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Introduced:

Continuous testing:

Inspired by continuous compilation

 Continuous compilation, as in Eclipse, notifies
the developer quickly when a syntactic error Is
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 Continuous testing notifies the developer
quickly when a semantic error Is introduced:
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Continuous testing

« Continuous testing
uses excess cycles
on a developer's
workstation to
continuously run IDE
regression testsin %"
the background as  changes
the developer edits

code.

developer
changes
code

IDE
notifies
about
errors

daemon
runs
tests



Goals of continuous testing

Continuous testing:

* No longer forces the developer to decide
whether to test and what tests to run.

* Prevents long-standing regression errors.*
 Makes developer confident, not annoyed.

* Saff, Ernst, ISSRE 2003: Reducing
wasted development time via
continuous testing




Continuous testing made students
more productive

Treatment N |Completed
assignment
No tool 11 (27%

Continuous compilation |10 |50%

Continuous testing & 18 | 78%
continuous compilation

p<.03

* Saff, Ernst, ISSTA 2004:
An experimental evaluation of continuous testing during development




Students appreciated
continuous testing

| would use continuous Yes
testing...

...for the rest of the course 94%

...for my own programming 80%

| would recommend the tool 90%
to others
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Design principles, 1 of 2

 Reuse
— Whenever possible, plug in and reuse

e Future reuse

— When reuse Is Impossible, copy and paste to
show where Eclipse could be more flexible



Design principles, 2 of 2

« Consistent experience
— Don’t change expected behavior
— Build on current developer metaphors

* Minimal distraction
— Don’t swamp benefits by sapping attention

» Testabllity
— Add testing-specific API's when necessary
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Eclipse auto-building:
Static structure

Project | & % | Builder
*
Y Java RMI
_ builder builder
Source file




Eclipse auto-building:
Dynamic behavior
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Eclipse l[aunching:
Static structure

Launch S Launch
config config type
has classes T
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Launch o :
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Eclipse l[aunching:
Dynamic behavior (JUnit)
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Project

Continuous Testing
Static structure

when changes
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Continuous Testing
Dynamic behavior

when changes
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Suggestions for Eclipse

« JUnit integration:

— Display results from multiple simultaneous
test runs

— Allow plug-ins to contribute prioritization

* Problems view:
— More flexibility in icons

 Tools for testing asynchrony
— It's hard to create deterministic unit tests
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Next steps:
split into Individual plug-ins

Current plug-in
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Next steps: feature enhancements

Extend to Plug-in Development
Environment

Prioritize based on which methods,
classes, etc. changed

Use hot-swapping JVM to reduce start-up
time

Increase resolution: associate suite with
package? class? method?



Next steps: test factoring

» User-supplied test:  Factored tests:
Method Call Expected Result Method Call Ex&;ed Result
N

“Mock Object

* Saff, Ernst, PASTE 2004:

Automatic mock object creation
for test factoring




Further reading

« Model of developer behavior

— Saff, Ernst, ISSRE 2003: Reducing wasted
development time via continuous testing

« Controlled student experiment

— Saff, Ernst, ISSTA 2004: An experimental evaluation
of continuous testing during development

 Test factoring

— Saff, Ernst, PASTE 2004: Automatic mock object
creation for test factoring



Conclusion

Plug-in is publicly available at
http://pag.csail.mit.edu/~saff/continuoustesting.html

Many are using and enjoying continuous
testing: give it a try!

Eclipse was an excellent platform for
meeting our design goals.

Research and implementation continues
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