
Which Configuration Option

Should I Change?

Sai Zhang, Michael D. Ernst

University of Washington

Presented by: Kıvanç Muşlu

2

Developers

Users

I have released a new

software version …

I cannot get used to the UI

I do not know how to

configure it

…

Diagnosis of User-Fixable Software Errors

• Goal:

– enable users to fix software errors

• Challenges:

– Errors can be crashing or non-crashing

– Users much less understand source code

– Developer tools are of little use

3

4

A new software versionOur previous work [ISSTA’13]

Help users adapt to the new UI

Users

I cannot get used to the UI

5

A new software version

This paper:

How to help users configure

the new software version

(i.e., diagnosis of configuration errors)

Users

I do not know how to

configure it

Software system often requires configuration

6

Configuration options

Configuration errors:

- Users use wrong values for options

- The software exhibits unintended behaviors

Example:
--port_num = 100.0

Should be a valid integer

Configuration errors are common and severe

7

Root causes of high-severity issues in

a major storage company [Yin et al, SOSP’11]

Configuration errors can have

disastrous impacts

(downtime costs 3.6% of revenue)

Configuration errors are difficult to diagnose

• Error messages are absent or ambiguous

– e.g.,

• Infeasible to automatically search for a good configuration

– Need to know the spec of a valid configuration option value

(e.g., regex, date time, integer value range)

– Huge search space

− Need to specify a testing oracle for automation

• Cannot directly use existing debugging techniques

[Zhang et al., ICSE’13]

8

(after setting --port_num = 100.0 in webs server)

Goal: diagnosing configuration errors for

evolving software

9

To maintain the desired behavior on the new version

Which configuration option should I change?

Old version New version

Requires configuration!

a different output

10

Old version New version

a different output

Diagnosing configuration errors with

ConfSuggester

Our technique: ConfSuggester

Suspicious configuration options

Key idea:

The execution trace

on the old version as

the “intended behavior”

Design constraints for ConfSuggester

• Accessible: no assumption about user background

(e.g., users cannot read or write code annotations)

• Easy-to-use: fully automated

• Portable: no changes to OS or runtime environment

• Accurate: few false positives

11

Outline

• Example

• A Study of Configuration Evolution

• The ConfSuggester Technique

• Evaluation

• Related Work

• Contributions

12

Outline

• Example

• A Study of Configuration Evolution

• The ConfSuggester Technique

• Evaluation

• Related Work

• Contributions

13

14

A popular performance testing tool

Use Jmeter to monitor a website’s performance

Managers

15Use Jmeter to monitor a website’s performance

Managers

Version 2.8 Version 2.9

All regression

tests passed

16

Version 2.8 Version 2.9

All regression

tests passed

The new version behaves as designed,

but differently from a user expects.

No regression bugs.
Causes XML

parsing error

17

Version 2.8 Version 2.9

All regression

tests passed

ConfSuggester

Suspicious configuration options

output_format

Resolve the problem: set output_format = XML

18

Version 2.8 Version 2.9

All regression

tests passed

Outline

• Example

• A Study of Configuration Evolution

• The ConfSuggester Technique

• Evaluation

• Related Work

• Contributions

19

Do configuration changes arise in

software evolution?

• 8 open-source programs

20

• 40 versions released in the past 6 years

• Searched for “configuration changes”-related messages in 7022 commits

and 28 change logs

‒ Count the number of changes made to configuration options

Results

• Configuration changes arise in every version of all

software systems

21

• Configuration change can lead to unexpected behaviors

(details later)

(394 configuration changes in total)

Added

Options

Modified

Options

Deleted

Options

Enhance features

Fix bugs

Renaming

Reliability

Outline

• Example

• A Study of Configuration Evolution

• The ConfSuggester Technique

• Evaluation

• Related Work

• Contributions

22

Key insights of ConfSuggester

• Control flow propagates most configuration options’ effects

• The execution traces on the old version can serve as the

“intended behavior”

– The control flow difference and their impacts provides diagnosis clues

/* a configuration option in JMeter */

String output_format = readFromCommandLine();
...
if (output_format == “XML”) {

saveAsXML();
} else {

saveAsCSV();
} The evaluation result of this predicate affects the

next 1000+ instructions

23

Workflow of ConfSuggester

24

Old version

New version A new trace

An old trace

Trace

Comparison

Deviated execution parts

(at the predicate-level)

Root Cause

Analyzer1.

2.

3.

Report

Workflow of ConfSuggester

25

Old version

New version A new trace

An old trace

Trace

Comparison

Deviated execution parts

(at the predicate-level)

Root Cause

Analyzer1.

2.

3.

Report

User demonstration:

show the error

Dynamic analysis:

understand the

behavior

Static analysis:

compute the solution

Workflow of ConfSuggester

26

User demonstration

27

Old version

New version A new trace

An old trace

Code instrumentation, monitoring:

1. predicate execution frequency and result

2. execution of each other instruction

Execution trace comparison

28

An old trace

A new trace

: a predicate : a deviated predicate

Ranking

deviated

predicates

Identifying

deviated

predicates

Matching

predicates

Matching predicate across traces

29

• JDiff algorithm [Apiwattanapong’07]

− Tolerate small changes between versions

...
if (output_format == “XML”) {

saveAsXML();
} else {

saveAsCSV();
}
...

Old version

...
if (isValidFormat(output_format) {

//check validity
}

if (output_format == “XML”) {
checkXMLParser();
saveAsXML();

} else {
saveAsCSV();

}
...

New version

Identifying deviated predicates

30

C
An old trace

A new trace

: a predicate : a deviated predicate

a predicate p’s behavior in an execution trace t:

ϕ (p, t) =

a predicate p’s behavior difference across executions:

deviation(p, told, tnew) = | ϕ (p, told) - ϕ (p, tnew) |

p is a deviated predicate, if deviation(p, told, tnew) > δ

2

1
����	���	
����

+
1

��
�	�����

Goal:

Ranking deviated predicates

31

Rank predicates by their impacts

A predicate p’s deviation impact
= deviation(p, told, tnew)

× (controlled_instructions(p, told) + controlled_instructions(p, tnew))

...
if (output_format == “XML”) {

saveAsXML();
} else {

saveAsCSV();
}
...

Old trace

if(..)

saveAsXML() saveAsCSV()

Old trace# of instructions

executed

Defined in the previous slide

predicate p:

Ranking deviated predicates

32

...
if (output_format == “XML”) {

saveAsXML();
} else {

saveAsCSV();
}
...

if(..)

saveAsXML() saveAsCSV()

New trace # of instructions

executed

New tracepredicate p:

Rank predicates by their impacts

A predicate p’s deviation impact
= deviation(p, told, tnew)

× (controlled_instructions(p, told) + controlled_instructions(p, tnew))

Ranking deviated predicates

33

...
if (output_format == “XML”) {

saveAsXML();
} else {

saveAsCSV();
}
...

if(..)

saveAsXML() saveAsCSV()

New trace # of instructions

executed

New tracepredicate p:

Rank predicates by their impacts

A predicate p’s deviation impact
= deviation(p, told, tnew)

× (controlled_instructions(p, told) + controlled_instructions(p, tnew))

Approximate the impact of a predicate’s behavior

change to the subsequent program execution.

Root Cause Analyzer

34

Find configuration options affecting the deviated predicate

− Using static thin slicing [Sridharan ’07]

//a configuration option in JMeter

String output_format = ...;
...
if (output_format == “XML”) {

saveAsXML();
} else {

saveAsCSV();
}

The behavior of this predicate deviates

Compute a backward thin slice

from here

Find the affecting predicate

1.

2.

3.

Report

output_format

Outline

• Example

• A Study of Configuration Evolution

• The ConfSuggester Technique

• Evaluation

• Related Work

• Contributions

35

8 configuration errors from 6 subjects

36

Subject LOC #Options ∆LOC #Config errors

Randoop 18587 57 1893 1

Weka 275035 14 1458 1

Synoptic 19153 37 1658 2

JChord 26617 79 3085 2

JMeter 91797 55 3264 1

Javalanche 25144 35 9261 1

Non-trivial code

changes
Reproduced from

change logs and user

reports.

ConfSuggester’s accuracy

37

• Measure accuracy by the rank of the actual root

cause in ConfSuggester’s output

1.

2.

3.

ConfSuggester’s accuracy

38

• Measure accuracy by the rank of the actual root

cause in ConfSuggester’s output

1.

2.

3.

Technique Average Root Cause Rank

Baseline 23.3

ConfAnalyzer [Rabkin’11] 22

ConfDiagnoser [Zhang’13] 15.3

ConfSuggester 1.9

• Baseline:

‒ Users select options in an arbitrary order

‒ Half of the total number of available options

ConfSuggester’s accuracy

39

• Measure accuracy by the rank of the actual root

cause in ConfSuggester’s output

1.

2.

3.

Technique Average Root Cause Rank

Baseline 23.3

ConfAnalyzer [Rabkin’11] 22

ConfDiagnoser [Zhang’13] 15.3

ConfSuggester 1.9• ConfAnalyzer:

‒ Use program slicing for error diagnosis

ConfSuggester’s accuracy

40

• Measure accuracy by the rank of the actual root

cause in ConfSuggester’s output

1.

2.

3.

Technique Average Root Cause Rank

Baseline 23.3

ConfAnalyzer [Rabkin’11] 22

ConfDiagnoser [Zhang’13] 15.3

ConfSuggester 1.9

• ConfDiagnoser:

‒ Use trace comparison (on the same version) for

error diagnosis

ConfSuggester’s accuracy

41

• Measure accuracy by the rank of the actual root

cause in ConfSuggester’s output

1.

2.

3.

Technique Average Root Cause Rank

Baseline 23.3

ConfAnalyzer [Rabkin’11] 22

ConfDiagnoser [Zhang’13] 15.3

ConfSuggester (this paper) 1.9

• ConfSuggester:

- 6 errors: root cause ranks 1st

- 1 error: root cause ranks 3rd

- 1 error: root cause ranks 6th

ConfSuggester’s efficiency

• User demonstration

– 6 minutes per error, on average

• Error diagnosis

– 4 minutes per error, on average

42

Outline

• Example

• A Study of Configuration Evolution

• The ConfSuggester Technique

• Evaluation

• Related Work

• Contributions

43

Related work on configuration error diagnosis

• Tainting-based techniques

– Dynamic tainting [Attariyan’08], static tainting [Rabkin’11]

Focuses exclusively on crashing errors

• Search-based techniques

– Delta debugging [Zeller’02], Chronus [Whitaker’04]

Requires a correct state for comparison, or OS-level support

• Domain-specific techniques

– PeerPressure [Wang’04], RangeFixer [Xiong’12]

Targets a specific kind of configuration errors, and does not

support a general language like Java

44

A common limitation: do not support configuration

error diagnosis in software evolution.

Outline

• Example

• A Study of Configuration Evolution

• The ConfSuggester Technique

• Evaluation

• Related Work

• Contributions

45

• A technique to diagnose configuration errors for

evolving software

Compare relevant predicate behaviors between executions

from two versions

• The ConfSuggester tool implementation

http://config-errors.googlecode.com

Accessible: no assumption about user background

Easy-to-use: fully automated

Portable: no changes to OS or runtime environment

Accurate: few false positives

Contributions

46

Configuration errors

ConfSuggester
1.

2.

3.

Report

