
Cascade: A Universal Programmer-assisted
Type Qualifier Inference Tool

Mohsen Vakilian*

1

Amarin Phaosawasdi*

Michael D. Ernst†

Ralph E. Johnson*

*University of Illinois at Urbana-Champaign
†University of Washington

Type qualifiers allow additional static type checks

 static int oldSubindex(@Nullable MathVector ic, int l) {

 int i = 0;

 for (int k = 0; k < MathVector.NDIM; k++) {

 if (((int) ic.value(k) & l) != 0)

 i += Cell.NSUB >> (k + 1);

 }

 return i;

 }

2

◼ Locking
◼ Aliasing
◼ Interning
◼ Immutability
◼ Tainting

*checkerframework.org

Java 8 supports custom type systems*

3

◼ Locking
◼ Aliasing
◼ Interning
◼ Immutability
◼ Tainting

*checkerframework.org

Java 8 supports custom type systems*

4

+ additional static checks

◼ Locking
◼ Aliasing
◼ Interning
◼ Immutability
◼ Tainting

*checkerframework.org

Java 8 supports custom type systems*

5

+ additional static checks

- additional code annotation

The manual annotation process is tedious

6

Run type checker

The manual annotation process is tedious

7Add or remove qualifiers

Run type checker

The manual annotation process is tedious

8Add or remove qualifiers

Refactor code

Run type checker

Type qualifier inference tools run in batch mode

9

Infer
Program

Annotated
program

Type qualifier inference tools run in batch mode

10

Nullness
Julia, Nit, JastAddJ Nullness,
SALSA Nullness, Xylem,
Daikon Nullness

Immutability
Javarifier, Pidasai, ReImInfer

Ownership
Universe and Ownership Type
Inference System

Infer
Program

Annotated
program

Type qualifier inference tools run in batch mode

11

◼ Optimal under certain
conditions

◼ Large change without
user involvement

Strengths

Infer
Program

Annotated
program

Type qualifier inference tools run in batch mode

12

Weaknesses

◼ Limited to one set of
qualifiers

◼ Unpredictable

◼ Rigid

◼ Inaccurate

Infer
Program

Annotated
program

Type qualifier inference tools run in batch mode

13

Run type checker

Add or remove qualifiers

Refactor code

Infer
Program

Annotated
program

Type qualifier inference tools run in batch mode

14

Run type checker

Add or remove qualifiers

Refactor code

Infer
Program

Annotated
program

Automate!

Type qualifier inference tools run in batch mode

15

Run type checker

Add or remove qualifiers

Refactor code

Infer
Program

Annotated
program

Human insight
needed

Batch-mode tools make arbitrary decisions

16

17

18

BUG

Batch-mode tools make arbitrary decisions

19

BUG

Type qualifier inference is a refactoring

◼ Adding type qualifiers preserves the program behavior

◼ Adding maintainable type qualifiers
that match the programmer's intention
requires code refactoring

20

Cascade: A Universal Programmer-assisted Type
Qualifier Inference Tool

21

Type InferenceType Checker
Cascade

Cascade: A Universal Programmer-assisted Type
Qualifier Inference Tool

22

Speculative
Analysis

Compositional
Refactoring

Cascade

Inferring Primitive Changes from Error Messages

23

Type Checker Error Fix

incompatible types in argument.
 root = root.loadTree(q, xqic);
 ^
found : @Nullable MathVector
required: @NonNull MathVector

Nullness

Inferring Primitive Changes from Error Messages

24

Type Checker Error Fix

incompatible types in argument.
 root = root.loadTree(q, xqic);
 ^
found : @Nullable MathVector
required: @NonNull MathVector

Change parameter xpic
of loadTree() to
@Nullable MathVector

Nullness

Inferring Primitive Changes from Error Messages

25

Type Checker Error Fix

incompatible types in argument.
 root = root.loadTree(q, xqic);
 ^
found : @Nullable MathVector
required: @NonNull MathVector

Change parameter xpic
of loadTree() to
@Nullable MathVector

Nullness

call to value(int) not allowed
on the given receiver.
 ic.value(k);
 ^
 found : @ReadOnly MathVector
 required: @Mutable MathVector

Mutability

Inferring Primitive Changes from Error Messages

26

Type Checker Error Fix

incompatible types in argument.
 root = root.loadTree(q, xqic);
 ^
found : @Nullable MathVector
required: @NonNull MathVector

Change parameter xpic
of loadTree() to
@Nullable MathVector

Nullness

call to value(int) not allowed
on the given receiver.
 ic.value(k);
 ^
 found : @ReadOnly MathVector
 required: @Mutable MathVector

Change receiver parameter
of value() to
@ReadOnly MathVector

Mutability

Speculative analysis suggests a change composition

27

Speculative analysis suggests a change composition

28

Speculative analysis suggests a change composition

29

Speculative analysis suggests a change composition

30

Cascade Tree

31

Cascade Tree

32

Cascade Tree

33

34

35

36

The speculative analysis computes a tree
recursively

37

p

e1

Program

Error

The speculative analysis computes a tree
recursively

38

p

c1e1

Program

Error

Fix

The speculative analysis computes a tree
recursively

p

c1e1

c1(p)

e2

e3

Program

Error

39

Fix

The speculative analysis computes a tree
recursively

40

p

c1e1

c1(p)
c2

e2

c3

e3

Program

Error

Fix

The speculative analysis computes a tree
recursively

41

p

c1e1

c1(p)
c2

e2

c3

e3 c3(c1(p))

c2(c1(p))Program

Error

e3

e4

Fix

A change is represented as an AST path

42

Primitive Change Representation

Variable Decl. Fixer Compilation Unit + Variable
Decl. + New Type

Method Return Fixer Compilation Unit + Method
Decl. + New Type

Method Receiver
Fixer

Compilation Unit + Method
Decl. + New Type

Research Questions

How does Cascade compare with
Julia, a batch qualifier inference tool?
◼ Learnability

◼ Quality of results

◼ Task completion time

◼ Control over process

◼ Willingness to use

43

User study

Subjects:
◼ 12 computer science graduate students

from 9 different research labs

◼ Familiar with Java and Eclipse

◼ Average of 10 years of programming experience

44

Training

◼ Nullness Checker

◼ Julia

◼ Cascade

45

github.com/reprogrammer/tqi-study

Task Design

46

Julia then Cascade Cascade then Julia

MST then BH 3 participants 3 participants
BH then MST 3 participants 3 participants

BH Barnes-Hut, a hierarchical force-calculation algorithm

MST Bentley’s algorithm for finding the minimum spanning tree of a
graph

Users complete tasks faster with Cascade

t test
◼ p = 0.01

◼ Cohen’s d = 1.13

47

Users added less inaccurate annotations with
Cascade

48

BH + MST

Julia Cascade

Correct 13.9 9.6

Incorrect 2.8 0.1

Redundant 1.7 0.4

Unnecessary warning
suppressions 7.2 0

Postquestionnaire Results

49

Questions
(T = Julia or Cascade)

Cascad
e

better

Equal
Rating

Julia
better

I found T easy to learn. 3 6 3
I know why T inserted
each annotation. 8 4 0

Using T, I have control
over the process of
annotating the code.

9 0 3

I'm willing to use T in the
future. 11 0 1

Qualitative Interview Results

The participants believe that:

◼ Cascade's speculative analysis is useful (N = 8).

◼ Cascade is more predictable (N = 7).

◼ Cascade's tree computation is slow (N = 5).

◼ The overhead of fixing Julia's annotations is high (N = 7).

50

Future Work

◼ Improve the performance of Cascade.

◼ Evaluate compositional refactoring and Cascade in the field.

◼ Make Cascade support bidirectional speculative analysis.

51

Cascade: A Universal Type Qualifier Inference Tool

◼ Cascade is easy to use and helps users complete tasks fast.

◼ Compositional refactoring and speculative analysis.

◼ Less is sometimes more in the automation of software
evolution tasks.
◼ More automation is not always better
◼ Some tasks need problem-solving and creativity
◼ Applicable to other fields

52

