
How Do Programs Become More Concurrent? A Story of
Program Transformations

Danny Dig
University of Illinois
dig@illinois.edu

John Marrero
Massachusetts Institute of

Technology
aeon@csail.mit.edu

Michael Ernst
University of Washington

mernst@cs.washington.edu

ABSTRACT
In the multi-core era, programmers need to resort to parallelism if
they want to improve program performance. Thus, a major main-
tenance task will be to make sequential programs more concur-
rent. Must concurrency be designed into a program, or can it be
retrofitted later? What are the most common transformations to
retrofit concurrency into sequential programs? Are these transfor-
mations random, or do they belong to certain categories? How can
we automate these transformations?

To answer these questions we analyzed the source code of five
open-source Java projects and looked at a total of 14 versions. We
analyzed qualitatively and quantitatively the concurrency-related
transformations. We found that these transformations belong to
four categories: transformations that improve the responsiveness,
the throughput, the scalability, or correctness of the applications.
In 73.9% of these transformations, concurrency was retrofitted on
existing program elements. In 20.5% of the transformations, con-
currency was designed into new program elements. Our findings
educate software developers on how to parallelize sequential pro-
grams, and provide hints for tool vendors about what transforma-
tions are worth automating.

Categories and Subject Descriptors: D.1.3. [Programming Tech-
niques]: Concurrent Programming; D.2.7 [Software Engineering]:
Distribution, Maintenance, and Enhancement

General Terms: Design, Management, Measurement

Keywords: Program transformation, concurrency, parallelism

1. INTRODUCTION
For several decades, the computing hardware industry has kept

up with Moore’s Law, doubling the speed of desktop computers ev-
ery 18 months. In addition to algorithmic improvements, applica-
tion programmers have relied on Moore’s Law to improve the per-
formance of software applications. However, because uni-processors’
clock rates can no longer be improved, the industry shifted to multi-
core computers. This demands that programmers find and exploit
parallelism in their applications, if they want to reap the perfor-
mance improvements from the multi-core hardware.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
IWMSE ’11, May 21, 2011, Waikiki, Honolulu, HI, USA
Copyright 2011 ACM 978-1-4503-0577-8/11/05 ...$10.00.

Parallel programming and concurrency have been used for decades,
but they were the skill set of elite programmers. From now on, par-
allel programming will be a skill that any professional programmer
will have to acquire. The dominant paradigm for parallel program-
ming in desktop computing is shared-memory, thread-based par-
allelism. Due to non-determinism, this paradigm adds extra com-
plexity and increases the potential for deadlocks and data races.

Dealing with concurrency is easier if concurrency is designed
into the system from the beginning, rather than being retrofitted
later on [12, 15]. However, most programs were not designed with
concurrency in mind. In the multi-core era, a major maintenance
task will be to retrofit concurrency into existing programs so that
they can take advantage of the hardware improvements. Must con-
currency be designed into a program, or can it be retrofitted later?
What are the most common transformations to retrofit concurrency
into sequential programs? Are these transformations random, or
do they belong to certain categories? How can we automate these
transformations?

To answer these questions, we create a taxonomy of the most
common program transformations related to concurrency in five
open-source widely successful projects. We analyze qualitatively
and quantitatively these transformations along two or three versions
of each project. Our goals are: (i) to inform software developers
about the trend of program transformations they are going to per-
form during the multi-core era, (ii) to shed light into the process,
and (iii) to provide recommendations to tool builders about what
transformations need to be (semi)-automated in the future.

To build the taxonomy, we manually analyzed two or three ver-
sions of five open-source Java projects: two core Eclipse [6] plu-
gins, JUnit [13], Apache Tomcat server [25] and Apache MINA
library [18]. Some of these projects are large, so we guided our
analysis by reading the release notes, searching in the source code
for the concurrency fingerprints (e.g., references to synchronized
or Thread), and comparing the source code of different versions of
program elements that contain the concurrency fingerprints.

We found that these parallelizing transformations are not ran-
dom, but they fall into four categories: transformations that im-
prove the latency (i.e., an application feels more responsive), trans-
formations that improve the throughput (i.e., more computational
tasks executed per unit of time), transformations that improve the
scalability (i.e., the performance scales up when adding more cores),
and transformations that improve correctness (i.e., fix concurrency-
related bugs so that application behaves according to specification).

Also, we found that programmers make consistent changes in
each version, as if they were in the “mood”: they focus on one
objective at a time, and repeat the same kind of transformations.
This suggests that it is worth automating these transformations. We
survey the recent tools [4, 5, 11, 14, 23, 27] that started automating

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
IWMSE’11, May 21, 2011, Waikiki, Honolulu, HI, USA
Copyright 2011 ACM 978-1-4503-0577-8/11/05 ...$10.00

43

transformations and found that while they support transformations
for throughput, correctness, and scalability, they do not cover trans-
formations for improving responsiveness.

In summary, this paper makes the following contributions:

• presents the results of a qualitative and quantitative empirical
study about the common concurrency-related program trans-
formations into five real programs (see Section 3). To the
best of our knowledge, this is the first such study.

• presents some practical applications for the reported find-
ings. First, it educates software developers on how others
ported existing applications to use the multi-cores (Section 3.2).
Second, it brings evidence that concurrency can be retrofitted
later on (Section 4.1), and shows that it can be done in or-
derly fashion (Section 4.2). Third, it surveys the state-of-the-
art tools (Section 4.3) for making concurrency-related trans-
formations and it provides hints for tool builders on which
transformations are worth automating.

2. EXPERIMENTAL SETUP

2.1 Concurrency Fingerprints
Before we present the design of the experiment, we provide a

gentle introduction to concurrency in Java. Java uses lock-based
synchronization to achieve atomic execution of statements. In Java,
every object has a built-in, intrinsic lock associated with it. Java
provides a concise syntax to denote that a whole method body is
protected by the intrinsic lock: the programmer simply adds the
synchronized keyword to the method signature declaration.

When the programmer needs more flexibility in expressing atom-
icity, Java provides synchronized statements. Unlike synchronized
methods, synchronized statements must specify the object that pro-
vides the lock; such locks are called extrinsic locks1. Synchro-
nized statements are useful for improving concurrency by provid-
ing fine-grained synchronization: (i) they allow synchronization at
finer level than whole method body, and (ii) they allow a more flex-
ible locking scheme by allowing more than one lock to protect ac-
cesses to members of a class. In addition Java provides even more
flexible locks2.

Java programs use java.lang.Thread to execute concurrent
work. Graphical toolkits also provide utility classes to run tasks
in the UI event thread (e.g., javax.swing.SwingUtilities in
Swing, or org.eclipse.swt.widgets.Display in SWT). The
Java standard libraries include a package, java.util.concurrent,
with several utility classes useful in concurrent programming.

2.2 Case Studies
We describe briefly each case study project, the versions that we

analyzed, and the main concurrency-related themes in those ver-
sions.

We selected case studies that cover the whole lifecycle of con-
currency. Two case studies (Search and DOM) are infants with
respect to concurrency: they were freshly converted from sequen-
tial to parallel programs. Two case studies (Tomcat and MINA) are
veterans with respect to concurrency: they were parallelized a long
time ago, or they were designed with concurrency in mind. One
case study (JUnit) is somewhere in the middle.
1Note that a programmer can also specify this as a lock
2e.g., ReentrantLock enables non-block-structured lock opera-
tions and fairness, ReadWriteLock enables to distinguish between
reader and writer locks allowing multiple readers to execute con-
currently

2.2.1 Eclipse Search
org.eclipse.search is a core plugin in the Eclipse IDE. It

handles Java-specific searches as well as general file search queries.
We studied version 2.1.3 (March 2004), 3.0 (June 2004), and 3.3.2
(April 2008). A major theme in Eclipse 3.0 is improving the re-
sponsiveness of the IDE so that the UI feels more alive. Eclipse
accomplished this goal by allowing long-running operations, such
as search, to run in background threads.

2.2.2 Eclipse Java DOM
org.eclipse.jdt.core.dom is a subcomponent of the core

Java tooling in Eclipse. It contains a parser and the Abstract Syntax
Tree (AST) nodes, as well as several utility classes. The AST DOM
nodes are used by all Java plugins that display or manipulate Java
source code. We studied versions 2.1.3, 3.0, and 3.3.2. According
to the responsiveness theme, the AST DOM nodes are concurrently
accessed from several tools (e.g., the method override indicator or
the semantic coloring in the editor).

2.2.3 JUnit
JUnit is a framework for executing test cases. It is the Java imple-

mentation of the xUnit family of testing frameworks. We studied
versions 1.0, 3.8.2, and 4.0. JUnit 3.8.2’s UI improved its respon-
siveness; in addition tests can be run in separate threads improving
the throughput.

2.2.4 Apache Tomcat Server
Apache Tomcat is a web container, or application server, en-

abling Java code to run in cooperation with a web server. Tomcat is
the official Reference Implementation for the Java Servlet and the
JavaServer Pages (JSP) specifications. We studied versions 4.1.1
(Oct 2003), 5.5 (Sept 2005), and 6.0 (Oct 2006). These versions
fixed several concurrency-related bugs and improved scalability.

2.2.5 Apache MINA
Apache MINA is a network application framework which helps

users develop high performance and high scalability network appli-
cations easily. It provides an abstract, event-driven, asynchronous
API over various transports such as TCP/IP and UDP/IP via Java
NIO. We studied versions 1.0 (October 2006) and version 1.1 (April
2007). Version 1.1 contains scalability improvements.

For each program version that we analyzed, first row presents its
size (in LOC) and second row presents the total number of synchro-
nized blocks.

2.3 Design of the Experiment
The projects that we analyzed range from a few KLOC to hun-

dreds of KLOC. A thorough manual analysis of all source code
changes in such large projects is not feasible. Below we describe
the process that we used to guide our analysis for each project.

• We read the version-release documents for each project. These
release documents are produced by the developers of the projects
and usually describe the major architectural or design changes
in each version. For Eclipse we used its help system, section
Eclipse 3.0 Plugin Migration Guide, specifically
the documents “Incompatibilities between Eclipse 2.1 and
3.0" and “Adopting 3.0 mechanisms and API". For Tomcat
we used http://tomcat.apache.org/tomcat-5.
5-doc/changelog.html and for MINA we used http:
//issues.apache.org/jira/browse/DIRMINA.

• We selected a version (say Vconc) for which the documenta-
tion confirms major concurrency-related changes. Then we

44

Eclipse Search Eclipse DOM JUnit Tomcat MINA
2.1.3 3.0 3.3.2 2.1.3 3.0 3.3.2 1.0 3.8.2 4.0 4.1 5.5 6.0 1.0 1.1

Size [KLOC] 11 21 24 27 52 62 3 8 10 402 489 338 40 40
Synch Blocks 4 34 42 12 110 121 15 20 18 921 1152 1108 422 211
Stmt./Method 2/2 23/11 28/14 3/9 97/13 99/122 0/15 2/18 1/17 415/506 457/695 413/604 172/250 90/121
this/extr. Lock 2/0 3/20 11/17 0/3 82/15 82/17 0/0 2/0 1/0 51/364 73/384 75/338 13/159 6/84

Table 1: Statistics of the case-study programs for each version we analyzed: size in KLOC, total number of synchronized blocks.
The third row presents how many of these synchronized blocks protect whole method bodies (and necessarily use the intrinsic locks)
and how many are finer-grained at the statement level. For these statement level synchronized blocks, the fourth row presents how
many of them use the intrinsic this lock vs. custom extrinsic lock.

searched the source code for the fingerprints of concurrent
code (e.g., synchronized, Thread, etc.).

• For program elements (e.g., methods and classes) that con-
tained concurrency artifacts, we manually analyzed how these
program elements changed between the concurrent version
Vconc and a previous major release, say Vprev . In addition,
we analyzed the same program elements in one more ver-
sion, Vnext, after Vconc. This helped us to find how the pre-
viously introduced concurrency constructs evolved. We also
searched for additional program elements in Vnext that con-
tain concurrency fingerprints.

• We recorded the kinds of concurrency-related changes (qual-
itative), and the number of distinct such changes (quantita-
tive).

Table 1 presents some general statistics about the studied programs.

3. CONCURRENCY-RELATED PROGRAM
TRANSFORMATIONS

A concurrency-related program transformation is an addition,
removal, or edit of a concurrency artifact (e.g., synchronized,
Thread, concurrent utility) to an existing or a new program ele-
ment (e.g., class, method, statement).

In the programs that we studied, there are four objectives for
making concurrency-related program transformations: improving
latency, throughput, scalability, or correctness. Our hypothesis is
that any particular concurrency-related transformation tries to achieve
at least one of these four objectives. The same transformation can
achieve more than one of the four objectives.

Subsection 3.2 lists all types of concurrency-related transfor-
mations that we found in the five case-studies. The webpage [2]
presents before-and-after code examples for each transformation.

In subsection 3.2 we present each transformation under the ob-
jective it achieves in the case study where it comes from. In subsec-
tion 3.3 we give a more general categorization, by describing how
each transformation can achieve more than one objective.

Section 5 concludes by addressing threats to validity.

3.1 Objectives for Concurrency Transforma-
tions

In the five case studies, the concurrency-related transformations
were not random, but they fell into four objectives.

Improve Responsiveness.
Responsiveness measures how long it takes from the moment

of asking for the result of a computation until a part of the result
is available. To improve user satisfaction, an application should
feel responsive, even when executing long-running computations.

For example, in Eclipse, searching for all references to a program
element can be a long-running operation. Because the search runs
in a background thread, a user can still browse through the source
code, or inspect the partial search results, before all search finishes.

Improve Throughput.
Throughput measures the amount of results that are computed

per unit of time. To improve throughput, programmers break down
computation so that processors can process data in parallel.

Improve Scalability.
It is desired that the speed up of a parallel application scales

up when adding more processors. The upper bound for the speed
up is inverse proportional with the percentage of computation that
runs sequentially. In parallel programs, synchronization constructs
often serialize the computation. Programmers fine-tune the fraction
of synchronized code in order to improve scalability.

Correctness.
An application should behave according to its specification even

when it is accessed concurrently from multiple threads. In an object-
oriented sequential program, the class invariants need to hold only
before method-entry and after method-exit. However, in a concur-
rent program, the same invariants need be preserved at all points
where a context switch can occur, even in the middle of a method.
To enforce these invariants, operations that manipulate the internal
state need to be executed atomically. Furthermore, changes to an
object’s state need to be visible to other threads. In shared-memory,
thread-based systems, synchronization is the most common means
to achieve both atomicity and visibility.

3.2 Examples of Concurrency Transformations

3.2.1 Improving the Responsiveness

Separate UI and Computation Threads.
In JUnit, concurrency is used to improve the responsiveness of

the UI. JUnit 3.8.2 has three modes of displaying the results: a tex-
tual output on the console, one Swing UI and one AWT UI. If the
tests ran in the UI thread, the UI would block until all tests finished
executing, thus preventing a user from stoping a test run in the mid-
dle. To prevent blocking the UI while tests run, TestRunner uses
two threads: one for the UI, and another one (spawned from the UI)
in which it runs all tests.

Delegate Computation to Event Dispatching Thread.
As an alternative to spawning a new thread, graphical applica-

tions can delegate computation to a special dedicated event dis-

45

patching thread for handling GUI events (e.g., mouse click, pressed
button).

In addition, this is also an alternative to using synchronized blocks
to ensure thread safety. Graphical applications can delegate thread
safety by confining the UI update operations to a single thread.

For example, JUnit updates the progress indicator bar inside a
runnable, scheduled for asychronous execution in the event dis-
patching thread. The class javax.swing.SwingUtilities pro-
vides a method invokeLater for non-blocking, asynchronous ex-
ecution of a runnable – a runnable’s run method is executed after
all pending events have been processed. SwingUtilities also
provides a method, invokeAndWait, for synchronous execution
of a runnable – the invoking code blocks until all pending events
have been processed and the runnable’s run method was executed:

p u b l i c vo id t e s t E n d e d (S t r i n g s t r ingName) {
. . .

S w i n g U t i l i t i e s . i n v o k e L a t e r (
new Runnable () {
p u b l i c vo id run () {

i f (f T e s t R e s u l t != n u l l) {
f C o u n t e r P a n e l . s e tRunValue (f T e s t R e s u l t . runCount ())

;
f P r o g r e s s I n d i c a t o r . s t e p (f T e s t R e s u l t . runCount () ,

f T e s t R e s u l t . w a s S u c c e s s f u l ())
;

}
}
}

) ;
}

Eclipse’s SWT toolkit uses a similar utility class, Display, which
provides asyncExec(Runnable) and syncExec(Runnable) for
scheduling the runnable in the SWT event thread. Eclipse’s Search
plugin uses both methods.

Method Object with Runnable.
A long-running computation can be encapsulated in an object

whose API offers a run method. Depending on the value of a pa-
rameter passed to run, the computation executes in the main thread,
or in a background thread. The following code snapshot illustrates
this idiom in Eclipse Search:

run (r u n I n S e p a r a t e T h r e a d , new R e p l a c e O p e r a t i o n () {
p r o t e c t e d void doRep lace (I P r o g r e s s M o n i t o r pm) {

r e p l a c e (pm , r e p l a c e T e x t) ;
}

}) ;

3.2.2 Improving the Throughput

Introduce Loop Parallelism.
Loop-parallelism [17] is an idiom used to parallelize iterations

of a computationally intensive loop. The loop computation is split
among several threads, with each thread executing the same opera-
tions on a subset of the whole data. At the end of the computation,
the partial results are assembled to form the final result.

In JUnit, TestSuite represents a collection of tests. Its run

method iterates over all the tests in a test suite, and calls runTest,
which runs a particular test and reports the results in the TestResult:

c l a s s T e s t S u i t e
p u b l i c vo id run (T e s t R e s u l t r e s u l t) {

f o r (Enumera t ion e= t e s t s () ; e . hasMoreElements () ;) {
i f (r e s u l t . s h o u l d S t o p ())

break ;
T e s t t e s t = (T e s t) e . n e x t E l e m e n t () ;
r u n T e s t (t e s t , r e s u l t) ;

}
}

Notice that there are no loop-carried dependencies over indi-
vidual iterations. Therefore, this loop can be split into iterations
that execute in parallel. ActiveTestSuite refines the behavior of
TestSuite by overriding the “hook” method runTest. The re-
fined implementation of runTest spawns a new thread in which it
runs a test:
c l a s s A c t i v e T e s t S u i t e
p u b l i c vo id r u n T e s t (f i n a l T e s t t e s t , f i n a l T e s t R e s u l t

r e s u l t) {
Thread t = new Thread () {
p u b l i c vo id run () {

t r y {
t e s t . run (r e s u l t) ;

} f i n a l l y {
A c t i v e T e s t S u i t e . t h i s . r u n F i n i s h e d () ;

}
} } ;
t . s t a r t () ;

}

3.2.3 Improving the Scalability

Reducing the Duration of the Held Lock.
Rather than holding a lock for the duration of a long-running op-

eration that does not need be synchronized, a lock can be released
and re-acquired later. This enables other waiting threads to grab
the lock and continue execution. Below we show an example from
Eclipse’s Search plugin. Notice that the lock is released during the
long-running operation that opens and renders the window dialog:
p u b l i c boolean okToClose () {

. . .
synchronized (t h i s) {

fWindowClos ingDia log = c r e a t e C l o s i n g D i a l o g () ;
}
fWindowClos ingDia log . open () ; / / long−r u n n i n g
synchronized (t h i s) {

fWindowClos ingDia log = n u l l ;
}

}

Copy-then-Iterate.
Holding a lock while iterating over a collection and executing a

long-running operation prevents other threads from executing. In-
stead of holding a lock during the whole iteration, one could hold a
lock just to copy the collection, then release the lock while iterating
over the copy. We illustrate this idiom in Eclipse’s Search plugin:
void f i r e S t a r t i n g (I S e a r c h Q u e r y que ry) {

S e t c o p i e d L i s t e n e r s = new HashSet () ;
synchronized (f L i s t e n e r s) {

c o p i e d L i s t e n e r s . ad dA l l (f L i s t e n e r s) ;
}
I t e r a t o r l i s t e n e r s = c o p i e d L i s t e n e r s . i t e r a t o r () ;
whi le (l i s t e n e r s . hasNext ()) {

I Q u e r y L i s t e n e r l = (I Q u e r y L i s t e n e r) l i s t e n e r s . n e x t () ;
l . q u e r y S t a r t i n g (que ry) ;

}
}

Notice that this idiom prevents interference among concurrent
threads, since the copied collection is a local, stack-confined object.
This “snapshot” style iterator uses a reference to the state of the
collection at the point when the iterator was created. However, the
copied collection will not reflect additions, removals, or changes to
the original collection since the iterator was created.

Using Atomic Classes.
java.util.concurrent.atomicAPIs support lock-free thread-

safe programming on single variables. For example, AtomicInteger
wraps an integer value and provides APIs like getAndIncrement

46

or compareAndSet that execute two operations atomically. The
atomic classes are implemented using efficient compare-and-swap
hardware instructions. Under low to moderate contention, atomics
scale better than locks [12].

Using Concurrent Collections.
The new java.util.concurrent APIs in the Java standard

libraries provide scalable alternatives to previous collection data
structures. For example, ConcurrentHashMap is an efficient im-
plementation of Hashtable that allows several readers to execute
concurrently (without blocking). It allows a number of writers to
execute concurrently (without blocking) by splitting the range of
hash values into different hash buckets.

We found several examples of conversions from old collections
to concurrent collections and from primitive types to atomics in
both MINA and Tomcat.

3.2.4 Correctness
Concurrency is gradually refined in consecutive versions of real-

world programs. For example, in servers like Tomcat which were
designed from the beginning to be concurrent, we noticed additions
of synchronization blocks. We could correlate some of them with
bug reports and patches saying that the change was triggered by
either insufficient or inexistent previous synchronization.

Add Synchronized Block.
This idiom add synchronization protection to a previously un-

protected field access.

Coarsen synchronized block.
If a previously synchronized block did not cover all the shared

fields involved in an class invariant, developers expanded the syn-
chronization block over to cover the shared fields.

Thread-safe Lazy Initialization.
Lazy initialization of fields needs to be thread-safe, i.e., prevent

multiple threads from initializing the same field. Below is an ex-
ample from Eclipse’s DOM AST. Notice that the lock is acquired
only if the field is not initialized:

p u b l i c SimpleName getName () {
i f (t h i s . typeName == n u l l) {

/ / l a z y i n i t must be th read−s a f e
synchronized (t h i s) {

i f (t h i s . typeName == n u l l) {
p r e L a z y I n i t () ;
t h i s . typeName = new SimpleName (t h i s . a s t) ;
p o s t L a z y I n i t (t h i s . typeName , iNamePrope r ty ()) ;

}
}

}
re turn t h i s . typeName ;

}

Change Lock Object.
Rather than using this, the default lock for synchronized blocks,

fields that are aliasing objects passed as method arguments need to
be protected by the same lock that protects the method argument.
In the example below, the lock object was changed from this to
the collection that the block protects:

p u b l i c vo id a d d L i s t e n e r (I S e a r c h R e s u l t L i s t e n e r l) {
synchronized (f L i s t e n e r s) {

f L i s t e n e r s . add (l) ;
}

}

3.3 Summary of Transformations
Table 2 lists the concurrency-related transformations that we found

in the five case studies.
We label these transformations depending on (i) whether new

concurrency constructs were added or existing concurrency con-
structs were changed, and (ii) whether the concurrency constructs
are applied to existing program elements, or to new program ele-
ments. Based on theses combinations, the table below shows three
outcomes3: concurrency was retrofitted, designed, or modified.

Code
existing new

Concurrency changes modified N/A
new retrofitted designed

Sometimes, the concurrency fingerprints (Section 2.1) in ver-
sions V1 and V2 were associated with program elements (e.g., classes,
methods, fields, statements) that exist in both V1 and V2. For exam-
ple, field StandardSession.accessCount exists in both Tom-
cat_5.5 and Tomcat_6.0. However, in the latter version its type was
converted from int to AtomicInteger. We notice that program-
mers add new concurrency to an existing program element, thus we
say that concurrency was retrofitted.

Other times, the concurrency fingerprint was associated with a
program element that we could not find in the previous version that
we took into account. For example, in JUnit_3.8.2, we found that
class ActiveTestSuite was using threads to launch new tests.
However, we could not find this class in the previous version that
we took into account, i.e., JUnit_1.0. Thus we could only infer that
programmers added a brand new program element that contained a
concurrency idiom from the first time when the element was intro-
duced, i.e., new concurrency was added to a new program element.
In this case we say that concurrency was designed into the program
element from the beginning.

Other times, we found changes in concurrency constructs that
related to program elements existing in both versions. For exam-
ple, EclipseSearch_3.3.2 plugin contains some synchronized state-
ments in method AbstractTextSearchViewPage.addQuery. In
the previous version that we took into account, i.e., version 3.0, we
found the same method addQuery. In this version, the statements
were synchronized on a different lock. In this case, we say that
concurrency was modified.

Adding synchronized blocks is a transformation that cross-cuts
most other transformations, since synchronization blocks are the
primary construct from which the other transformations are made
of. Therefore, we distinguish between adding synchronized blocks
as a side effect of a transformation vs. adding synchronization
blocks because the previously parallelized code was insufficiently
synchronized. In Table 2 we report only the latter; these changes
are correlated with bugs reports.

The last column of Table 2 links these transformations with ob-
jectives for making concurrency-related transformations in the five
case studies.

4. SUMMARY OF FINDINGS
Several observations arise from this study. For example, the

same kind of transformation can be used to achieve different ob-
jectives (latency, throughput, scalability, correctness).

Using data from Table 2, we answer three questions.

3note that for brand new program elements, concurrency constructs
did not exist before, so they can’t be changed

47

Search Search DOM JUnit Tomcat Tomcat MINA Objective
2.1.3→ 3.0 3.0→ 3.3.2 2.1.3→ 3.0 1.0→ 3.8.2 4.1→ 5.5 5.5→ 6.0 1.0→ 1.1

Spawn new Threads 3D Res/Thrp
Deleg to Evt. Disp. Thread 7R 9D Res/Corr
Method Obj. Runnable 4R Res
Loop Parallelism 1D Thrp
Reduce Lock Duration 2M Res/Sca
Copy-then-iterate 5R 2R Res/Sca/Corr
Use Atomic Classes 27D 10R 5R Sca/Corr
Use Conc. Collections 1R 32R Sca/Corr
Add Synch. Block 3R 15R Corr
Coarsen Synch. Block 6M Corr
Lazy Initialization 78R Corr
Change Lock Object 3M Corr
Use ThreadLocal 5D Sca/Corr
Remove Synch. Block 1M Res/Sca

Table 2: Concurrency-related transformations in the five case studies. We mark with R the transformations that added new concur-
rency to existing program elements (i.e., concurrency was retrofitted), we mark with D transformations that added new concurrency
to new program elements (i.e., concurrency was designed), and we mark with M transformations that change concurrency already
present in existing code (i.e., concurrency was modified). The last column correlates the transformations with objectives (Res =
Responsiveness, Thrp = Throughput, Sca = Scalability, Corr = Correctness)

4.1 Q1: Is Concurrency Designed into a Pro-
gram, or Is It Retrofitted?

Table 2 shows several cases when concurrency was added to a
program element that existed in both versions of the program, thus
concurrency was retrofitted. It also shows cases when concurrency
was added to a program element that exists only in the latter ver-
sion, thus concurrency was designed into that program element. It
also shows cases when programmers modified existing concurrency
constructs. The table shows that the same concurrency idioms can
be applied when retrofitting or designing concurrency.

Most importantly, by summarizing the data, we find that in 73.9%
(162/(162+45+12)) of transformations, concurrency was retrofitted,
i.e., bolt-on existing program elements, whereas in 20.5% of the
cases concurrency was designed from scratch into program ele-
ments. In 5.4% of transformations, previously existing concurrency
was modified.

These 5 case studies show that indeed it is possible to retrofit
concurrency.

4.2 Q2: Is There a Process for Working with
Concurrency?

Looking at the kinds of transformations that were applied be-
tween two versions of a program, we see that they are not random,
but they are consistent. For example, we see that programmers
improved the latency of EclipseSearch between versions 2.1.3 and
3.0, while they improved scalability and fixed correctness bugs be-
tween 3.0 and 3.3.2. Similarly, we see that Tomcat and MINA pro-
grammers focused on improving the scalability and correctness. In
Eclipse DOM, the objective is to make the program thread-safe.

Thus, in programs that are being prepared for introducing con-
currency later (e.g., DOM), programmers focus on making the code
thread-safe. In programs where they are just introducing concur-
rency (e.g., Search, JUnit), the focus is on improving performance
(e.g., latency or throughput). In programs that have been paral-
lelized a long time ago, programmers focus on improving scalabil-
ity. Thus, we see a recurring pattern: first make a program right
(i.e., thread-safe), then make it fast, then make it scalable.

The data in Table 2 shows another trend. Even when program-
mers have a wide choice of transformations for achieving the same
objective, they repeat the same kind of transformation, as if they
were in the “mood” for making that transformation. For exam-

ple, when MINA programmers were in the “mood” of using con-
current collections, they have made 32 changes of the same kind.
This is consistent with the findings of Murphy-Hill et al. [19] that
show that programmers repeat the same kind of refactoring within
a short time-period. Since many of the transformations in these 5
case studies are repetitive, they are worth to automate.

4.3 Q2: How Do Current Tools Support These
Transformations?

In the refactoring community there is a recent surge of interest [4,
5, 11, 14, 23, 27] on automating refactorings for concurrency and
parallelism.

We survey this recent work in the light of the transformations and
the trends that we noticed in the five case study programs. The good
news is that the new breed of tools are automating transformations
that appear in real world programs. For example, Concurrencer [4]
supports refactorings for converting to Atomic classes, concurrent
collections, and task parallelism for recursive divide-and-conquer
algorithms. ReLooper [5] is a refactoring tool that enables loop par-
allelism using Java’s ParallelArray. Reentrancer [27] improves
thread-safety by converting global data into thread-local data, while
Immutator [14] helps convert a mutable class into an immutable
class. Relocker [23] helps programmer switch from built-in locks
to more flexible locks.

While these tools automate refactorings for improving correct-
ness [4, 14, 27], throughput [4, 5], and scalability [4, 23], none of
them supports refactorings for improving latency. Refactorings for
extracting a lengthy computation into an asynchronous computa-
tion are desperately needed. It appears that in three of the five
case studies programmers initially use multi-threading for improv-
ing application responsiveness.

Refactoring tools need to support the whole lifecycle of concur-
rency. While current tools focus on introducing concurrency into
sequential programs, the real-world data shows that developers re-
visit concurrency decisions they have made in the previous ver-
sions. As of now, only one tool [23] lets the programmer change
existing built-in Java locks with more flexible locks. As more and
more programs become concurrent, it is imperative to develop tools
that let the programmer quickly explore several choices. This is
extremely important for making existing parallel programs more
scalable.

48

5. THREATS TO VALIDITY

Internal Validity.
One could ask whether our retrospective analysis and classifica-

tion of the prallelizing transformations reflects the real intent of the
developers of these projects. For three projects (Eclipse Search,
Eclipse DOM, and JUnit) we confirmed with the developers that
indeed our classification reflects their intent. For Tomcat, we were
able to trace many of the concurrency changes to bug reports.

Also, with respect to noticing trends of transformations in real
programs, we only looked at three versions that are relatively far
apart. This can introduce noise. For example, the transition from
JUnit 1.0 - 3.8.2 is an outlier since it is the only case where de-
velopers made changes with respect to all four concurrency objec-
tives. Had we picked versions that were closer, we could have no-
ticed changes that are more consistent. In addition, studying finer-
grained deltas could shed even better light in answering whether
concurrency is retrofitted or designed. We hypothesize that in some
of the 20% of the program elements where concurrency appeared to
be designed from the beginning we could find that concurrency was
retrofitted, had we found the origin of that program element. Also,
in the 5% of the transformations where concurrency was modified,
we cannot tell whether concurrency was retrofitted or designed, un-
less we trace the origin of that program element. We leave such
fine-grained analysis for future work.

External Validity.
We only looked at five projects, they were all developed in Java,

and they were all open-source. Maybe other projects would not
display the same program transformations. Also it may be the case
that since several of these programs have been around for many
years, retrofitting parallelism was the only option there. Maybe for
newer projects currently being developed, parallelism is part of the
design from the start.

We have several reasons to believe that the trends we saw in these
projects could generalize to other projects. First, the projects that
we looked at were developed by different teams, with contributors
from a large open-source community. Therefore, there is a diversity
of transformations in each project. Second, although in this study
we only looked at Java programs, the transformations themselves
are not language-specific. Even the transformations that involve
java.util.concurrent library have equivalents in other paral-
lel libraries (e.g., TBB [24] for C++ and TPL [26] for C#). We
expect a similar range of transformations for other languages that
use shared-memory, thread-based parallelism. Third, our classifi-
cation is not complete: studying more projects would reveal new
kinds of transformations. While we might discover new objec-
tives like improving fault tolerance, we expect that the majority
of the transformations would fall under one of the four major cat-
egories: improving responsiveness, throughput, or scalability, or
fixing concurrency bugs. Fourth, our definitions of retrofitting or
designing concurrency refer to individual program elements, not to
whole programs. Concurrency can be designed even in a project
that has been around for many years, if concurrency is introduced
along with new program elements.

Reliability.
A detailed analysis of transformations at the class and method

level is available online [2], along with the source code for the ver-
sions we analyzed. This allows an interested reader to replicate our
results.

6. RELATED WORK
Mattson et al. [17] present a comprehensive catalog of patterns

for parallel programming. Their catalog accomodates patterns and
idioms for a large class of parallel programming architectures, in-
cluding high-performance computers. Lea [15] and Goets et al. [12]
wrote similar catalogs for concurrency patterns in Java. In con-
trast, our goal is not to document all patterns for writing concurrent
programs, but we are interested in finding what are some of the
patterns that are most commonly used in practice. Our focus is
on the transformation process to convert a sequential Java program
to concurrency, whereas patterns are often the end target of such
transformations.

Some of the transformations that we identified have been long
known to the high-performance computing (HPC) community. For
example, Loop Parallelism is one of the traditional approaches in
HPC, where the majority of algorithms are expressed in terms of
iterative constructs. The OpenMP API was created primarily to
support parallelization of loop-driven problems. OpenMP supports
parallel loop execution and reduction operations that combine the
partial results (e.g., summing the partial results).

Most empirical studies on concurrency have focused on finding
the patterns for concurrency bugs. Chandra and Chen [1] collect
12 concurrency bugs from three applications. Farchi et al. [9] an-
alyzed the concurrency-related bugs in code written by students.
Lu et al. [16] conducted an extensive study of 105 real-world con-
currency bugs from 4 open-source large projects. However, as
far as we know, ours is the first empirical study to characterize
concurrency-related transformations in real code.

The closest work to ours is an empirical study [21] conducted
by Pankratius et al. on parallelizing four applications. While the
authors describe the transformations they have introduced in the
sequential application, the study does not intend to present the evo-
lution of those case studies by tracing several versions, neither pro-
vides a taxonomy of transformations. Like us, the authors conclude
that refactoring tools for parallelism can have a significant impact.

There is a plethora of tools for automatically detecting concurrency-
related bugs. We mention Atomizer [10] for detecting atomicity vi-
olations and Eraser [22] for detecting dataraces in lock-based mul-
tithreaded programs.

Everaars et al. [7] report on their experience with converting
a Fortran 77 sequential application into a concurrent application.
They have used coarse-grain transformations to plug sequential
modules into a new multi-threaded executable. The heart of their
approach is finding and expressing the sequential modules, as well
as the communication patterns between these modules and the frame-
work. They use a language, MANIFOLD, to express the coordina-
tion and communication protocol.

Converting sequential programs to concurrency is much in the
spirit of other efforts in the past for retrofitting architectural quali-
ties: retrofitting type-safety in unsafe legacy code [20], converting
legacy C code into C++ [8, 28], retrofitting security in unsecure
legacy systems [3]. Although one can argue that such architectural
qualities should be designed in the system, often they need to be
retrofitted later on.

7. CONCLUSIONS
With the advent of the multi-core era, concurrency will have to

be retrofitted into existing sequential applications. Our empirical
study of concurrency-related transformations in five widely used
open-source applications shows that in 73.9% of the cases concur-
rency was successfully retrofitted in existing program elements, in
5.4% of the cases, concurrency was modified in existing elements,

49

and in 20.5% of the cases it was designed into new program ele-
ments. Our findings suggest that programmers follow an orderly
process where they focus on well defined objectives: to improve
responsiveness, throughput, or scalability, or to fix concurrency er-
rors.

We found that introducing concurrency is not a one-time event,
but it is a continuous process. First, the incentive for using con-
currency is to increase the responsiveness, then the throughput of
an application. As the application matures and makes more use
of concurrency, the predominant changes fall into fixing concur-
rency errors, fine-tuning, and improving the scalability. Given the
importance and the length of such transformations, tool developers
should consider (semi)automation for each stage in the concurrency
lifecycle in order to improve programmer’s productivity.

More studies and more data are needed to completely understand
the process of transforming sequential code for parallelism. We
hope that this paper encourages others to conduct new empirical
studies.

8. ACKNOWLEDGEMENTS
This research was partially funded by Intel and Microsoft through

the UPCRC Center at Illinois, and partially funded by DARPA
contract HR0011-07-1-0023. The authors thank Adam Kiezun,
Stephen McCamant, Angeline Lee, Derek Rayside, and anonymous
reviewers for providing helpful suggestions. Danny thanks Monika
Dig, his greatest supporter.

9. REFERENCES
[1] S. Chandra and P. M. Chen. Whither generic recovery from

application faults? a fault study using open-source software.
In DSN ’00: Proceedings of the 2000 International
Conference on Dependable Systems and Networks, pages
97–106. IEEE Computer Society, 2000.

[2] Accompanying online data with concurrency
transformations.
http://refactoring.info/studies/ConcurrencyTransformations.

[3] D. B. da Cruz, B. Rumpe, and G. Wimmel. Retrofitting
security into a web-based information system. In Software &
Systems Engineering, pages 35–38, 2003.

[4] D. Dig, J. Marrero, and M. D. Ernst. Refactoring sequential
Java code for concurrency via concurrent libraries. In 31st
International Conference on Software Engineering (ICSE),
pages 397–407, 2009.

[5] D. Dig, M. Tarce, C. Radoi, M. Minea, and R. Johnson.
Relooper: refactoring for loop parallelism in java. In
Proceeding of the 24th ACM SIGPLAN conference
companion on Object oriented programming systems
languages and applications, OOPSLA ’09, pages 793–794,
New York, NY, USA, 2009. ACM.

[6] Eclipse Foundation. http://eclipse.org.
[7] C. Everaars, F. Arbab, and B. Koren. Using coordination to

restructure sequential source code into a concurrent program.
In ICSM ’01: Proceedings of the IEEE International
Conference on Software Maintenance (ICSM’01), page 342,
Washington, DC, USA, 2001. IEEE Computer Society.

[8] R. Fanta and V. Rajlich. Restructuring legacy c code into
c++. In ICSM ’99: Proceedings of the IEEE International
Conference on Software Maintenance, page 77. IEEE
Computer Society, 1999.

[9] E. Farchi, Y. Nir, and S. Ur. Concurrent bug patterns and how
to test them. In IPDPS ’03: Proceedings of the 17th

International Symposium on Parallel and Distributed
Processing, page 286.2. IEEE Computer Society, 2003.

[10] C. Flanagan and S. N. Freund. Atomizer: a dynamic
atomicity checker for multithreaded programs. SIGPLAN
Not., 39(1):256–267, 2004.

[11] R. Fuhrer and V. Saraswat. Concurrency refactoring for x10.
In 3rd ACM Workshop on Refactoring Tools, pages 1–4,
2009.

[12] B. Goetz, T. Peierls, J. Bloch, J. Bowbeer, D. Holmes, and
D. Lea. Java Concurrency in Practice. Addison-Wesley,
2006.

[13] JUnit Testing Framework. http://junit.org.
[14] F. Kjolstad, D. Dig, G. Acevedo, and M. Snir. Refactoring

for Immutability. To Appear in Proceedings of 33rd
International Conference on Software Engineering
(ICSE’11), Hawaii, USA, 2011.

[15] D. Lea. Concurrent Programming in Java. Second Edition:
Design Principles and Patterns. Addison-Wesley, 1999.

[16] S. Lu, S. Park, E. Seo, and Y. Zhou. Learning from mistakes:
a comprehensive study on real world concurrency bug
characteristics. SIGOPS Oper. Syst. Rev., 42(2):329–339,
2008.

[17] T. Mattson, B. Sanders, and B. Massingill. Patterns for
Parallel Programming. Addison-Wesley, 2004.

[18] Apache MINA library. http://mina.apache.org/.
[19] E. Murphy-Hill, C. Parnin, and A. P. Black. How we refactor,

and how we know it. In Proceedings of the 31st International
Conference on Software Engineering, ICSE ’09, pages
287–297, Washington, DC, USA, 2009. IEEE Computer
Society.

[20] G. C. Necula, J. Condit, M. Harren, S. McPeak, and
W. Weimer. Ccured: type-safe retrofitting of legacy software.
ACM Trans. Program. Lang. Syst., 27(3):477–526, 2005.

[21] V. Pankratius, C. Schaefer, A. Jannesari, and W. F. Tichy.
Software engineering for multicore systems: an experience
report. In Proceedings of the 1st international workshop on
Multicore software engineering, IWMSE ’08, pages 53–60,
2008.

[22] S. Savage, M. Burrows, G. Nelson, P. Sobalvarro, and
T. Anderson. Eraser: a dynamic data race detector for
multithreaded programs. ACM Trans. Comput. Syst.,
15(4):391–411, 1997.

[23] M. Schaefer, M. Sridharan, J. Dolby, and F. Tip. Refactoring
java programs for flexible locking. To Appear in Proceedings
of 33rd International Conference on Software Engineering
(ICSE’11), Hawaii, USA, 2011.

[24] Threading Building Block (TBB) for C++.
http://threadingbuildingblocks.org/.

[25] Apache Tomcat servlet container. http://tomcat.apache.org/.
[26] Task Parallel Library (TPL).

http://msdn.microsoft.com/en-us/library/dd460717.aspx.
[27] J. Wloka, M. Sridharan, and F. Tip. Refactoring for

reentrancy. In ESEC/SIGSOFT FSE, pages 173–182, 2009.
[28] Y. Zou and K. Kontogiannis. Migration to object oriented

platforms: A state transformation approach. In ICSM ’02:
Proceedings of the International Conference on Software
Maintenance (ICSM’02), pages 530– 539. IEEE Computer
Society, 2002.

50

