
Encouraging Effective

Contract Specifications

Todd Schiller, Kellen Donohue,

Forrest Coward, Michael Ernst

University of Washington

Contract.Requires(amount > 0.0);

Contract.Ensures(Balance == Contract.OldValue(Balance) + amount);

Contract.Invariant(Balance > 0.0);

Microsoft Code Contracts

public class BankAccount {

public void Deposit(decimal amount){

Contract.Requires(amount > 0.0);

Contract.Ensures(Balance == Contract.OldValue(Balance) + amount);

. . .

}

. . .

}

2

• C# Syntax and Typing

• Run-time Checking

• Static Checking

Precondition

Postcondition

What contracts do developers write?

What contracts could developers write?

How do developers react when they are shown
the difference?

How can we use this information to make
developers more effective?

3

Developers use contracts ineffectively

• Most contracts check for

missing values, e.g. != null

• Miss aspects of program

behavior

• Don’t (effectively) use

powerful features, e.g.,

object invariants

4

Introduce tooling to reduce

annotation burden

Make suggestions key part

of tool ecosystem

Curate best practices.

It’s OK to be normative

5

Contracts as

Functional

Specifications

Contracts as

Assertions

Goal: Move Developers Toward Using
Contracts as Specifications

• What program should do

• Object Invariants

• Contracts on Interfaces

• Assumption Violations

Effective Contracts Have Many Benefits

6

Development

• Static Checking
[Fahndrich10]

• Refactoring
[Cousot12]

Design

• Design by Contract
[Meyer86]

Testing

• Test Generation
[Barnett09]

• Runtime Checking

Debugging

• Runtime Checking

• Fault Localization

Maintenance

• Refactoring

• Documentation

Talk Outline

1. The contracts that developers write

2. The contracts that developers could write

3. How developers react when shown the
difference

7

Most Contracts Just Check for Missing

Values

8

Written Contracts

Missing-Value Checks

• Subjects: The 90 C#

projects with Code

Contracts on Ohloh

• Missing-Value: Null,

Empty String, Empty

Collection

Many Postconditions are Trivially

Redundant with the Code

• 25% of contracts are

postconditions

• 15% of postconditions

specify:

– The value a method

returns

– The value a property is

set to

9

Missing-Value Checks

Redundant with Code

Written Postconditions

Smart Defaults Reduce Annotation

Burden

Nullness: Checker Framework [Papi08] for Java assumes

parameters and return values are non-null

10

Tool Annotations per 1K LOC

Checker Framework w/ Defaults 1-2 annos.

Code Contracts 2-5 annos.

Awkward to override restrictions using Contracts:

x != null || x == null

Defaults cut # of
annotations
needed in half

Microsoft Code Contracts

public class BankAccount {

public void Deposit(decimal amount){

Contract.Requires(amount > 0.0);

Contract.Ensures(Balance == Contract.OldValue(Balance) + amount);

. . .

}

. . .

}

11

• C# Syntax and Typing

• Run-time Checking

• Static Checking

Why Don’t Developers Use Functional

Specifications? They are Expensive

• Verbose, especially involving return / pre-state
expressions

– Contract.Result<IEnumerable<TEdge>>()

• High runtime cost
– Contract.ForAll(collection, elt => elt > 0)

• No static checking
– dictionary[key] < array.Length

12

Talk Outline

1. The contracts that developers write

2. The contracts that developers could write

3. How developers react when shown the

difference

13

Inferring Contracts From Runtime

Traces with Daikon

Value

Trace
Contracts

Daikon

14

Celeriac: code.google.com/p/daikon-dot-net-front-end

.NET Binary

Celeriac

Instrumented

Binary

Introduced
in our paper

Run

[Ernst99]

+ Celeriac

There’s a Gap Between Written

Contracts and Program Behavior

15

Written
Contracts

Inferred Contracts

Functional Specifications

Good candidates
for smart defaults

Developer-Written Contracts Miss

Aspects of Program Behavior

Object State:

• this.IsUsable == (this.Reader.GetRefCount != 0)

Relations:

• this.programElement.ColumnNumber >= 0

State update:
• this.Reader.GetRefCount() >=

Contract.OldValue(this.Reader.GetRefCount())

16

Talk Outline

1. The contracts that developers write

2. The contracts that developers could write

3. How developers react when shown the
difference

17

Case Study Research Question

How do developers decide which contracts to

add if contracts can be added with a single click?

18

Case Study Methodology

Subjects: two developers and their projects

• Sando Code Search: document indexer component

• Mishra RSS Reader: model component

Existing Contracts:
• 28 contracts across 482 methods

• All but 3 were checks for missing values

Task: Developer used interface to insert inferred
contracts

19

20

Case Study Research Question

How do developers decide which contracts to

add if contracts can be added with a single click?

21

Differing Viewpoints to Inserting

Contracts

• Sando: in favor of automatically inserting all
contracts above some confidence threshold

• Mishra Reader: chose not to insert many valid
contracts

– Avoiding code bloat

– Fear of runtime overhead

– Belief that contracts should only be written at module
boundaries (public methods)

22

Suggestions are Beneficial (Up to a Point)

• Tool suggested types of contracts developers

would not have thought of

– e.g.: Contract.ForAll(collection, elt => elt > 0)

• Not a perfect substitute for training

– Sando developer, unaware of object invariant and

interface contracts, overlooked tool’s suggestions

23

Training Affects How Contracts Are

Used

Opportunities to train developers via the tooling
itself

• Identifying features that developer is under-
utilizing

• Can supplement sound static-checker inference
with more expressive inference

24

Contracts as

Functional

Specifications

Contracts as

Assertions

UI Grouping Schemes to Encourage

Functional Specifications

25

FieldX:

PropertyX:

Nullness:

Comparison:

Always:

PropertyX:

this.PropertyX > 3:

FieldX:

By variable By kind By antecedent / var

Always:

Nullness:

this.PropertyX > 3:

Nullness:

Comparison:

By antecedent / kind

① (this.PropertyX > 3) implies (this.FieldX != null)

① ①

① ①

Led developers to

discover kinds of

contracts they had not

considered before

Grouping by condition

did not help the

developers reason

about implications

Related Work

• Contracts in the Wild:
– Chalin06: Eiffel programs have a lower proportion of

non-null checks, higher proportion of postconditions

– Estler14: Eiffel, JML, and C# contracts are stable over
time; preconditions are larger than postconditions

• Human Factors:
– Polikarpova09: Daikon finds contracts that developers

missed

– Johnson13: false positives and inadequate
presentation prevent uptake of static analysis tools

26

Conclusion: Both Tooling and Training

are Required for Usability

• Most check missing values,

e.g. != null

• Miss aspects of program

behavior

• Don’t (effectively) use

powerful features, e.g.,

object invariants

27

Introduce tooling to reduce

annotation burden

Make suggestions key part

of tool ecosystem

Curate best practices. It’s

OK to be normative

Tools and Data: http://bit.ly/code-contracts

28

29

Increased build time is a big problem!

The visual studio editor extension is buggy […]

Seeing contracts easily from the call site would

be a huge factor in convincing less enthusiastic

developers about the benefits.

I am not yet totally convinced that [Code

Contracts] are ready for prime-time

[The static checker is] too slow, complicated

and not expressive enough.

Annotations are too heavy especially the

Result/Old syntax is horrid.

Lifecycle Not Ideal in Practice

Subject Projects

30

Subject Program Domain Code Contract Use
Other Quality
Tools Used

Labs Framework
(11K SLOC)

API exploration

framework
Static checking StyleCop

Mishra Reader
(19K SLOC)

RSS reader Debugging concurrent code Jetbrains R#

Sando
(24K SLOC)

Code search Early runtime error detection

Quick Graph
(32K SLOC)

Algorithms and

data structures
Pex / Testing Pex

Contract Inserter Interface

Four possible actions:

– Add as contract

– Add as documentation

– Mark as false

– Ignore as implementation detail

31

Null-checks Can be Expressive

public ComplicatedType Foo(. . .){

Contract.Ensures(Contract.Result<ComplicatedType>() != null);
. . .

}

32

Types + Contracts Guarantee:
• Methods Signatures + Method Contracts
• Object Invariants

Tool Information

Celeriac: Contract Inference via Runtime Tracing

https://code.google.com/p/daikon-dot-net-front-end

Contract Inserter: Visual Studio Add-in

https://bitbucket.org/fmc3/scout

33

Type-State Example: Degenerate

Behavior Encoding
public class Subscription{

public SubscriptionsList SubscriptionsList { get; private set; }

public void AddItem(Item item) {

Contract.Requires(SubscriptionsList != null, "Call Initialize first");

. . .
}

[InvariantMethod]
public void ObjectInvariant(){

. . .
}

}

34

Can’t write an invariant

All contracts use != null

Type-State Example: Application-

Specific Property Encoding
public class Subscription {

public SubscriptionsList SubscriptionsList { get; private set; }

public boolean IsInitialized { get; private set; }

public void AddItem(Item item) {

Contract.Requires(IsInitialized, "Call Initialize first");

. . .
}

[InvariantMethod]
public void ObjectInvariant(){

Contract.Invariant(!IsInitialized || SubscriptionsList != null);

. . .

}

}

35

Implications can be tricky

for multiple states

Mishra Reader: Concurrent Debugging

via Nullness Checks

Model subcomponent (of MVC architecture)

contained just 11 contracts across 80 classes and

360 methods:

• 10 argument non-null preconditions

• 1 invariant: UnreadCount >= 0

36

Pattern Example: Encoding Type-State

with Contracts

Basic Idea:

• Expose Properties indicating state, e.g., IsOpen

• Contracts contain implications based on state

• Postconditions encode transitions

Observation: only see this pattern in projects

that use the static checker

37

Case Study: Mishra News Reader

Lead developer introduced Contracts to help debug

concurrent code

38

Mishra Reader: Concurrent Debugging

via Nullness Checks

Model subcomponent (of MVC architecture)

contained just 11 contracts across 80 classes and

360 methods:

• 10 argument non-null preconditions

• 1 invariant: UnreadCount >= 0

39

Case Study: Sando

Introduced Code Contracts after major

contributor saw a webinar

40

Sando: Used Contracts like Assertions

Indexer component contained 17 contracts

across 34 classes and 182 methods:

• 12 non-null checks

• 4 non-empty checks

• 1 implication:

41

!criteria.SearchByUsageType || criteria.UsageTypes.Count > 0

