Contract.Requires(amount > 0.0);
Contract.Ensures(Balance == Contract.OldValue(Balance) + amount);
Contract.Invariant(Balance > 0.0);

Encouraging Effective
Contract Specifications

Todd Schiller, Kellen Donohue,
Forrest Coward, Michael Ernst

_|_S University of Washington

Microsoft Code Contracts

public class BankAccount {

public void Deposit(decimal amount){ Precondition
Contract.Requires(amount > 0.0);
Contract.Ensures(Balance == Contract.OldValue(Balance) + amount);

\ Postcondition

 C# Syntax and Typing

} * Run-time Checking
e Static Checking

What contracts do developers write?

What contracts could developers write?

How do developers react when they are shown
the difference?

How can we use this information to make
developers more effective?

Developers use contracts ineffectively

* Most contracts check for Blgidgele[S[el=R ool sl R (o N (Lo [I[e=
missing values, e.g. |= null Ellsleie:1dle]aReI0Igs =

e Miss aspects of program
behavior

Make suggestions key part

of tool ecosystem

* Don’t (effectively) use
powerful features, e.g.,
object invariants

Curate best practices.
It’s OK to be normative

Goal: Move Developers Toward Using
Contracts as Specifications

Contracts as
Contracts as ,
. Functional
Assertions

Specifications

e Assumption Violations What program should do

* Object Invariants
e Contracts on Interfaces

Effective Contracts Have Many Benefits

Design

e Design by Contract
[Meyer86]

Maintenance Development

e Refactoring e Static Checking
e Documentation [Fahndrich10]

e Refactoring
[Cousotl2]

Debugging Testing
e Runtime Checking e Test Generation

e Fault Localization [Barnett09]
e Runtime Checking

Talk Outline

1. The contracts that developers write
2. The contracts that developers could write

3. How developers react when shown the
difference

Most Contracts Just Check for Missing
Values

Written Contracts

* Subjects: The 90 C#
projects with Code
Contracts on Ohloh

* Missing-Value: Null,
Empty String, Empty
Collection

- Missing-Value Checks

Many Postconditions are Trivially
Redundant with the Code

Written Postconditions

e 25% of contracts are
postconditions

* 15% of postconditions
specify:

— The value a method
returns

— The value a property is - Missing-Value Checks
set to
|:| Redundant with Code

Smart Defaults Reduce Annotation
Burden

Nullness: Checker Framework [PapiO8] for Java assumes
parameters and return values are non-null

Ar-Siotions per 1K LOC
Checker Framework w/ Defaults 1-2 annos. \ Defaults cut # of
Code Contracts 2-5 annos. J annotations

needed in half

Awkward to override restrictions using Contracts:
X !=null || x==null

10

Microsoft Code Contracts

public class BankAccount {

public void Deposit(decimal amount){
Contract.Requires(amount > 0.0);
Contract.Ensures(Balance == Contract.OldValue(Balance) + amount);

* C# Syntax and Typing

* Run-time Checking

} e Static Checking

11

Why Don’t Developers Use Functional
Specifications? They are Expensive

* Verbose, especially involving return / pre-state
expressions

— Contract.Result<lIEnumerable<TEdge>>()

* High runtime cost
— Contract.ForAll(collection, elt => elt > 0)

* No static checking
— dictionary[key] < array.Length

12

Talk Outline

2. The contracts that developers could write

Inferring Contracts From Runtime
Traces with Daikon + Celeriac

on

.NET Binary

Celeriac:

-

&4

Celerlac

in our paper

Instrumented
Binary

_

IntroduceN

01:09 Action Al
01:09 Action A2
01:09 Action A4
01:09 Actien
01:09 Acti

Value

[Ernst99“

Contracts/

code.google.com/p/daikon-dot-net-front-end

14

There’s a Gap Between Written
Contracts and Program Behavior

Inferred Contracts

Written
Contracts

“
&
L}
5 Ll
.
'S 4
0..

Good candidates
for smart defaults

- Functional Specifications

15

Developer-Written Contracts Miss
Aspects of Program Behavior

Object State:
e this.IsUsable == (this.Reader.GetRefCount != 0)

Relations:
e this.programElement.ColumnNumber >=0

State update:

this.Reader.GetRefCount() >=
Contract.OldValue(this.Reader.GetRefCount())

Talk Outline

3. How developers react when shown the
difference

Case Study Research Question

How do developers decide which contracts to
add if contracts can be added with a single click?

Case Study Methodology

Subjects: two developers and their projects
* Sando Code Search: document indexer component
 Mishra RSS Reader: model component

Existing Contracts:
28 contracts across 482 methods
* All but 3 were checks for missing values

Task: Developer used interface to insert inferred
contracts

Project To Annotate: Formatting:
Indansr w|| Ganersta @. . ® c#
| || Gunete [6 OO ...
Mathad to Annotate: Sanda Indexer Documents Class Dacumant
B Incexes Obyject Imvarants |'|',pgl:ﬂ;|-ﬁm|
B Sando - ' m
el Wo ¥ML documsnsation iz availsble
[Documentindexer . 55 -
= "‘"Cu“ﬁ" Ho clasa invarisnt method was found; Insert & contract to creatce ic.
& Cormverters
& Document Factory
[} ErumDocument . 30
& FaldDocumant « 30 | Invarants (32) | Fers (1) |
i+ MethodDoeument : 31
& MathadPretetypeDocument = 31 | ¥ this
&l PropertyDocument : 30 || % this.GetFieldsForLucene()
- SandoDocumant © 32 | 2
[E:r\'Jc-{J:-:w-:-ﬂ":ptnrgEliﬂmmn[-I ¥ this.programElement
i Struct Document © 30
il IndexFillerng
- IndescStatn
[Metnca
[Searching
£ >

E m Code Contract M.. ﬂ Sando - Microsoft... * CEComtract Disc...

Case Study Research Question

How do developers decide which contracts to
add if contracts can be added with a single click?

Differing Viewpoints to Inserting
Contracts

e Sando: in favor of automatically inserting all
contracts above some confidence threshold

 Mishra Reader: chose not to insert many valid
contracts
— Avoiding code bloat
— Fear of runtime overhead

— Belief that contracts should only be written at module
boundaries (public methods)

Suggestions are Beneficial (Up to a Point)

* Tool suggested types of contracts developers
would not have thought of

— e.g.: Contract.ForAll(collection, elt => elt > 0)

* Not a perfect substitute for training

— Sando developer, unaware of object invariant and
interface contracts, overlooked tool’s suggestions

Training Affects How Contracts Are
Used

Contracts as
Contracts as _
. Functional
Assertions

Specifications

Opportunities to train developers via the tooling
itself

* |dentifying features that developer is under-
utilizing

* Can supplement sound static-checker inference
with more expressive inference

Ul Grouping Schemes to Encourage
Functional Specifications

@ (this.PropertyX >3) implies (this.FieldX != null)

By variable By kind By antecedent /var By antecedent / kind
FieldX: Nullness: Always: Always:
@ @ PropertyX: Nullness:
this.PropertyX > 3: this.PropertyX > 3:
PropertyX: Comparison: FieldX: Nullness:

Led developers to
discover kinds of

contracts they had not

considered before

Grouping by condition
did not help the
developers reason
about implications .

Related Work

e Contracts in the Wild:

— Chalin06: Eiffel programs have a lower proportion of
non-null checks, higher proportion of postconditions

— Estler14: Eiffel, JML, and C# contracts are stable over
time; preconditions are larger than postconditions

 Human Factors:

— Polikarpova09: Daikon finds contracts that developers
missed

— Johnson13: false positives and inadequate
presentation prevent uptake of static analysis tools

Conclusion: Both Tooling and Training
are Required for Usability

VSR EE UIESUAEIE | troduce tooling to reduce
e.g. = null ion burd
annotation burden

* Miss aspects of program Make suggestions key part
behavior
of tool ecosystem

 Don’t (effectively) use
powerful features, e.g.,
object invariants

Curate best practices. It’s

OK to be normative

Tools and Data: http://bit.ly/code-contracts

28

Lifecycle Not Ideal in Practice

Annotations are too heavy especially the
Result/Old syntax is horrid.

The visual studio editor extension is buggy [...]
Seeing contracts easily from the call site would

be a huge factor in convincing less enthusiastic
developers about the benefits.

[The static checker is] too slow, complicated
and not expressive enough.

\—"

[Increased build time is a big problem!

| am not yet totally convinced that [Code
Contracts] are ready for prime-time

29

Subject Projects

Other Quality

Subject Program | Domain Code Contract Use Tools Used
Labs Framework | APl exploration : :

(11K SLOC) tramework Static checking StyleCop
:\il;sl?;igg;\der RSS reader Debugging concurrent code Jetbrains R#
Sl Code search Early runtime error detection

(24K SLOC) Y

Quick Graph Algorithms and

(32K SLOC)

data structures

Pex / Testing

Pex

Contract Inserter Interface

Four possible actions:
— Add as contract
— Add as documentation
— Mark as false
— Ignore as implementation detail

Null-checks Can be Expressive

public ComplicatedType Foo(. . .){
Contract.Ensures(Contract.Result<ComplicatedType>() != null);

Types + Contracts Guarantee:

 Methods Signatures + Method Contracts
* Object Invariants

32

Tool Information

Celeriac: Contract Inference via Runtime Tracing
https://code.google.com/p/daikon-dot-net-front-end

Contract Inserter: Visual Studio Add-in
https://bitbucket.org/fmc3/scout

33

Type-State Example: Degenerate
Behavior Encoding

public class Subscription{
public SubscriptionsList SubscriptionsList { get; private set; }

public void AddItem(ltem item) {
Contract.Requires(SubscriptionsList != null, "Call Initialize first");

\ All contracts use != null

[InvariantMethod]
public void Objectinvariant(){

\ Can’t write an invariant

}

34

Type-State Example: Application-
Specific Property Encoding

public class Subscription {
public SubscriptionsList SubscriptionsList { get; private set; }
public boolean Islnitialized { get; private set; }

public void AddItem(ltem item) {
Contract.Requires(IsInitialized, "Call Initialize first");

} Implications can be tricky

[InvariantMethod] for multiple states

public void Objectinvariant(){
Contract.Invariant(!IsInitialized | | SubscriptionsList != null);

35

Mishra Reader: Concurrent Debugging
via Nullness Checks

Model subcomponent (of MVC architecture)

contained just 11 contracts across 80 classes and
360 methods:

* 10 argument non-null preconditions

e 1invariant: UnreadCount >=0

Pattern Example: Encoding Type-State
with Contracts

Basic Idea:

* Expose Properties indicating state, e.g., IsOpen
* Contracts contain implications based on state
* Postconditions encode transitions

Observation: only see this pattern in projects
that use the static checker

Case Study: Mishra News Reader

Lead developer introduced Contracts to help debug
concurrent code

E -||-'L|.!'J' et :
inread starred all Release Notes for 7/6/2012

* Programming (4

» RSS Bandit A cootrex wimos - wos o1z (W) (%) (@) (8) (@3
« Release Notes for 7/6/2012

b Software Comtellr Webilon Happy belated 4th of July, everyone! Here are the
drsihss At S OF Dy, werrpone’ bene aee fhe recites for this weels refease on CodePles
ool Lea thas werek' y relere o CotiaPie

+-Some # Tag Folder
Heath Stewart (1)

Implemented performance improvements
tor Gt repositories.

ol o . .
Rty Caron Fuoiesd an issue that caused the Hinal “clhck

et display ads.

4 Team Blogs

Fuged an i for certain projects thual imade

nimpossible to edit refeases.

Fined an issue where the URL for a diff of a
ke wwould nat ke ters to the difl in
Actvarictd Deboggasy QuETEon

‘
3
N

Fied @ rivre ssue that prévented a small
sulset of projects fromm modifying their
propect delails

Fied an issue where scrollbars were
Cotaboration missing in our side-by-side diff viewer.

=
”
2
%
A
-
&
&
]
=
i
=
B
8
| =

Mishra Reader: Concurrent Debugging
via Nullness Checks

Model subcomponent (of MVC architecture)

contained just 11 contracts across 80 classes and
360 methods:

* 10 argument non-null preconditions

e 1invariant: UnreadCount >=0

Case Study: Sando

Introduced Code Contracts after major
contributor saw a webinar

DungecnManager.cs + X DungeonSecreen.cs CreaturefManager.cs =
add monster level I | Search | ":aRRRSRDguEIik:E.Managers.DungennManager - & Dungeonlevel _,:
189 results returned : : . - 1_
+) Advanced Options 21+ - ?.lhllc Dungecnlevel DungeonLewvel
Search Results - : get { return Dungeon.lLevels[currentDungeonlevel - 17; }

& AddRandomMonstersByLevel in CreatureManager. : set { Dungeon.Llevels[currentDungecnLevel - 1] = wvalue; }

ip AddMonster in CreatureManager.cs E }

ip AddRandomMonster in CreatureManager.cs - ?"hlic boel? PlayerHaskion

i Dungeonlevel in Dungeonlevel.cs i get { return CreatureManager.PlayerAlive && !IsGameActive;
9 Levels in Dungeon.cs b

ip Monster in Monster.cs i /fread only flag -

40

Sando: Used Contracts like Assertions

Indexer component contained 17 contracts
across 34 classes and 182 methods:

* 12 non-null checks
* 4 non-empty checks
e 1 implication:

Icriteria.SearchByUsageType | | criteria.UsageTypes.Count > 0

