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Abstract
Many applications require specialized data structures not
found in the standard libraries, but implementing new data
structures by hand is tedious and error-prone. This paper
presents a novel approach for synthesizing efficient imple-
mentations of complex collection data structures from high-
level specifications that describe the desired retrieval opera-
tions. Our approach handles a wider range of data structures
than previous work, including structures that maintain an
order among their elements or have complex retrieval meth-
ods. We have prototyped our approach in a data structure
synthesizer called Cozy. Four large, real-world case studies
compare structures generated by Cozy against handwritten
implementations in terms of correctness and performance.
Structures synthesized by Cozy match the performance of
handwritten data structures while avoiding human error.

Categories and Subject Descriptors E.1 [Data Structures];
I.2.2 [Automatic Programming]: Program Synthesis

Keywords Data structure synthesis

1. Introduction
Fast data structures are key to good performance. All main-
stream languages ship with well-written libraries implement-
ing lists, maps, sets, trees, and other common data structures.
These libraries are sufficient for most use cases. However,
many high performance applications need specialized data
structures with more complex operations. For such applica-
tions, the standard libraries are not enough.

Myria [21], a distributed database, is one such application.
The Myria developers have spent much time implementing
and maintaining code to store analytics data collected during
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Figure 1: The architecture of the collection synthesizer Cozy. Fig-
ure 2 shows an example input specification. The synthesizer outputs
a number of candidate data structure implementations with good
asymptotic performance, and Cozy uses an optional client bench-
mark program to choose among them.

query execution. The analytics data powers an interactive
viewer [20] to allow clients to understand the performance of
their queries. The analytics data structure needs to support
efficient insertion and retrieval operations, both to minimize
overhead during execution and to allow clients to examine the
data interactively. Its implementation was a repeated source
of pain for nearly a year and still falls short of the developers’
expectations.

Two factors are responsible for the Myria team’s diffi-
culties. First, the needs of the interactive viewer render the
standard libraries insufficient. Each entry in Myria’s analyt-
ics data describes what query caused it, what operation was
taking place, and when that operation started and ended. The
data structure must retrieve analytics data for a specific query,
limited to those operations that overlap a given time range.
Efficient implementation of this retrieval operation requires
the use of an interval tree, a collection that is not found in
any common collections library. To avoid implementing one
by hand, the Myria team opted to store analytics data in a
SQL database. Their choice obviated some implementation
work, but made it difficult for them to control performance.
Even for database developers, the behavior of SQL query
optimizers can be difficult to predict. Occasional changes to
the specification constituted the Myria team’s second diffi-
culty. For example, new features elsewhere in the codebase
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required analytics data to be additionally grouped by a new
“subqueryId” field. Updating the data structure code to sup-
port the subquery field efficiently was an arduous two-week
process.

Our Cozy tool (Figure 1) can automatically synthesize the
implementations of many complex data structures—including
Myria’s analytics data structure—from short high-level spec-
ifications (Figure 2). In the case of Myria, the resulting im-
plementation outperforms the existing handwritten one on
the Myria team’s benchmark data. Furthermore, changes to
the data structure’s requirements only require small changes
to the specification. Cozy can eliminate many hours of work
spent writing, tuning, and debugging data structure code.

Like previous work [17], Cozy targets collection data struc-
tures having add, remove, update, and retrieval methods over
a single type. Unlike previous work, Cozy can synthesize
data structures with complex retrieval operations involving
disjunctions, negations, and inequalities—such as the inequal-
ities found in Figure 2. A thorough discussion of what sets
our approach apart can be found in Section 5.

There are an infinite number of possible data structure
implementations in this domain, and it would be impractical
for Cozy to naively explore the entire space. We introduce
three specific innovations to make the problem tractable:

1. We define a small language to outline implementations
of collection retrieval operations (Figure 4). The space of
implementation outlines is much smaller than the space
of all possible programs, making outlines feasible to
synthesize.

2. We identify a property that makes checking the correct-
ness of a candidate outline tractable: instead of checking
correctness on every possible instance of the data struc-
ture, it suffices to check the correctness for every instance
containing one arbitrary entry.

3. We present a way to prune inefficient outlines early using
a static cost model, allowing our tool to quickly converge
on good ones.

We have evaluated our approach on four large real-world
subject programs from different domains, investigating both
correctness and performance. Cozy and our evaluation files
have been made available online [10].

The rest of this paper is organized as follows. The syn-
thesis problem and algorithm are described at a high level
in Section 2 and in detail in Section 3. Our experimental
results are presented in Section 4. Related work is addressed
in Section 5, and Section 6 concludes.

2. Overview
This section presents an overview of Cozy using an example
a graph data structure not found in the Java or C++ standard
libraries. The graph will be a directed unweighted multigraph,
i.e. a graph that may have multiple edges between nodes. The
graph will allow self-loops (edges from a node to itself), and

fields
queryId:long, subqueryId:long,
fragmentId:int, opId:int,
startTime:long, endTime:long,
numTuples:long

assume startTime <= endTime

query getAnalyticsInTimespan(
v_queryId:long, v_subqueryId:long,
v_fragmentId:int,
v_start:long, v_end:long)

assume v_start <= v_end

queryId == v_queryId and
subqueryId == v_subqueryId and
fragmentId == v_fragmentId and
startTime < v_end and
endTime >= v_start

costmodel myria-cost.java

Figure 2: Full specification for the Myria analytics data
structure. Each entry in the structure has seven fields
(queryId..numTuples). The structure supports one retrieval
operation getAnalyticsInTimespan, which finds all the entries
for a given query ID and fragment ID that overlap the given range.
An assume statement states facts about the entries and preconditions
on query variables that can be exploited by the synthesizer. The
last line specifies a dynamic cost model in the form of a client
benchmark program, used to select the best implementation among
several candidates.

it will support one retrieval operation findEdges for finding
all incoming and outgoing edges from a given node. Nodes
will be represented as integers, although the programmer
could choose some other type.

The Cozy specification of the graph data structure is given
by:

fields src : int, dst : int
query findEdges(node : int)

src == node or dst == node

Figure 3 shows the full language of allowed query expres-
sions. Cozy outputs a source file having the following public
interface, with optimized implementations for all methods:

class Graph {
class Edge { int src; int dst; }

void add(Edge r) {...}
void remove(Edge r) {...}
void updateSrc(Edge r, int newSrc) {...}
void updateDst(Edge r, int newDst) {...}

Iterator<Edge> findEdges(int node) {...}
}

Every collection synthesized by Cozy has the same shape: a
single element type (in this case Edge with two int fields),
an add method, a remove method, an update method for each
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〈predicate〉 ::= True | False
| 〈var〉 〈comparison〉 〈var〉
| 〈predicate〉 And 〈predicate〉
| 〈predicate〉 Or 〈predicate〉
| Not 〈predicate〉

〈var〉 ::= 〈field〉 | 〈query-var〉

〈comparison〉 ::= ‘==’ | ‘>’ | ‘>=’ | ‘<’ | ‘<=’ | ‘!=’

Figure 3: Expressions for specifying retrieval methods. Some vars
refer to fields on the element type, while others called “query
variables” are inputs for the retrieval method and are only known at
runtime. The complete input to Cozy is a set of fields, a predicate,
and a set of assumptions about the data; Figure 2 shows an example.

field, and a retrieval method for each query in the specifica-
tion (in this case findEdges with one int input).

2.1 Implementation
To implement the five methods of the Graph class, Cozy
first searches for an efficient implementation outline for
findEdges. The outline is expressed in the language shown in
Figure 4. With an outline in hand, Cozy enumerates possible
representations for the Graph class: what data the Graph class
needs to store and how it needs to be organized. Figure 5
shows the possible representations. In the final step, Cozy
generates code for all five methods. No additional searching
needs to be done to find an implementation for the add,
remove, and update methods; their implementations follow
directly from the representation.

Outlining findEdges An outline is a high-level functional
program for retrieving a set of elements. The findEdges

retrieval method takes one input, node. After synthesis, Cozy
settles on the following outline for findEdges:
Concat(
HashLookup(AllWhere(dst!=src), dst, node),
HashLookup(AllWhere(True), src, node))

Each function call in the outline returns a collection of
edges. The outline states that the result will be computed
by concatenating two disjoint result sets. The first result set
will be obtained via hash lookup on a table that indexes edges
by their destination node dst. However, this table will only
contain edges for which dst!=src. The expression dst!=src

is a guard: the synthesized structure will check the guard at
insertion time to determine whether to insert the edge into the
map. The second result set will be obtained via hash lookup
on a table that indexes edges by their source node src. This
second table will contain every edge.

Cozy chooses the outline shown above because it avoids
duplicating edges in the result set. A procedure that simply
performs two hash lookups—one for incoming edges and one
for outgoing edges—would contain every self-loop twice in
the result.

〈outline〉 ::=
AllWhere 〈guard〉

returns every entry in the data structure matching a
guard—i.e. a predicate that can be checked at insertion
time

HashLookup 〈outline〉 〈field〉 〈var〉
performs a hash lookup on its argument to find entries
where the given field equals the given var

BinarySearch 〈outline〉 〈field〉 [>|≥|<|≤] 〈var〉
performs a binary search to find entries where the given
field is related to var by the given comparison operator

Filter 〈outline〉 〈predicate〉
removes entries not matching the given predicate

Concat 〈outline〉 〈outline〉
requires that its two arguments be disjoint—there can
be no entries which would be returned by both—and
concatenates its two arguments

Figure 4: Language of outlines for retrieving sets of entries. Each
outline is specific enough to assign an asymptotic bound, but still
admits several possible concrete implementations. The exact data
structure an outline returns is unspecified unless otherwise noted—
this must be computed before code generation (subsection 3.2).

Deduplication could also be accomplished if the outline
language had a “set union” operator, but Cozy does not
need such an operator. Whenever set union would be ap-
propriate, an equivalent outline using Concat and other fil-
ters will suffice. Concretely, whenever Union(x, y) is a valid
way to implement an outline, Cozy will instead discover
Concat(x,Filter(y, P )) where P is a predicate that removes
from y all elements that might appear in x. In the graph ex-
ample, P is dst!=src and is implemented as a guard since it
can be evaluated at insertion time. The Concat form has the
added advantage that it can be executed in constant memory,
as opposed to a set union which requires intermediate storage.

Representation selection Given an outline, Cozy next de-
termines a representation that describes how to arrange data
in memory. Cozy builds representations out of known data
structures; Figure 5 gives the full list. One possible repre-
sentation for Cozy’s proposed outline is a pair of hash maps,
keyed by integer node identifiers. Under this representation,
the Graph class should have two members:

HashMap<int, LinkedList> m1;
HashMap<int, LinkedList> m2;

The first map m1 will be used for answering the first hash
lookup, and the second map m2 will be used for answering
the second.

In cases where there are several possible representations—
for instance, a BinarySearch could be performed on either
a binary search tree or a sorted array—Cozy enumerates
all of them and uses a programmer-provided auto-tuning
benchmark to decide which one to use.
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Data representations often have many opportunities for
sharing data. For instance, the maps m1 and m2 could be
fused into one map organizing edges by node and having
each edge present in the map in one or two locations. Data
structures having more than one retrieval method often exhibit
several opportunities for sharing data. Exploiting sharing
opportunities has been well described by past work [17], and
so is not addressed here. In practice, we found output of Cozy
to be efficient without solving the sharing problem.

Code generation Cozy can output both Java and C++ code.
To implement findEdges, the outline can be directly trans-
lated into code implementing an Iterator type. The imple-
mentations of the add, remove, and update methods are then
written in terms of known add, remove, and update methods
for HashMap and LinkedList. Specifically,

• The graph add method inserts an edge into the first map
when dst!=src, and into the second map always.
• The graph remove method unhooks an edge from all

linked lists it appears in.
• The graph update* methods move an edge to the correct

hash buckets for its new values of src or dst.

2.2 Alterations
To demonstrate the flexibility of Cozy’s specification lan-
guage, consider changing the graph specification to exclude
self-loops. Doing so requires only one addition to the specifi-
cation:

assume src != dst

This assumption states that an edge will never connect a node
to itself. Every assumption becomes a precondition for the
add method. An implementation of the data structure could
enforce assumptions at runtime to aid debuggability; Cozy
does not.

The addition of the assumption src != dst results in the
following modified outline for findEdges:

Concat(
HashLookup(AllWhere(True), dst, node),
HashLookup(AllWhere(True), src, node))

Since the collection may not contain edges with the same
source and destination, the implementation can omit the guard
on the first hash map.

3. Approach
This section describes the algorithms that Cozy uses to
synthesize outlines, pick data representations, and generate
concrete code.

3.1 Synthesis of Outlines
In general, the synthesis problem is to find a program P with
respect to a specification s such that for all inputs~i,

∀~i, s(~i, P (~i)).

def synthesize_outline(spec, examples):
cache = all_size1_outlines()
best_progs = { initial_guess() }
best_cost = cost(initial_guess())

for size in [2..]:
for P in enum_outlines(cache, size):
if cost(P) > best_cost:

# A better correct program exists
continue

elif not correct_on_examples(P, examples):
# P is not correct, but it may be
# a part of a correct program.
cache += { P }
cleanup(cache, examples)

elif is_correct(P, spec):
# P is correct!
best_cost = min(
best_cost, cost(P))

best_progs += { P }
cleanup(best_progs, examples)

else:
# P looks correct but is not. A new
# example will help distinguish it.
ex = find_counterexample(P, spec)
return synthesize_outline(
spec, examples + {ex})

return best_progs

Figure 6: Cozy’s algorithm for program synthesis, based on CEGIS.
Programs are found using brute-force search with a twist: the cost
model cost allows many candidate programs to be dropped in calls
to cleanup, pruning the search space drastically.

In Cozy, outlines are functional programs and the query
predicates are specifications: the retrieval method for that
query must return exactly those entries which are in the data
structure and match the predicate.

To synthesize outlines from a query, Cozy employs
counterexample guided inductive synthesis (CEGIS) [32], a
common technique for simplifying the task of solving for P
given s. The CEGIS approach splits this hard problem into
two easier ones: a synthesizer and a verifier. The synthesizer
takes a finite set of input examples and finds P such that P
behaves correctly on the given examples:

s(~i1, P (~i1)) ∧ ... ∧ s(~in, P (~in)).

The verifier takes a program P and either proves that P
is correct or finds a concrete counterexample: i such that
¬s(~i, P (~i)).

A CEGIS loop starts with zero or more examples and
alternates back and forth, asking the synthesizer for a guess
based on all the current examples and then checking the
guess against the verifier. If the verifier rejects the guess, the
synthesizer adds the resulting counterexample to its running
set of examples and the procedure restarts using the larger set.
If the verifier accepts the program, the algorithm has found a
correct answer.
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〈collection〉 ::= Iterable
| ArrayList
| LinkedList
| SortedIterable 〈field〉
| SortedArray 〈field〉
| BinaryTree 〈field〉
| HashMap 〈field〉 〈collection〉
| Tuple 〈collection〉+
| Guarded 〈collection〉 〈guard〉
| Filtered 〈collection〉 〈predicate〉

t <: t
ArrayList <: Iterable
LinkedList <: Iterable
SortedIterable f <: Iterable
SortedArray f <: SortedIterable f
BinaryTree f <: SortedIterable f
(t0 <: u0 ∧ ...)→ (Tuple t0... <: Tuple u0...)
(t <: u)→ (HashMap f t <: HashMap f u)
(t <: u)→ (Guarded t p <: Guarded u p)
(t <: u)→ (Filtered t p <: Filtered u p)

Figure 5: Data structure implementations supported by Cozy (left) and subtyping relationships between them (right). The relationship A <: B
indicates that A can be treated as B for the purposes of retrieving entries. “Guarded” and “Filtered” modify the collections they wrap. Guarded
collections use the guard expression to determine whether to insert an element. Thus, Guarded collections only contain elements for which the
guard expression is true. Filtered collections use the predicate to filter out entries at retrieval time. A filter predicate may reference query
variables, while a guard expression may not.

Synthesis Figure 6 shows the synthesis half of Cozy’s im-
plementation of CEGIS. Unlike standard CEGIS, Cozy’s al-
gorithm returns all programs having minimum cost according
to a static cost model.

The algorithm begins with a guess for how to implement
the outline. The initial guess must be a correct outline for the
input query, and serves to bound the maximum cost of any
generated outline. For any query Q, the initial guess Filter(
AllWhere(True), Q)—corresponding to a bag of elements
filtered at retrieval time—is always correct.

The Cozy algorithm uses brute-force search, enumerating
programs in order of increasing size. However, instead of
naively enumerating all programs, Cozy memoizes smaller
programs in a cache and only visits programs that can be
built using components in the cache. The enum outlines

function enumerates programs of the given size that can be
built from programs in the given cache. Keeping the cache
small keeps the synthesis manageable.

The cache is kept small using the examples returned
by the verifier, as done in TRANSIT [33]. The cleanup

procedure groups programs by equivalence class based on
their behavior on the examples and sorts each equivalence
class by cost. Whenever two programs in an equivalence
class have different costs cleanup removes the worse one.
These optimizations never cause Cozy to skip plans since the
cost model is monotonic. The next subsection discusses the
requirements on the cost model in more detail.

Beyond keeping the cache size small, the list of examples
also helps to avoid unnecessary calls to the verifier. The
correct on examples function checks P against the current
examples; if it is wrong on any of them, then P is surely not
the desired program and the verification step can be skipped.

Static cost model Figure 7 shows the implementation of
Cozy’s static cost model (cost in Figure 6). The static cost
model estimates the asymptotic cost of potential retrieval pro-
grams, and helps to prune the search space during synthesis.

The cost of many primitives depends on the cardinality
of the dataset they operate on. For example, BinarySearch
requires log n time, where n is the number of elements in
the dataset. Cozy’s cost model uses the cardinality heuristic
shown in Figure 7. In situations where the workload is well-
understood, a custom cardinality heuristic may be appropriate.
We did not implement any custom cardinality estimation
routines for our case studies.

An important property of Cozy’s static cost model is that it
is monotonic: the cost of a given outline is strictly greater than
its arguments’ costs. In the synthesis algorithm of Figure 6,
the first if-check excludes all programs worse than the set
of correct programs found so far. If a program built using
P could have a lower cost than P , then discarding P could
cause the synthesizer to skip some correct outlines. Thus, that
if-check assumes monotonicity of the cost model.

Verification The verification half of the CEGIS algo-
rithm checks whether a candidate program is correct. Do-
ing so amounts to implementing is correct and find -

counterexample from Figure 6. Many verifiers—such as
those for straight-line assembly snippets—can rely on the
finiteness of the program input to decide the verification prob-
lem using off-the-shelf solvers. For Cozy outlines, however,
the verifier needs to guarantee correctness for every possible
state that the data structure could be in; there are an infinite
number of such states.

Fortunately, outlines have a small-model property that
renders the complete state of the data structure irrelevant
for verification; showing correctness for all possible states
containing a single entry is sufficient. The small-model
property is made possible by the fact that the semantics of
every outline P is characterized by some predicate p(~i, x)
over input ~i and collection elements x. The set of entries
returned by P on input ~i when the data structure contains
elements E is exactly {x | x ∈ E ∧ p(~i, x)}. Figure 8 shows
the conversion from outlines to predicates.
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cost(n, P ) = 1+


AllWhere : 0
HashLookup p : cost(n, p)
BinarySearch p : cost(n, p) + log(cardinality(n, p))
Filter p : cost(n, p) + cardinality(n, p)
Concat p1 p2 : cost(n, p1) + cost(n, p2)

cardinality(n, P ) =


AllWhere : n
HashLookup p : cardinality(n, p)/3
BinarySearch p : cardinality(n, p)/2
Filter p : cardinality(n, p)/2
Concat p1 p2 : cardinality(n, p1) + cardinality(n, p2)

Figure 7: Static cost heuristic and cardinality estimation for the worst-case asymptotic time to run an outline P on a structure containing n
entries. For cardinality estimation, HashLookup is given a more aggressive size reduction since equality constraints generally return fewer
elements than inequalities.

AllWhere p ⇐⇒ p(~i, x)

P ⇐⇒ p(~i, x)

HashLookup P f v ⇐⇒ p(~i, x) ∧ x.f = v

P ⇐⇒ p(~i, x)

BinarySearch P f > v ⇐⇒ p(~i, x) ∧ x.f > v

P ⇐⇒ p(~i, x)

Filter P q ⇐⇒ p(~i, x) ∧ q(~i, x)

∀~i∀x,¬(p(~i, x) ∧ p2(~i, x))
P1 ⇐⇒ p1(x) P2 ⇐⇒ p2(x)

Concat P1 P2 ⇐⇒ p1(~i, x) ∨ p2(~i, x)

Figure 8: Outlines and their equivalent predicates. The judgment
P ⇔ p(~i, x) means that the outline P returns exactly those entries
x in the data structure where p(~i, x) holds. (Only the rule for
BinarySearch with < is shown; the rules for the other operators
are symmetric.)

For a given input query predicate q(~i, x) over query
variables~i and elements x, the overall specification to check
is that the outline returns only those elements in the data
structure that satisfy q. Formally,

s(~i, P (~i)) := ∀E∀x, (x ∈ P (~i)) ⇐⇒ (x ∈ E ∧ q(~i, x)).

Since P (~i) = {x | x ∈ E ∧ p(~i, x)}, the specification
formula can be simplified as follows

s(~i, P (~i)) :=∀E∀x, (x ∈ P (~i)) ⇐⇒ (x ∈ E ∧ q(~i, x))
=∀E∀x, (x ∈ {x | x ∈ E ∧ p(~i, x)}) ⇐⇒

(x ∈ E ∧ q(~i, x))
=∀E∀x, (x ∈ E ∧ p(~i, x)) ⇐⇒

(x ∈ E ∧ q(~i, x))
=∀E∀x, (x ∈ E)→ (p(~i, x) ⇐⇒ q(~i, x))

To solve this formula, Cozy instead solves the negation:

¬s(~i, P (~i) = ∃E∃x, (x ∈ E) ∧ ¬(p(~i, x) ⇐⇒ q(~i, x))

In the negation, the only constraint on the set E is that
x ∈ E. Therefore, if we take E to be the universal set
containing all elements, any solution to the simpler formula
∃x,¬(p(~i, x) ⇐⇒ q(~i, x)) is a solution to the entire
formula. Cozy solves the verification problem by asking
Z3 [12] for an instance of x and ~i, and the exact contents
of the data structure never need to be considered.

Termination Standard CEGIS algorithms stop immediately
when a solution has been found. Many approaches enumerate
programs in order of size and always return the shortest
correct program. This is a good choice when size correlates
strongly with performance, but Cozy’s static cost model does
not have a strong correlation with outline size. The first
correct outline Cozy finds is not likely to be the optimal one.
Therefore, Cozy runs until it has enumerated every outline
cheaper than the best outline found. To ensure this process
terminates, the cost of a plan may never asymptotically
approach a fixed value as the size of the plan increases. The
1+ term in Figure 7 has the effect of adding the size of the
outline to its cost, thereby ensuring that the cost does not
asymptotically approach a fixed value.
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t <: u concrete(t)

AllWhere : t→ u

p : t→ HashMap〈k, v〉
HashLookup p k : t→ v

p : t→ SortedArray〈f〉
BinarySearch p f : t→ SortedArray〈f〉

p : t→ BinaryTree〈f〉
BinarySearch p f : t→ SortedIterable〈f〉

p1 : t→ Iterable p2 : u→ Iterable
Concat p1 p2 : Tuple〈t, u〉 → Iterable

p : t→ Iterable
Filter p : t→ Iterable

Figure 9: Rules for inferring data structure representations. The
judgment p : t→ u means “outline p operates on a structure with
representation t and returns a structure with representation u”. The
predicate concrete(t) means that t does not reference the abstract
types Iterable or SortedIterable.

In practice, Cozy finds good solutions very quickly; typ-
ically in the first minute of execution. Even so, it may take
many hours to explore the entire space for the optimal out-
line. In our evaluation we impose a 30 second timeout for
synthesis.

3.2 Representation Selection
Every outline implicitly encodes requirements for the repre-
sentation on which it operates. In the multigraph example
from Section 2, the outline operates on a data structure having
two hash maps. The task of inferring a representation for a
particular outline is akin to type inference: each planning
primitive encodes some constraints on the representations of
the structure it operates on and some constraints on the shape
of the structure it returns.

Cozy enumerates all possible representations for every
outline. Doing so is equivalent to inferring possible types
for each AllWhere call in the outline. Figure 5 shows the
space of possible representations. Figure 9 shows inference
rules for determining whether an outline is legal for a partic-
ular representation, and these rules can be converted into a
syntax-directed algorithm for enumerating all possible repre-
sentations for a given outline.

Note that not all outlines have representations. For in-
stance, an outline with the shape

HashLookup(BinarySearch(...), ...)

does not correspond to a meaningful program: the collection
that results from a binary search is always a SortedIterable
(see Figure 9), so it does not make sense to treat it as

Entry 1 Entry 2 Entry 3

Standard

Entry 1 Entry 2 Entry 3

Intrusive

Figure 10: Standard versus intrusive linked list implementation. In
the latter, the data entries themselves hold the “next” pointers used
by the list implementation.

a hash table. Cozy ignores outlines that do not have any
representation.

Cozy specifications of retrieval methods may include a
directive to sort by a specified field f . In this case, Cozy
only allows representations for which the outline produces a
subtype of SortedIterable〈f〉. Thus Cozy can also synthesize
collections that maintain their elements in sorted order.

3.3 Code Generation
The outline and the representation together fully describe the
implementation. Code generation does not require search;
the implementations for add, remove, and update are defined
by the representation. The implementation for each retrieval
method is derived from its outline.

Cozy generates intrusive data structures. As shown in
Figure 10, an intrusive data structure is one which avoids a
layer of indirection by storing auxiliary data—such as linked
list pointers—on its elements directly. Standard collection
types usually introduce a layer of indirection in the form of
“node” types, such as the nodes of a linked list or a binary tree
or a hash map. In the graph example from Section 2, Cozy
will add next and previous pointers to the Edge type for each
linked list an edge could be a part of, and it does not generate
an additional linked list node type.

Intrusive data structures trade some flexibility for in-
creased performance. An element of an intrusive data struc-
ture may not exist simultaneously in multiple instances of
the data structure, since it only has one set of pointers to
use. However, the implementations of removal and update
methods can be made much more efficient since there is no
need to search for a given element in the data structure first;
each element is a “handle” to its own location in the data
structure.

In practice, we found intrusiveness to be beneficial. For
all of our case studies the data structure under analysis is
a singleton object, so there is no risk of elements existing
in multiple instances at once. We observed a noticeable
performance boost from faster removal and update methods.
It should also be noted that intrusiveness is not fundamental
to our approach; the code generator could equivalently have
been implemented to use traditional data structures.

Implementing add and remove The add and remove meth-
ods are built out of known implementations for the types in
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Figure 5. Other researchers have investigated synthesizing
operations such as add and remove on binary trees [28], but
Cozy has been hard-coded with implementations of these
methods for each of the possible representations.

Implementing update Cozy generates efficient update
methods. A simple implementation of an update routine
removes the element from the data structure, alters the rele-
vant field, and re-inserts the element. Cozy instead generates
code to find the new location for the element (if different
from its present location) and move it there. Most updates
require very little motion; for instance, updating a field on
an element in a linked list does not require any action to be
taken.

Implementing retrieval methods The retrieval methods,
such as findEdges in the graph example from Section 2,
are implemented according to the functional algorithm given
in the outline. However, rather than collecting a large set of
elements to return, Cozy returns an iterator type with hasNext

and next methods for streaming the result set. As with the
implementations of add and remove, the implementations
of the iterator methods have already been written for each
representation and simply need to be composed according to
the outline.

Auto-tuning Beyond just asymptotic performance, high
performance data structures ought to be tuned to particular
workloads. Cozy’s auto-tuning step takes each generated can-
didate implementation and evaluates it against a programmer-
provided benchmark. The best scoring implementation is the
final output of the tool. The benchmark acts as a fine-grained
cost model and provides a natural way to express the needs
of a particular workload.

3.4 Implementation Details
Cozy is slightly more powerful in implementation than the
basic approach described thus far. It can handle data structure
specifications with multiple query operations and it has
several additional output structures in its library.

Handling multiple queries Many interesting data struc-
tures require more than one query operation. Cozy supports
this by synthesizing a data structure for each query opera-
tion separately. These substructures are then combined into a
complete implementation that stores each one independently.
When an entry is added, removed, or updated in the complete
implementation, that change is pushed to each substructure.
When a query method is invoked, it is simply dispatched to
the appropriate substructure.

This combination strategy is well-suited for the intrusive
data structures Cozy generates. Entries are not duplicated
across substructures; instead, they simply receive additional
pointer fields for each substructure they belong to. As a result,
Cozy can emit complex data structures such as a linked list
threaded through a binary search tree.

Improved expressiveness Cozy can be extended to work
with more complex types and additional implementation
strategies. Cozy contains three such extensions: augmented
binary search trees, multi-field hash maps, and vector maps.
The implementations of these features in Cozy demonstrate
the steps which might be taken to implement other extensions.

Augmented binary search trees are binary search trees in
which each node is augmented with an aggregate minimum
or maximum of some property of its subtrees. They are often
used to accelerate searching for intervals; the nodes in the
tree might be sorted by the start value of the interval, and
be augmented with the maximum end value of any subtree.
Queries for nodes overlapping a particular point can now skip
subtrees whose maximum end times land before the desired
point.

Cozy supports augmented binary search trees by extending
the BinarySearch primitive to handle arbitrary conjunctions
of greater-than and less-than comparisons, and by extending
representation selection and code generation with an addi-
tional AugTree type.

Multi-field hash maps are hash maps whose keys con-
tain several fields, rather than just one. We observed Cozy
frequently emitting nested hash lookups, resulting in HashMap

<T1, HashMap<T2, ...>> types. Multi-field hash maps fuse
nested maps into a single map with type HashMap<Pair<T1,

T2>, ...>. This extension only affects the code generator,
and was simply implemented as another choice it can make
when enumerating implementations.

Vector maps are a faster alternative to hash maps. When
a key type is enumerable—such as bool, which has only
two possible values—a HashMap can be replaced by a fixed-
length vector with one entry for each possible key. The code
generator makes this transformation aggressively whenever
possible.

4. Evaluation
To evaluate Cozy, we examined the extent to which it im-
proves correctness and performance. We replaced the imple-
mentations of core data structures in four real-world subject
programs from disparate domains, summarized in Table 1.

4.1 Subject Programs
We replaced data structures in Myria [21] (a distributed data-
base), Bullet [6] (a physics simulation library), ZTopo [34]
(a topographic map viewer), and Sat4J [23] (a boolean satisfi-
ability solver). These programs were selected because they
are real-world programs that require high performance from
a central data structure.

Myria, which was introduced in Section 1, is a distributed
database implemented in Java. When issuing a query to
the database, in addition to performing the requested query,
Myria logs analytics data to local instances of the Postgres
relational database. This analytics data powers an interactive
profiling interface, so fast retrieval is a high priority. In the
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program data structure commits LoC bugs

Myria analytics storage 88 269 11
Bullet volume tree 57 2582 15
ZTopo map tile cache 15 1383 -
Sat4J var data 22 22 7

Table 1: Subject programs. “Commits” is the number of commits
in the program’s repository that directly relate to the data structure
being replaced. “LoC” is the total number of lines of code for the
data structure and associated helper methods. “Bugs” is the number
of bugs reported in the program’s issue tracker for which the correct
fix was in the implementation of the data structure. Note that ZTopo
does not have a dedicated issue tracker.

analytics store, each entry has a query ID (what query it came
from), a sub-query ID (for compound queries), a fragment
ID (what part of the execution pipeline caused it), a start
time, an end time, and additional information about what
transpired. The interactive profiling interface needs to quickly
find analytics entries for a given query and fragment within a
given time range.

Bullet is a real-time physics simulation library imple-
mented in C++ and commonly used in visual effects work.
The library offers a collision detection API. Before doing fine-
grained collision detection, Bullet searches for coarse-grained
collisions between bounding boxes using a “fast dynamic
bounding volume tree (DBVT)”—a custom data structure.
The data structure’s most important function finds bounding
boxes intersecting a given query bounding box. We replaced
Bullet’s handwritten structure with one synthesized by Cozy.

ZTopo is a topological map viewer implemented in C++.
Topology data comes from an online database; to avoid
downloading the entire database every time the user opens the
application, the data is divided into tiles that are downloaded
on-demand and kept in memory and disk caches. To maintain
its cache hierarchy, ZTopo stores tiles with a given x and
y coordinate and tracks what state they are in (in memory,
on disk, or available over the network). The data structure
keeps tiles organized according to their state. A replacement
data structure was also synthesized for ZTopo in previous
work [17].

Sat4J is a boolean satisfiability solver implemented in Java.
It takes as input a formula over boolean variables and finds a
satisfying assignment (if one exists). During solving, Sat4J
tracks miscellaneous data about each variable appearing in
the formula. The data is specific to the implementation of the
solver and includes an assignment level, a cause constraint,
collections of listeners watching for changes on the variable,
and a collection of “undos” that can be used for rewinding
to an earlier solver state. This data structure needs to be able
to efficiently look up a variable’s information by its integer
identifier.

program time (s) spec tuning LoC delta

Myria 30* / 45 22 65 +37
Bullet 30* / 54 23 123 -603
ZTopo 30* / 17 25 75 +1
Sat4J 1 / 6 11 32 -58

Table 2: Work we performed to synthesize and integrate replacement
data structures for each project. “Time” shows how long Cozy spent
synthesizing the structure, separated by synthesis time on the left
of the “/” and auto-tuning time on the right. Asterisks (*) indicate
runs that were capped at a timeout of 30 seconds; if allowed to run
beyond that point, Cozy does not terminate in less than an hour.
“Spec” shows the number of lines in the Cozy specification. “Tuning”
shows the number of lines in the auto-tuning benchmark. “LoC delta”
shows the net change on the codebase as a result of our refactoring,
not including lines of specification or lines in the synthesized data
structure.

4.2 Integration Methodology
The central data structure in each program implements a
collection as its core functionality, but also includes many
application-specific methods. For example, Bullet’s DBVT
implementation includes code for computing collisions be-
tween two trees and code for estimating the future locations
of bounding boxes based on velocities. Cozy can replace
the collection functionality, but not the application-specific
methods.

Therefore, our methodology when replacing each data
structure was to replace its internals with a Cozy collection
keep but the data structure’s public interface intact, reimple-
menting their functionality on top of Cozy’s implementation.

Table 2 summarizes the amount of work we performed
in order to replace each data structure’s internals with a
collection synthesized by Cozy. The collection specifications
were easy to write and are very short, on the order of twenty
lines. We implemented an auto-tuning benchmark for each
synthesized collection that benchmarks on random data. The
final code size after integrating the new collections is not
always shorter; Myria and ZTopo use high-level database
and collections libraries already, so the integration of the
synthesized collection does not save any lines. On the other
hand, the core handwritten algorithm and tuned memory
management employed by Bullet can be completely removed,
resulting in over 600 lines of net savings. Sat4J’s variable
metadata structure is not complex, but it includes a fair
amount of logic for reallocating storage when the number of
variables exceeds the size of any allocated arrays; all of that
logic can be removed.

We were very careful to preserve correctness and the
original public interface while doing the refactoring, so we
were not as aggressive in saving lines as we might have been.
We believe that, if this methodology were used from the start
of development, the original application developers could use
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Cozy to save many more lines in each codebase. Furthermore,
the developers would not have had to fix the bugs noted in
Table 1 and subsection 4.3.

4.3 Correctness
To measure the extent to which Cozy helps achieve correct-
ness, we examined bug reports for each subject program. We
show how Cozy addresses potential correctness issues by
generating correct-by-construction code.

Myria The Myria issue tracker lists 11 bugs directly related
to analytics storage. Since the existing implementation of the
Myria analytics store uses Postgres, none of the Myria bugs
refer to incorrect functional behavior. Instead, they relate to
the interface between the Java code and Postgres, e.g., tables
not being created during initialization or improperly escaped
query strings. Our synthesizer builds a complete Java class
with insert, remove, and query methods, thereby alleviating
the need to reason about this interface.

Bullet The Bullet issue tracker lists 12 bugs related to the
implementation of the DBVT, and the file’s source history
in the Bullet repository reveals 3 commits that reference un-
reported bugs. The bug reports span nondeterminism, cross-
platform portability, and memory mismanagement. Nonde-
terministic behavior made testability a concern. The original
implementation uses some platform-dependent features (in
particular, vector intrinsics) that make portability a prob-
lem. Code style problems such as stray semicolons have also
caused portability problems. The data structure also has its
own memory allocation logic, which has led to memory leaks
and unexpected behavior in the past. Our synthesized im-
plementation avoids these problems: it uses only standard
C++ language features and uses the system memory allocator.
We fuzz-tested the synthesized implementation and found no
nondeterminism or memory bugs.

ZTopo ZTopo was written by a single programmer, and so
it has no dedicated bug tracker. Instead of tests, the code
contains many assertions to verify that each entry’s position
in the data structure reflects the value of its state field. Cozy
guarantees these properties in the generated data structure, so
the complex data structure logic that ensures them—as well as
the asserts themselves—can be removed without sacrificing
correctness.

Sat4J Sat4J’s bug tracker lists 7 issues directly related to its
storage of variables. Three of these relate to performance. The
original implementation stores the data in arrays that grow
when new variables are added to the formula, and the orig-
inal implementation did not grow their sizes exponentially,
resulting in O(n2) time to add n variables to the formula.
Cozy removes the need to implement this logic by hand. The
other 4 bugs were correctness problems that Cozy’s generated
structure does not suffer from. Sat4J has an extensive test
suite, and our synthesized implementation passes all available
regression tests.

original synthesized
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Figure 11: Benchmark results. Lower is faster and better. Each
point represents the average of 30 runs, with error bars showing the
standard deviation. The individual benchmark tasks are described
in text. All benchmark data was collected on a Macbook Pro with a
two-core 2.5 GHz processor and 8 Gb of RAM.

4.4 Performance
Figure 11 plots the difference in performance between the
handwritten and synthesized data structure implementations.
For each project, we found or created a benchmark program.
Each benchmark program has a parameter for tuning the size
of the workload, and for each run we recorded the maximum
size of the data structure during execution and the amount of
time the whole benchmark program took to run. All of the
benchmarks primarily measure retrieval time; insertion time
is either negligible (for ZTopo) or negligible and not included
(for Myria and Bullet).
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Myria The benchmark uses a real-world dataset and query
frequently used by the Myria developers for testing. The
dataset describes relationships between Twitter users. The
benchmark first generates a large amount of analytics data by
repeatedly issuing queries to find cliques in the data. It then
issues requests for various amounts of analytics data about
the queries, measuring how much analytics data is present in
the database and how long it takes to retrieve a small subset.
For both implementations, the overhead incurred due to the
data structure while generating analytics data is negligible
compared to the normal query execution time. We found
that the synthesized implementation is generally faster than
the original implementation. Two factors contribute to the
speedup: the constant overhead introduced by Postgres in
the original implementation, and the asymptotic speedup
that Cozy achieves by using augmented binary search trees
to store intervals. In the original Postgres implementation,
entries are indexed by start time, but the query planner is
unable to exploit an index on end time as well. In contrast,
the synthesized implementation stores the maximum end
time of any entry in every subtree, and so it is able to exploit
information about end times to prune the result set faster.

Due to high overhead in the Myria system and various
confounding factors such as garbage collection interruptions,
the data in Figure 11a is very noisy. To better illustrate
the difference between Cozy’s synthesized implementation
and the Myria builtin implementation, we separated Myria’s
existing data structure implementation from the codebase
and performed a microbenchmark on random data. We ran
Postgres on an entirely in-memory disk to exclude disk
performance factors. Figure 11b shows the results of the
microbenchmark. The asymptotic wins from the synthesized
structure as element count increases are clearly visible. The
Postgres query plans are worst-case linear time, and the wide
standard deviation reflects the variability in performance with
different random data and random queries.

Bullet In the past, the Bullet developers have used a bench-
mark suite called CDTestFramework to evaluate their colli-
sion detection code against other libraries [8]. CDTestFrame-
work constructs an animated scene out of many moving boxes
and times how fast the collision detection module can find all
the intersections between boxes at each frame. We adapted
CDTestFramework to test our modified implementation of
Bullet against the original version. We found that the synthe-
sized implementation is consistently slower by a factor of six
to seven. This reveals a limitation in Cozy: the DBVT is not
in its set of known representations, nor is anything that might
have comparable performance on this benchmark.

The DBVT is a space-partitioning tree that groups boxes
spatially according to their Cartesian distance to each other.
Nodes are separated into leaf nodes which each store a sin-
gle box and internal nodes which store the total enclosing
volume of their entire subtree. By contrast, the synthesized
structure is an augmented binary search tree. It organizes

boxes by starting y-coordinate only, and each node stores
a volume enclosing its subtrees. Although the augmented
volume data allows the synthesized structure to skip many
subtrees during iteration, in practice we found that it results
in many false-descents into subtrees with no matching nodes.
The original implementation makes almost no false-descents.
On this workload, the synthesized structure visits roughly ten
times as many nodes as it actually returns, which explains the
difference between the original and synthesized implementa-
tions. In this case, the synthesized implementation would be
most useful for rapid prototyping and testing.

For comparison, we also added Bullet’s DBVT into Cozy
as another choice the auto-tuner can make. Figure 11d shows
the same benchmark with the DBVT enabled. The auto-tuner
easily discovers that the DBVT structure is better suited to
this problem and so the resulting structure easily matches the
performance of the original implementation. This improve-
ment did not require any change to the specification of the
data structure or to the Bullet codebase. The only observable
change after adding the DBVT to Cozy—besides increased
performance—was that auto-tuning took four seconds longer
than the 54 seconds reported in Table 2.

ZTopo ZTopo has no publicly-available benchmarks, so we
constructed a benchmark workload by recording all the calls
made to the cache module during several minutes of normal
usage. The benchmark replays a prefix of the recorded calls,
measuring the total time taken and how large the structure
got during execution. The handwritten implementation and
the synthesized implementation behave nearly identically
because they are implemented nearly identically: both have
a hash map for organizing tiles by key and a series of linked
lists for organizing tiles by state.

Sat4J We benchmarked Sat4J on several examples from
the SAT Competition’s 2002 industrial benchmark suite [24].
We chose the examples by randomly selecting several dif-
ferent problems of different sizes from among the examples
that Sat4J terminates on. With the synthesized structure, per-
formance on these problems is a constant factor of 20–25%
slower than the original implementation. However, perfor-
mance is still dominated far more by the input formula than
by the exact implementation. The performance gap exists
because the original implementation is a structure of arrays
and Cozy’s implementation is an array of structures. In the
original implementation, each query is answered by a single
array lookup, while in the synthesized implementation each
query is answered by an array lookup followed by a pointer
dereference.

5. Related Work
Several bodies of work relate to the approach outlined in this
paper: previous work on synthesizing data structures, work
on general program synthesis, work on generation of data
structure instances, and work on database query planning and
materialized views.
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Data structure synthesis Data structure synthesis has been
an active area of research for many years. One class of tech-
niques stems from Early’s work on iterator inversion [13], in
which high-level set comprehensions can be rewritten auto-
matically to use more efficient data structures. Subsequent
work generalized these ideas [15, 22]. The primary weakness
of iterator inversion approaches is that they require manual
construction of rewrite rules for different syntactic forms.
The rules are difficult to write and even more difficult to
prove exhaustive. The rewrite engine is fairly naive, and so
performance gains are not guaranteed.

Automatic data structure selection has also been investi-
gated for the SETL language [7, 25, 26]. This work differs
from ours in that it relies on complex program analyses to
bound the possible contents of each set or map. These bounds
can then be used to select good implementations for the ab-
stract set and map interfaces. In SETL some of this com-
putation occurs at runtime, while our work requires a more
precise specification than “set” or “map,” and we can avoid
extra runtime overhead. Automatic data structure selection
has also been investigated for Java, where a dynamic analy-
sis can select better implementations of abstract collection
types [27].

Specialized languages for data structure implementation
have also been proposed [3, 29, 30]. In this approach, pro-
grammers are given a set of composable primitives for de-
scribing the implementation of their data structures. However,
the programmers still need to describe the desired imple-
mentation. In our work, Cozy generates the implementation
automatically.

More recent work has identified ways to describe and syn-
thesize data structures having complex data sharing using
relational logic specifications [17]. The RelC tool described
in that line of work is very similar to Cozy: both emit col-
lections over a single type with add, remove, update, and
query operations. RelC works by exhaustively enumerating
candidate data structure representations. For each one, a well-
formedness test is used to determine whether the represen-
tation can be used to correctly implement the data structure.
For those that succeed, a query planner determines how to
use the representation to implement the data structure’s meth-
ods. Each candidate implementation is evaluated using an
auto-tuning benchmark, and the best one is returned to the
programmer.

Cozy improves on that line of work by supporting a greater
range of input specifications and by requiring fewer calls to
the auto-tuning benchmark during synthesis. RelC did not
support input specifications with inequalities, disjunctions,
and negations, so RelC would not be able to synthesize
implementations for the Myria or Bullet data structures. Cozy
handles these efficiently by inverting the order of operations:
instead of synthesizing a representation and using a query
planner to obtain code, we synthesize a plan in the form of an
outline and derive the representation from the outline after

synthesis. This inversion helps here since query planners like
the one employed by RelC require complicated handwritten
rules to handle negation and disjunction.

Cozy does not make more than 12 invocations of the auto-
tuning benchmark on any of our case studies, while RelC
makes more than 80 in a typical case. The inverted order
of operations helps here too: the performance of an outline
is easier to predict than the performance of a representation,
since intimate knowledge of the query planner is necessary for
RelC to predict the performance of a representation. Having
the plan up-front enables the use of a static cost model to
guide the synthesizer toward more efficient solutions earlier.

RelC solves a slightly different problem than Cozy, since
it was designed to find representations with a high degree
of data sharing. We suspect that RelC’s implementations are
more memory-efficient than Cozy’s, but we were not able
to evaluate this since RelC is not publicly available. Addi-
tionally, follow-up work on RelC investigated synthesizing
concurrent data structures [18], which we do not address here.

Synthesis Our work builds on existing CEGIS techniques
for synthesizing individual functions [31]. However, Cozy
optimizes for cost rather than program size. Additionally,
Cozy abstracts over the data structure representation, allow-
ing for automatic representation selection. Traditional synthe-
sis approaches require precise specification of all inputs and
outputs, including the contents of memory.

More recently, researchers have developed cost-optimizing
synthesis techniques. λ2 [14] synthesizes functional programs
over recursive data structures. It optimizes with respect to a
monotonic cost model by enumerating programs in order of
cost. Unfortunately, since the cost of a Cozy outline depends
on the cardinalities of the sets returned by its subcompo-
nents, the enumeration algorithm used in λ2 is not applicable.
SYNAPSE [4] requires a gradient function mapping from
cost values to subspaces of the synthesis search space. The
gradient function is a flexible way to encode a search strat-
egy for the synthesizer. In contrast to this approach, Cozy
simply enumerates candidates in order of size and prunes
aggressively based on the cost model.

Data structure generation Researchers have investigated
automatic data structure generation for testing [5, 11, 16, 19].
This differs from synthesis; tools in this domain construct
instances of data structures with nontrivial representations,
but they do not construct implementations of those data
structures. The instances are typically used for exhaustive
testing of code that operates on complex data structures.

Databases and query planning The implementation out-
lines presented in Figure 4 can be viewed as a planning
language for executing retrieval operations. Our model of
collection entries as bags of fields is deliberately reminis-
cent of relational logic. However, our problem differs from
conventional database query planning in several ways. First,
instead of using handwritten rewrite rules, Cozy uses induc-
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tive synthesis to find the optimal set of plans with respect
to our static cost model. Second, Cozy is not optimizing a
retrieval plan for a pre-selected representation. Instead, the
tool is free to pick its own preferred representation.

Other database research has focused on automatically
choosing data representations; most notably AutoAdmin [1,
9], which can propose indexes and materialized views to
improve query execution performance. This work is closer to
Cozy’s domain, but is still constrained by disk requirements
and the limited expressiveness of indexes.

Strategies for efficiently maintaining materialized views
have also become popular [2]. A materialized view is an
optimized data structure that keeps the result of a particular
database query up-to-date even while the underlying table
is updated. The key difference between materialized view
maintenance and our work is the presence of run-time query
variables. Materialized views only materialize exact queries
with all values filled-in, while Cozy creates data structures to
respond efficiently even when the exact query is not known
in advance.

6. Conclusion
This paper presented novel techniques for data structure spec-
ification and synthesis, as well as an evaluation of those tech-
niques. Our approach splits the synthesis into two stages: first
choosing a high-level outline with good asymptotic perfor-
mance on a static cost model, and then choosing a low-level
implementation with good physical performance on a dy-
namic benchmark. Four real-world case studies suggest that
data structure synthesis has the potential to save program-
mer development time by offering high performance, a clean
interface, and a correct-by-construction guarantee.
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