
Continuous Compliance

Martin Kellogga, Martin Schäfb, Serdar Tasiranb,
Michael D. Ernsta,b

aUniversity of Washington bAmazon Web Services

1

What is compliance?

2

You Customer

What is compliance?

3

You Customer

How do I
know it’s
secure?

What is compliance?

4

You Customer

Auditor

What is compliance?

5

You Customer

Auditor

Audit workflow

6

Traditional

Development code review, keep
compliance in mind

Preparation gather evidence from each
engineering team

Review randomly sample, manually
check evidence

Audit workflow

7

Traditional

Development code review, keep
compliance in mind

Preparation gather evidence from each
engineering team

Review randomly sample, manually
check evidence

Audit workflow

8

Traditional

Development code review, keep
compliance in mind

Preparation gather evidence from each
engineering team

Review randomly sample, manually
check evidence

Audit workflow

9

Traditional

Development code review, keep
compliance in mind

Preparation gather evidence from each
engineering team

Review randomly sample, manually
check evidence

Problems:

Audit workflow

10

Traditional

Development code review, keep
compliance in mind

Preparation gather evidence from each
engineering team

Review randomly sample, manually
check evidence

Problems:

● Cost

Audit workflow

11

Traditional

Development code review, keep
compliance in mind

Preparation gather evidence from each
engineering team

Review randomly sample, manually
check evidence

Problems:

● Cost
● Judgment

Audit workflow

12

Traditional

Development code review, keep
compliance in mind

Preparation gather evidence from each
engineering team

Review randomly sample, manually
check evidence

Problems:

● Cost
● Judgment
● Sampling

Audit workflow

13

Traditional

Development code review, keep
compliance in mind

Preparation gather evidence from each
engineering team

Review randomly sample, manually
check evidence

Problems:

● Cost
● Judgment
● Sampling
● Regressions

Continuous Compliance

● Build verification tools for compliance controls

● On each commit, run verifier in continuous integration

● Report failures directly to developers

14

Audit workflow

15

Traditional Continuous

Development code review, keep
compliance in mind

write specifications, run
verifier

Preparation gather evidence from each
engineering team

none

Review randomly sample, manually
check evidence

check suppressed warnings

Audit workflow

16

Traditional Continuous

Development code review, keep
compliance in mind

write specifications, verifier
runs in CI

Preparation gather evidence from each
engineering team

none

Review randomly sample, manually
check evidence

check suppressed warnings

Audit workflow

17

Traditional Continuous

Development code review, keep
compliance in mind

write specifications, verifier
runs in CI

Preparation gather evidence from each
engineering team

none

Review randomly sample, manually
check evidence

check suppressed warnings

Audit workflow

18

Traditional Continuous

Development code review, keep
compliance in mind

write specifications, verifier
runs in CI

Preparation gather evidence from each
engineering team

none

Review randomly sample, manually
check evidence

auditor checks output of
verifier

Audit workflow

19

Traditional Continuous

Development code review, keep
compliance in mind

write specifications, verifier
runs in CI

Preparation gather evidence from each
engineering team

none

Review randomly sample, manually
check evidence

auditor checks output of
verifier

● Cost
● Judgment
● Sampling
● Regressions

Audit workflow

20

Traditional Continuous

Development code review, keep
compliance in mind

write specifications, verifier
runs in CI

Preparation gather evidence from each
engineering team

none

Review randomly sample, manually
check evidence

auditor checks output of
verifier

● Cost
● Judgment
● Sampling
● Regressions

Contributions

● Idea: verification is a good fit for compliance

21

Contributions

● Idea: verification is a good fit for compliance

● Engineering: we built verifiers for five compliance controls

22

Contributions

● Idea: verification is a good fit for compliance

● Engineering: we built verifiers for five compliance controls

● Experimental: open-source experiments and comparisons

23

Contributions

● Idea: verification is a good fit for compliance

● Engineering: we built verifiers for five compliance controls

● Experimental: open-source experiments and comparisons

● Experiential: verifiers in the compliance process at AWS

24

Compliance controls

Controls:

● HTTP vs HTTPS
● Cryptographic key length
● Cryptographic algorithm selection
● Cloud data store initialization
● Hard-coded credentials

25

Compliance controls

Controls:

● HTTP vs HTTPS
● Cryptographic key length
● Cryptographic algorithm selection
● Cloud data store initialization
● Hard-coded credentials

26

Techniques:

Compliance controls

Controls:

● HTTP vs HTTPS
● Cryptographic key length
● Cryptographic algorithm selection
● Cloud data store initialization
● Hard-coded credentials

27

Techniques:

● Constant propagation

Compliance controls

Controls:

● HTTP vs HTTPS
● Cryptographic key length
● Cryptographic algorithm selection
● Cloud data store initialization
● Hard-coded credentials

28

Techniques:

● Constant propagation
● + enum analysis

Compliance controls

Controls:

● HTTP vs HTTPS
● Cryptographic key length
● Cryptographic algorithm selection
● Cloud data store initialization
● Hard-coded credentials

29

Techniques:

● Constant propagation
● + enum analysis
● + regex matching

Compliance controls

Controls:

● HTTP vs HTTPS
● Cryptographic key length
● Cryptographic algorithm selection
● Cloud data store initialization
● Hard-coded credentials

30

Techniques:

● Constant propagation
● + enum analysis
● + regex matching
● + accumulation analysis

Compliance controls

Controls:

● HTTP vs HTTPS
● Cryptographic key length
● Cryptographic algorithm selection
● Cloud data store initialization
● Hard-coded credentials

31

Techniques:

● Constant propagation
● + enum analysis
● + regex matching
● + accumulation analysis
● + dataflow

Analysis strategy

32

Analysis strategy: type systems

● Familiar to developers

● Predictable

● Scalable

● Sound

33

Evaluation

1. Run all verifiers on 492 open-source projects

2. Compare verifiers to existing tools

3. Case study of a verifier in a real, industrial compliance workflow

4. Case study of two verifiers as part of industrial security scans

34

Evaluation

1. Run all verifiers on 492 open-source projects

2. Compare verifiers to existing tools

3. Case study of a verifier in a real, industrial compliance workflow

4. Case study of two verifiers as part of industrial security scans

35

Open-source projects

● 492 projects from GitHub, 5.7 million LoC
○ Use type inference and build scanning to automate process

36

Open-source projects

● 492 projects from GitHub, 5.7 million LoC
○ Use type inference and build scanning to automate process

37

● Triage into 4 categories:

verified, no warnings
true positives: all warnings
are real violations

false positives: warnings,
no real violations

true and false positives:
some warnings are real

False warnings:

Real violations:

Open-source projects

38

verified
(157)

true positives
(176)

false
positives

(82)

true and
false

positives
(77)

False warnings:

Real violations:

Open-source projects

39

verified
(157)

true positives
(176)

false
positives

(82)

true and
false

positives
(77)

False warnings:

Real violations:

Takeaways:

● ~1/2 open-source projects
have compliance violations

Open-source projects

40

verified
(157)

true positives
(176)

false
positives

(82)

true and
false

positives
(77)

False warnings:

Real violations:

Takeaways:

● ~1/2 open-source projects
have compliance violations

● ~2/3 projects cause no false
positives from our tools

Evaluation

1. Run all verifiers on 492 open-source projects

2. Compare verifiers to existing tools

3. Case study of a verifier in a real, industrial compliance workflow

4. Case study of two verifiers as part of industrial security scans

41

Comparison with other tools

● Used a CryptoAPIBench, a previously-published benchmark
● Only compared on categories covered by our tools (11/16)
● Four other tools:

○ SpotBugs
○ Coverity
○ CogniCrypt

SAST
 (CrySL)

○ CryptoGuard

42

Comparison with other tools

43

Tool SpotBugs Coverity CrySL CryptoGuard Ours

Precision

Recall

Comparison with other tools

44

Tool SpotBugs Coverity CrySL CryptoGuard Ours

Precision 0.69 1.0 0.79 1.0 0.97

Recall

Comparison with other tools

45

Tool SpotBugs Coverity CrySL CryptoGuard Ours

Precision 0.69 1.0 0.79 1.0 0.97

Recall 0.32 0.38 0.61 0.88 1.0

Comparison with other tools

46

Tool SpotBugs Coverity CrySL CryptoGuard Ours

Precision 0.69 1.0 0.79 1.0 0.97

Recall 0.32 0.38 0.61 0.88 1.0

Only ours are suitable for compliance: auditors
won’t accept a tool that has false negatives

Evaluation

1. Run all verifiers on 492 open-source projects

2. Compare verifiers to existing tools

3. Case study of a verifier in a real, industrial compliance workflow

4. Case study of two verifiers as part of industrial security scans

47

AWS case study 1: auditor acceptance

● key-length verifier
● verified in CI for 7 core AWS services
● replaced existing manual compliance workflow
● auditors accepted output of tool: all services compliant

48

AWS case study 1: auditor acceptance

● key-length verifier
● verified in CI for 7 core AWS services
● replaced existing manual compliance workflow
● auditors accepted output of tool: all services compliant

49

“It eliminates [the need for] a lot of trust”

- external auditor

Why does it eliminate the need for trust?

public SecretKey getKMSKey(int keyLength) {

 GenerateDataKeyRequest r = new GenerateDataKeyRequest();

 if (keyLength == 128) {

 r.withKeySpec(DataKeySpec.AES_128);

 else {

 r.withKeySpec(DataKeySpec.AES_256);

 }

 ... 50

Why does it eliminate the need for trust?

public SecretKey getKMSKey(int keyLength) {

 GenerateDataKeyRequest r = new GenerateDataKeyRequest();

 if (keyLength == 128) {

 r.withKeySpec(DataKeySpec.AES_128);

 else {

 r.withKeySpec(DataKeySpec.AES_256);

 }

 ... 51

Why does it eliminate the need for trust?

public SecretKey getKMSKey(int keyLength) {

 GenerateDataKeyRequest r = new GenerateDataKeyRequest();

 if (keyLength == 128) {

 r.withKeySpec(DataKeySpec.AES_128);

 else {

 r.withKeySpec(DataKeySpec.AES_256);

 }

 ... 52

AWS case study 1: auditor acceptance

● key-length verifier
● verified in CI for 7 core AWS services
● replaced existing manual compliance workflow
● auditors accepted output of tool: all services compliant

53

“It eliminates [the need for] a lot of trust”

- external auditor

AWS case study 1: auditor acceptance

● key-length verifier
● verified in CI for 7 core AWS services
● replaced existing manual compliance workflow
● auditors accepted output of tool: all services compliant

54

“This has saved my team 2 hours every 6
months and we also don’t have to worry
about failing an audit control.”

- developer

“It eliminates [the need for] a lot of trust”

- external auditor

AWS case study 1: auditor acceptance

● key-length verifier
● verified in CI for 7 core AWS services
● replaced existing manual compliance workflow
● auditors accepted output of tool: all services compliant

55

“This has saved my team 2 hours every 6
months and we also don’t have to worry
about failing an audit control.”

- developer

“It eliminates [the need for] a lot of trust”

- external auditor

per team,
per audit,
per control

Evaluation

1. Run all verifiers on 492 open-source projects

2. Compare verifiers to existing tools

3. Case study of a verifier in a real, industrial compliance workflow

4. Case study of two verifiers as part of industrial security scans

56

AWS case study 2: security scanning

● key-length and crypto-algorithm verifiers
● scan all security-relevant (not just compliance relevant) code

57

Industrial projects

58

verified
(37,315)

False warnings: false positives (1)

true positives (173)

true and false positives (0)

Real violations:

Industrial projects

59

verified
(37,315)

False warnings: false positives (1)

true positives (173)

true and false positives (0)

99.94% required
no annotations

Real violations:

Industrial projects

60

verified
(37,315)

False warnings: false positives (1)

true positives (173)

true and false positives (0)

All validated by security engineers;
none compliance relevant

Real violations:

Lessons learned

61

Lessons learned

1. Verification is a good fit for compliance
a. auditors require soundness (no false negatives)

b. most controls are local and simple (human-checkable)

62

Lessons learned

1. Verification is a good fit for compliance
a. auditors require soundness (no false negatives)

b. most controls are local and simple (human-checkable)

2. Verification is useful for stakeholders other than programmers
a. auditors, managers, security reviewers, etc.

b. research impact from focusing on other stakeholders

63

Lessons learned

1. Verification is a good fit for compliance
a. auditors require soundness (no false negatives)

b. most controls are local and simple (human-checkable)

2. Verification is useful for stakeholders other than programmers
a. auditors, managers, security reviewers, etc.

b. research impact from focusing on other stakeholders

3. Verification can save time for developers
a. don’t add a new task, replace an existing task

b. verification is easier than tasks developers already do
64

Contributions

● Idea: verification is a good fit for compliance

● Engineering: we built verifiers for five compliance controls

● Experimental: open-source experiments and comparisons

● Experiential: verifiers in the compliance process at AWS

65

Tools and data are publicly available: see paper for links

66

Problems with traditional audits

● Cost: lost engineering time, paying auditors, failed audits, etc.

67

Problems with traditional audits

● Cost: lost engineering time, paying auditors, failed audits, etc.

● Judgment: humans can make mistakes

68

Problems with traditional audits

● Cost: lost engineering time, paying auditors, failed audits, etc.

● Judgment: humans can make mistakes

● Sampling: not a proof that there is not a violation

69

Problems with traditional audits

● Cost: lost engineering time, paying auditors, failed audits, etc.

● Judgment: humans can make mistakes

● Sampling: not a proof that there is not a violation

● Regressions: only checked at audit-time

70

Compliance code example

 void makeCipher() {

 Cipher.getInstance(“AES”);

 }

71

Compliance code example

 void makeCipher() {

 Cipher.getInstance(“AES”);

 }

72

@StringVal(“AES”) String

Compliance code example

 void makeCipher() {

 Cipher.getInstance(“AES”);

 }

73

@StringVal(“AES”) String

Compliance code example

 void makeCipher() {

 Cipher.getInstance(“AES”);

 }

74

@StringVal(“AES”) String

Type qualifier

