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Continuous Compliance

● Build verification tools for compliance controls

● On each commit, run verifier in continuous integration

● Report failures directly to developers
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● Experiential: verifiers in the compliance process at AWS
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Compliance controls

Controls:

● HTTP vs HTTPS
● Cryptographic key length
● Cryptographic algorithm selection
● Cloud data store initialization
● Hard-coded credentials
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Techniques:

● Constant propagation
● + enum analysis
● + regex matching
● + accumulation analysis
● + dataflow
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Analysis strategy: type systems

● Familiar to developers

● Predictable

● Scalable

● Sound
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Evaluation

1. Run all verifiers on 492 open-source projects

2. Compare verifiers to existing tools

3. Case study of a verifier in a real, industrial compliance workflow

4. Case study of two verifiers as part of industrial security scans
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● Triage into 4 categories:

verified, no warnings
true positives: all warnings 
are real violations

false positives: warnings, 
no real violations

true and false positives: 
some warnings are real

False warnings:

Real violations:
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verified 
(157)

true positives 
(176)

false 
positives

(82)

true and 
false 

positives
(77)

False warnings:

Real violations:

Takeaways:

● ~1/2 open-source projects 
have compliance violations

● ~2/3 projects cause no false 
positives from our tools



Evaluation

1. Run all verifiers on 492 open-source projects

2. Compare verifiers to existing tools

3. Case study of a verifier in a real, industrial compliance workflow

4. Case study of two verifiers as part of industrial security scans
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Comparison with other tools

● Used a CryptoAPIBench, a previously-published benchmark
● Only compared on categories covered by our tools (11/16)
● Four other tools:

○ SpotBugs
○ Coverity
○ CogniCrypt

SAST
 (CrySL)

○ CryptoGuard
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Tool SpotBugs Coverity CrySL CryptoGuard Ours

Precision 0.69 1.0 0.79 1.0 0.97

Recall 0.32 0.38 0.61 0.88 1.0

Only ours are suitable for compliance: auditors 
won’t accept a tool that has false negatives
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AWS case study 1: auditor acceptance

● key-length verifier
● verified in CI for 7 core AWS services
● replaced existing manual compliance workflow
● auditors accepted output of tool: all services compliant
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“It eliminates [the need for] a lot of trust”

- external auditor



Why does it eliminate the need for trust?

public SecretKey getKMSKey(int keyLength) {

  GenerateDataKeyRequest r = new GenerateDataKeyRequest();

  if (keyLength == 128) {

  r.withKeySpec(DataKeySpec.AES_128);

  else {

     r.withKeySpec(DataKeySpec.AES_256);

  }

  ... 50
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“This has saved my team 2 hours every 6 
months and we also don’t have to worry 
about failing an audit control.” 

- developer

“It eliminates [the need for] a lot of trust”

- external auditor

per team, 
per audit, 
per control 
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1. Run all verifiers on 492 open-source projects

2. Compare verifiers to existing tools
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AWS case study 2: security scanning

● key-length and crypto-algorithm verifiers
● scan all security-relevant (not just compliance relevant) code
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verified 
(37,315)

False warnings: false positives (1)

true positives (173)

true and false positives (0)

All validated by security engineers; 
none compliance relevant

Real violations:
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Lessons learned

1. Verification is a good fit for compliance
a. auditors require soundness (no false negatives)

b. most controls are local and simple (human-checkable)

2. Verification is useful for stakeholders other than programmers
a. auditors, managers, security reviewers, etc.

b. research impact from focusing on other stakeholders

3. Verification can save time for developers
a. don’t add a new task, replace an existing task

b. verification is easier than tasks developers already do
64



Contributions

● Idea: verification is a good fit for compliance

● Engineering: we built verifiers for five compliance controls

● Experimental: open-source experiments and comparisons

● Experiential: verifiers in the compliance process at AWS
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Tools and data are publicly available: see paper for links
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Problems with traditional audits

● Cost: lost engineering time, paying auditors, failed audits, etc.
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Problems with traditional audits

● Cost: lost engineering time, paying auditors, failed audits, etc.

● Judgment: humans can make mistakes

● Sampling: not a proof that there is not a violation

● Regressions: only checked at audit-time
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Compliance code example

 

 void makeCipher() { 

    Cipher.getInstance(“AES”);

 }
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 void makeCipher() { 

    Cipher.getInstance(“AES”);

 }

74

@StringVal(“AES”) String

Type qualifier


