting, using a suit of cards to
define a sorting algorithm, and writing algorithms on paper.

At Evergreen, the data programming approach was especially
appealing to both non-majors (who were initially interested in
applying CS to other sciences such as biochemistry) and non-
traditional students. Older adult students appreciated the real-life
applications, which seemed less contrived or condescending than
“hello world” examples or toy problems. Subdividing assignments
into smaller pieces and keeping due dates flexible were important
for keeping this group of students motivated and engaged.

5.4 Articulation into (a non-Python) CS2
While designed to serve students well as both the first and last
programming course they may take, we have found the course has
also worked well for students pursuing more CS courses, usually
offered in a language other than Python. Several institutions use
Python in their CS1 courses and some have reported on their
experience with students articulating into a non-Python CS2 [10].

At UW, where the course has now been taught three times, we
have seen a number of students from the class go on to major in
CS (and serve as TAs for the course). During the first offering of
the course, we held a parallel one-credit Java basics course with
the goal of helping prepare students to take CS2 in Java. At UW
we also offer a one-quarter combined CS1/CS2 course in Java that
is an ideal follow-on course for students interested in majoring in
CS after taking our course, since they already have most of the
conceptual background provided by the CS1 course but are not
familiar with the Java terminology and toolset.

At Evergreen, where the data programming course served as the
first course for both CS majors and non-majors alike, the change
from Python in the fall quarter to Java in the winter quarter
required several adjustments. One difference is that our data
programming assignments provided more supporting code than is
typical for a CS1 or CS2 course. When moving to the next course,
Evergreen students had to adjust to implement more from scratch.

At SU, CS majors take CS1 and CS2 courses offered in C++ (the
primary language used in the major). SU plans to offer an
alternative CS2 to follow the data programming course which will
include an introduction to C++. The goal is to serve CS minors
and non-majors who have to take additional CS courses. This will
mean that people wanting to switch to the CS major after taking
data programming can do so without having “wasted” a course.
This alternate path is garnering significant interest from previous
and prospective students of the data programming course.

At PUC, the next course students take after the data programming
course is a “breadth-first CS1” [4] that assumes prior
programming experience. This second course expects that
students do not come in knowing the language required for the
course and includes a transition to another language, usually C.

6. CONCLUSION
Students in CS1 can do real-world data analysis. We have
described how multiple diverse schools have successfully
implemented the data programming approach. We welcome other
instructors to join in the fun! Course syllabi, assignments, and
other resources can be found at our instructor resources site [30].

7. REFERENCES
[1] H. Abelson, G. J. Sussman, J. Sussman. Structure and

Interpretation of Computer Programs. MIT Press, 1996.

[2] J.C. Adams and R.J. Pruim. Computing for STEM majors:
enhancing non CS majors' computing skills. In SIGCSE
2012, 457-462.

[3] R. Catrambone and M. Guzdial. Computational
freakonomics. http://swiki.cc.gatech.edu/compfreak, 2012.

[4] D. E. Comer, D. Gries, M. C. Mulder, A. Tucker, A. Joe
Turner, P. R. Young. Computing as a discipline. Commun.
ACM 32, 1 (January 1989), 9-23.

[5] S. Cooper and S. Cunningham. Teaching computer science in
context. ACM Inroads 1, 1 (March 2010), 5-8.

[6] W.P. Dann, S. Cooper, and R. Pausch. Learning to Program
with Alice (2 ed.). Prentice Hall Press, 2008.

[7] P. DePasquale. Exploiting on-line data sources as the basis of
programming projects. In SIGCSE 2006, 283-287.

[8] Z. Dodds, R. Libeskind-Hadas, C. Alvarado, and G.
Kuenning. Evaluating a breadth-first cs 1 for scientists. In
SIGCSE 2008, 266-270.

[9] A. B. Downey. Think Python,
http://www.greenteapress.com/thinkpython/, 2012.

[10] R.J. Enbody, W.F. Punch, and M. McCullen. Python CS1 as
preparation for C++ CS2. In SIGCSE 2009, 116-120.

[11] A. Erkan, T. Pfaff, J. Hamilton, and M. Rogers.
Sustainability themed problem solving in data structures and
algorithms. In SIGCSE 2012, 9-14.

[12] M. Goldweber, J. Barr, T. Clear, R. Davoli, S. Mann, E.
Patitsas, and S. Portnoff. A framework for enhancing the
social good in computing education: a values approach. ACM
Inroads 4, 1 (March 2013), 58-79.

[13] J. V. Guttag. Introduction to Computation and Programming
Using Python. MIT Press, 2013.

[14] S. Hambrusch, C. Hoffmann, J.T. Korb, M. Haugan, and
A.L. Hosking. A multidisciplinary approach towards
computational thinking for science majors. SIGCSE 2009,
183-187.

[15] P.B. Lawhead, M.E. Duncan, C.G. Bland, M. Goldweber, M.
Schep, D.J. Barnes, and R.G. Hollingsworth. A road map for
teaching introductory programming using LEGO©
Mindstorms robots. SIGCSE Bull. 35, 2(June 2002),191-201.

[16] S. Lohr. The age of big data. New York Times, Feb 2012.

[17] B. N. Miller and D. L. Ranum. Python Programming In
Context. Jones & Bartlett, 2013.

[18] Princeton Univeristy, Computer Science 126: General
Computer Science, http://www.cs.princeton.edu/~cos126

[19] The Python Tutorial. https://docs.python.org/2/tutorial/

[20] L. Rich, H. Perry, and M. Guzdial. A CS1 course designed to
address interests of women. In SIGCSE 2004, 190-194.

[21] K. A. Robbins, D. M. Senseman, and P. E. Pate. Teaching
biologists to compute using data visualization. In SIGCSE
2011, 335-340.

[22] M. Sahami, FacePamphlet: Implementing a Simple Social
Network, Retrieved Dec 1, 2014
http://nifty.stanford.edu/2009/sahami-face-pamphlet/

[23] D. E. Stevenson and P. J. Wagner. Developing real-world
programming assignments for CS1. In ITICSE ‘06, 158-162.

[24] D. E. Stevenson, M. R. Wick, and S. J. Ratering.
Steganography and cartography: interesting assignments that
reinforce machine representation, bit manipulation, and
discrete structures concepts. In SIGCSE 2005, 277-281.

[25] D. G. Sullivan. A data-centric introduction to computer
science for non-majors. In SIGCSE 2013, 71-76.

[26] S. L. Tanimoto. An Interdisciplinary Introduction to Image
Processing: Pixels, Numbers, and Programs. MIT Press, 2012.

[27] Teaching Lab Skills for Scientific Computing, Retrieved
Dec. 1, 2014 http://software-carpentry.org/

[28] K. Wayne, Estimating Avogadro’s Number, Retrieved Dec.
1, 2014 http://nifty.stanford.edu/2013/wayne-avogadro.html

[29] G. Wilson, C. Alvarado, J. Campbell, R. Landau, and R.
Sedgewick. CS-1 for scientists. In SIGCSE 2008, 36-37.

[30] Data Programming Instructor Resources,
http://tinyurl.com/dataprogramming/instructor-resources

