Continuous Testing In Eclipse

David Saff, Michael D. Ernst
MIT CSAIL
eTX 2004, Barcelona, Spain

Introduced:

Continuous testing:

Inspired by continuous compilation

 Continuous compilation, as in Eclipse, notifies
the developer quickly when a syntactic error Is

¥

Drezcrption

a9

"

Syntax errar on token &', "'l expected
The method decaode[Stnng] from the tppe LRLDecoder iz deprec,

 Continuous testing notifies the developer
quickly when a semantic error Is introduced:

I ¥ I ! I Drezcrption

Teszt fallure; testdrnthmetic]ct best b ainT estSuite]

The method decode[String) from the twpe URLDecoder 1= deprec,

Outline

« Continuous testing: defined and motivated
 Eclipse plug-in:

— Design principles

— User interface design: demo

— Software design

* Next steps

Outline

« Continuous testing: defined and motivated
 Eclipse plug-in:

— Design principles

— User interface design: demo

— Software design

* Next steps

Continuous testing

« Continuous testing
uses excess cycles
on a developer's
workstation to
continuously run IDE
regression testsin %"
the background as changes
the developer edits

code.

developer
changes
code

IDE
notifies
about
errors

daemon
runs
tests

Goals of continuous testing

Continuous testing:

* No longer forces the developer to decide
whether to test and what tests to run.

* Prevents long-standing regression errors.*
 Makes developer confident, not annoyed.

* Saff, Ernst, ISSRE 2003: Reducing
wasted development time via
continuous testing

Continuous testing made students
more productive

Treatment N |Completed
assignment
No tool 11 (27%

Continuous compilation |10 |50%

Continuous testing & 18 | 78%
continuous compilation

p<.03

* Saff, Ernst, ISSTA 2004:
An experimental evaluation of continuous testing during development

Students appreciated
continuous testing

| would use continuous Yes
testing...

...for the rest of the course 94%

...for my own programming 80%

| would recommend the tool 90%
to others

Outline

« Continuous testing: defined and motivated
* Eclipse plug-in:

— Design principles

— User interface design: demo

— Software design

* Next steps

Design principles, 1 of 2

 Reuse
— Whenever possible, plug in and reuse

e Future reuse

— When reuse Is Impossible, copy and paste to
show where Eclipse could be more flexible

Design principles, 2 of 2

« Consistent experience
— Don’t change expected behavior
— Build on current developer metaphors

* Minimal distraction
— Don’t swamp benefits by sapping attention

» Testabllity
— Add testing-specific API's when necessary

Outline

« Continuous testing: defined and motivated
* Eclipse plug-in:

— Design principles

— User interface design: demo

— Software design

* Next steps

Outline

« Continuous testing: defined and motivated
* Eclipse plug-in:

— Design principles

— User interface design: demo

— Software design

* Next steps

Eclipse auto-building:
Static structure

Project | & % | Builder
*
Y Java RMI
_ builder builder
Source file

Eclipse auto-building:
Dynamic behavior

~N
>

Project | x x | Builder runs
l creates // \
*
Java RMI
_ builder builder
Source file
+ Marker X
changes f Proplems
updates View
Delta

Auto-build
Thread

starts

notifies

Build
Manager

Eclipse l[aunching:
Static structure

Launch S Launch
config config type
has classes T
*
Launch o :
oroject Application JuUnit

Runtime

workbench

Remote
test
runner

Classpath

-

~

Launch
project

Vi

Eclipse l[aunching:
Dynamic behavior (JUnit)

Launch
config

*,, Socket

|

Launch
project

o

%

Launched JVM

Test
runner
client

config type

Launch

updates

\

~

JuUnit

Test

~N
>

runner
GUI

_/

Eclipse JVM

Project

Continuous Testing
Static structure

when changes

Launch

*

\4

Source file

Builder

config

L

has classes

/

/'conﬁgtype

Launch

A

Testing
metadata

Launch
project

Continuous
testing

N

Java
builder

CT

builder

Continuous Testing
Dynamic behavior

when changes

e)

test |.
runner| *

l Classpath \
* SR

Launch Testing

Source file ‘oiect meta-
brol data ||

N—

Launched JVM

Project

CT CT

L)
.
.
.
s“ N
/

runner runner

client | updates GUI/

Eclipse JVM

creates

Suggestions for Eclipse

« JUnit integration:

— Display results from multiple simultaneous
test runs

— Allow plug-ins to contribute prioritization

* Problems view:
— More flexibility in icons

 Tools for testing asynchrony
— It's hard to create deterministic unit tests

Outline

« Continuous testing: defined and motivated
 Eclipse plug-in:

— Design principles

— User interface design: demo

— Software design

* Next steps

Next steps:
split into Individual plug-ins

Current plug-in

T

Prioritize
tests

AT T
Associate
launches
with
projects

(& /

AT T
Run tests
when
project
changes

(& /

AT
Create
markers
based on

test

kfallures y

Next steps: feature enhancements

Extend to Plug-in Development
Environment

Prioritize based on which methods,
classes, etc. changed

Use hot-swapping JVM to reduce start-up
time

Increase resolution: associate suite with
package? class? method?

Next steps: test factoring

» User-supplied test: Factored tests:
Method Call Expected Result Method Call Ex&;ed Result
N

“Mock Object

* Saff, Ernst, PASTE 2004:

Automatic mock object creation
for test factoring

Further reading

« Model of developer behavior

— Saff, Ernst, ISSRE 2003: Reducing wasted
development time via continuous testing

« Controlled student experiment

— Saff, Ernst, ISSTA 2004: An experimental evaluation
of continuous testing during development

 Test factoring

— Saff, Ernst, PASTE 2004: Automatic mock object
creation for test factoring

Conclusion

Plug-in is publicly available at
http://pag.csail.mit.edu/~saff/continuoustesting.html

Many are using and enjoying continuous
testing: give it a try!

Eclipse was an excellent platform for
meeting our design goals.

Research and implementation continues

http://pag.csail.mit.edu/~saff/continuoustesting.html

