Continuous Compliance

Martin Kellogg^a, Martin Schäf^b, Serdar Tasiran^b, Michael D. Ernst^{a,b}

^aUniversity of Washington ^bAmazon Web Services

How do I know it's secure? You Customer

	Traditional
Development	code review, keep compliance in mind
Preparation	
Review	

	Traditional
Development	code review, keep compliance in mind
Preparation	gather evidence from each engineering team
Review	

	Traditional
Development	code review, keep compliance in mind
Preparation	gather evidence from each engineering team
Review	randomly sample, manually check evidence

	Traditional
Development	code review, keep compliance in mind
Preparation	gather evidence from each engineering team
Review	randomly sample, manually check evidence

Problems:

	Traditional
Development	code review, keep compliance in mind
Preparation	gather evidence from each engineering team
Review	randomly sample, manually check evidence

Problems:

- Cost
- Judgment
- Sampling

	Traditional	Problems:
Development	code review, keep compliance in mind	CostJudgmentSampling
Preparation	gather evidence from each engineering team	 Regressions
Review	randomly sample, manually check evidence	

Continuous Compliance

- Build verification tools for compliance controls
- On each commit, run verifier in continuous integration
- Report failures directly to developers

	Traditional	Continuous
Development	code review, keep compliance in mind	
Preparation	gather evidence from each engineering team	
Review	randomly sample, manually check evidence	15

	Traditional	Continuous
Development	code review, keep compliance in mind	write specifications, verifier runs in Cl
Preparation	gather evidence from each engineering team	
Review	randomly sample, manually check evidence	16

	Traditional	Continuous
Development	code review, keep compliance in mind	write specifications, verifier runs in CI
Preparation	gather evidence from each engineering team	none
Review	randomly sample, manually check evidence	17

	Traditional	Continuous
Development	code review, keep compliance in mind	write specifications, verifier runs in Cl
Preparation	gather evidence from each engineering team	none
Review	randomly sample, manually check evidence	auditor checks output of verifier

Cost

verifier

- Judgment
- Sampling
- Regressions

	Traditional	Continuous
Development	code review, keep compliance in mind	write specifications, verifier runs in CI
Preparation	gather evidence from each engineering team	none
Review	randomly sample, manually	auditor checks output of

check evidence

Cost

verifier

Judgment

Sampling

Regressions

	Traditional	Continuous
Development	code review, keep compliance in mind	write specifications, verifier runs in Cl
Preparation	gather evidence from each engineering team	none
Review	randomly sample, manually	auditor checks output of

check evidence

• Idea: verification is a good fit for compliance

- Idea: verification is a good fit for compliance
- Engineering: we built verifiers for five compliance controls

- Idea: verification is a good fit for compliance
- Engineering: we built verifiers for five compliance controls
- Experimental: open-source experiments and comparisons

- Idea: verification is a good fit for compliance
- Engineering: we built verifiers for five compliance controls
- Experimental: open-source experiments and comparisons
- Experiential: verifiers in the compliance process at AWS

Controls:

- HTTP vs HTTPS
- Cryptographic key length
- Cryptographic algorithm selection
- Cloud data store initialization
- Hard-coded credentials

Controls:

- HTTP vs HTTPS
- Cryptographic key length
- Cryptographic algorithm selection
- Cloud data store initialization
- Hard-coded credentials

Controls:

- HTTP vs HTTPS
- Cryptographic key length
- Cryptographic algorithm selection
- Cloud data store initialization
- Hard-coded credentials

Techniques:

Constant propagation

Controls:

- HTTP vs HTTPS
- Cryptographic key length
- Cryptographic algorithm selection
- Cloud data store initialization
- Hard-coded credentials

- Constant propagation
- + enum analysis

Controls:

- HTTP vs HTTPS
- Cryptographic key length
- Cryptographic algorithm selection + regex matching
- Cloud data store initialization
- Hard-coded credentials

- Constant propagation
- + enum analysis

Controls:

- HTTP vs HTTPS
- Cryptographic key length
- Cryptographic algorithm selection
- Cloud data store initialization
- Hard-coded credentials

- Constant propagation
- + enum analysis
- + regex matching
- + accumulation analysis

Controls:

- HTTP vs HTTPS
- Cryptographic key length
- Cryptographic algorithm selection
- Cloud data store initialization
- Hard-coded credentials

- Constant propagation
- + enum analysis
- + regex matching
- + accumulation analysis
- + dataflow

Analysis strategy

Analysis strategy: type systems

- Familiar to developers
- Predictable
- Scalable
- Sound

Evaluation

- 1. Run all verifiers on 492 open-source projects
- 2. Compare verifiers to existing tools
- 3. Case study of a verifier in a real, industrial compliance workflow
- 4. Case study of two verifiers as part of industrial security scans

Evaluation

- 1. Run all verifiers on 492 open-source projects
- 2. Compare verifiers to existing tools
- 3. Case study of a verifier in a real, industrial compliance workflow
- 4. Case study of two verifiers as part of industrial security scans

Open-source projects

- 492 projects from GitHub, 5.7 million LoC
 - Use type inference and build scanning to automate process

- 492 projects from GitHub, 5.7 million LoC
 - Use type inference and build scanning to automate process
- Triage into 4 categories:

verified, no warnings

Real violations:

true positives: all warnings are real violations

False warnings:

false positives: warnings, no real violations

true and false positives: some warnings are real

Real violations:

Takeaways:

 ~1/2 open-source projects have compliance violations

Takeaways:

- ~1/2 open-source projects have compliance violations
- ~2/3 projects cause no false positives from our tools

Evaluation

- 1. Run all verifiers on 492 open-source projects
- 2. Compare verifiers to existing tools
- 3. Case study of a verifier in a real, industrial compliance workflow
- 4. Case study of two verifiers as part of industrial security scans

- Used a CryptoAPIBench, a previously-published benchmark
- Only compared on categories covered by our tools (11/16)
- Four other tools:
 - SpotBugs
 - Coverity
 - CogniCrypt_{SAST} (CrySL)
 - CryptoGuard

Tool	SpotBugs	Coverity	CrySL	CryptoGuard	Ours
Precision					
Recall					

Tool	SpotBugs	Coverity	CrySL	CryptoGuard	Ours
Precision	0.69	1.0	0.79	1.0	0.97
Recall					

Tool	SpotBugs	Coverity	CrySL	CryptoGuard	Ours
Precision	0.69	1.0	0.79	1.0	0.97
Recall	0.32	0.38	0.61	0.88	1.0

Tool	SpotBugs	Coverity	CrySL	CryptoGuard	Ours
Precision	0.69	1.0	0.79	1.0	0.97
Recall	0.32	0.38	0.61	0.88	1.0

Only ours are suitable for compliance: auditors won't accept a tool that has **false negatives**

Evaluation

- 1. Run all verifiers on 492 open-source projects
- 2. Compare verifiers to existing tools
- 3. Case study of a verifier in a real, industrial compliance workflow
- 4. Case study of two verifiers as part of industrial security scans

- key-length verifier
- verified in CI for 7 core AWS services
- replaced existing manual compliance workflow
- auditors accepted output of tool: all services compliant

- key-length verifier
- verified in CI for 7 core AWS services
- replaced existing manual compliance workflow
- auditors accepted output of tool: all services compliant

"It eliminates [the need for] a lot of trust"

- external auditor

Why does it eliminate the need for trust?

```
public SecretKey getKMSKey(int keyLength) {
 GenerateDataKeyRequest r = new GenerateDataKeyRequest();
 if (keyLength == 128) {
     r.withKeySpec(DataKeySpec.AES 128);
 else {
     r.withKeySpec(DataKeySpec.AES 256);
```

Why does it eliminate the need for trust?

```
public SecretKey getKMSKey(int keyLength) {
 GenerateDataKeyRequest r = new GenerateDataKeyRequest();
 else {
     r.withKeySpec(DataKeySpec.AES 256);
```

51

Why does it eliminate the <u>need</u> for trust?

```
public SecretKey getKMSKey(int
  GenerateDataKeyRequest r =
                                             ataKeyRequest();
                    228)
     <u>Lkeylength</u>
  else {
     r.withKeySpec(D
                            Spec.AES 256);
```

52

- key-length verifier
- verified in CI for 7 core AWS services
- replaced existing manual compliance workflow
- auditors accepted output of tool: all services compliant

"It eliminates [the need for] a lot of trust"

- external auditor

- key-length verifier
- verified in CI for 7 core AWS services
- replaced existing manual compliance workflow
- auditors accepted output of tool: all services compliant

"It eliminates [the need for] a lot of trust"

"This has saved my team 2 hours every 6 months and we also don't have to worry about failing an audit control."

- external auditor

developer

- key-length verifier
- verified in CI for 7 core AWS services
- replaced existing manual compliance workflow
- auditors accepted output of tool: all services compliant

"It eliminates [the need for] a lot of trust"

"This has saved my team 2 hours eve months and we also don't have to we about failing an audit control."

per team, per audit, per control

- external auditor

developer

Evaluation

- 1. Run all verifiers on 492 open-source projects
- 2. Compare verifiers to existing tools
- 3. Case study of a verifier in a real, industrial compliance workflow
- 4. Case study of two verifiers as part of industrial security scans

AWS case study 2: security scanning

- key-length and crypto-algorithm verifiers
- scan all security-relevant (not just compliance relevant) code

Industrial projects

Real violations: verified (37,315)true positives (173) False warnings: false positives (1) true and false positives (0)

Industrial projects

Industrial projects

1. Verification is a good fit for compliance

- a. auditors require soundness (no false negatives)
- b. most controls are local and simple (human-checkable)

1. Verification is a good fit for compliance

- a. auditors require soundness (no false negatives)
- b. most controls are local and simple (human-checkable)

2. Verification is useful for stakeholders other than programmers

- auditors, managers, security reviewers, etc.
- b. research impact from focusing on other stakeholders

1. Verification is a good fit for compliance

- a. auditors require soundness (no false negatives)
- b. most controls are local and simple (human-checkable)

2. Verification is useful for stakeholders other than programmers

- auditors, managers, security reviewers, etc.
- b. research impact from focusing on other stakeholders

3. Verification can save time for developers

- a. don't add a new task, replace an existing task
- b. verification is easier than tasks developers already do

Contributions

- Idea: verification is a good fit for compliance
- Engineering: we built verifiers for five compliance controls
- Experimental: open-source experiments and comparisons
- Experiential: verifiers in the compliance process at AWS

Tools and data are publicly available: see paper for links

• Cost: lost engineering time, paying auditors, failed audits, etc.

- Cost: lost engineering time, paying auditors, failed audits, etc.
- **Judgment**: humans can make mistakes

- Cost: lost engineering time, paying auditors, failed audits, etc.
- Judgment: humans can make mistakes
- Sampling: not a proof that there is not a violation

- Cost: lost engineering time, paying auditors, failed audits, etc.
- **Judgment**: humans can make mistakes
- Sampling: not a proof that there is not a violation
- **Regressions**: only checked at audit-time

```
void makeCipher() {
    Cipher.getInstance("AES");
}
```

```
void makeCipher() {
    Cipher.getInstance("AES");
}

String
```

```
void makeCipher() {
    Cipher.getInstance("AES");
}

@StringVal("AES") String
```

```
void makeCipher() {
      Cipher.getInstance("AES");
@StringVal("AES") String
     Type qualifier
```