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Type qualifiers allow additional static type checks

 static int oldSubindex(@Nullable MathVector ic, int l) {

    int i = 0;

    for (int k = 0; k < MathVector.NDIM; k++) {

      if (((int) ic.value(k) & l) != 0)

        i += Cell.NSUB >> (k + 1);

    }

    return i;

  }
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◼ Locking
◼ Aliasing
◼ Interning
◼ Immutability
◼ Tainting

*checkerframework.org

Java 8 supports custom type systems*
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+ additional static checks

- additional code annotation



The manual annotation process is tedious
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The manual annotation process is tedious

8Add or remove qualifiers

Refactor code

Run type checker



Type qualifier inference tools run in batch mode
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Type qualifier inference tools run in batch mode
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Nullness
Julia, Nit, JastAddJ Nullness, 
SALSA Nullness, Xylem, 
Daikon Nullness

Immutability
Javarifier, Pidasai, ReImInfer

Ownership
Universe and Ownership Type 
Inference System
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Type qualifier inference tools run in batch mode
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◼ Optimal under certain 
conditions

◼ Large change without 
user involvement

Strengths
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Type qualifier inference tools run in batch mode
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Weaknesses

◼ Limited to one set of 
qualifiers

◼ Unpredictable

◼ Rigid

◼ Inaccurate

Infer
Program

Annotated 
program



Type qualifier inference tools run in batch mode
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Type qualifier inference tools run in batch mode
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Run type checker
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Type qualifier inference tools run in batch mode
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Run type checker

Add or remove qualifiers

Refactor code

Infer
Program

Annotated 
program

Human insight 
needed



Batch-mode tools make arbitrary decisions
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Batch-mode tools make arbitrary decisions
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Type qualifier inference is a refactoring

◼ Adding type qualifiers preserves the program behavior

◼ Adding maintainable type qualifiers
that match the programmer's intention
requires code refactoring
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Cascade: A Universal Programmer-assisted Type 
Qualifier Inference Tool
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Speculative 
Analysis

Compositional 
Refactoring

Cascade



Inferring Primitive Changes from Error Messages
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Type Checker Error Fix

incompatible types in argument.
  root = root.loadTree(q, xqic);
                          ^
found   : @Nullable MathVector
required: @NonNull MathVector

Nullness
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Inferring Primitive Changes from Error Messages
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Type Checker Error Fix

incompatible types in argument.
  root = root.loadTree(q, xqic);
                          ^
found   : @Nullable MathVector
required: @NonNull MathVector

Change parameter xpic
of loadTree() to 
@Nullable MathVector

Nullness

call to value(int) not allowed 
on the given receiver.
      ic.value(k);
              ^
  found   : @ReadOnly MathVector
  required: @Mutable MathVector

Change receiver parameter 
of value() to 
@ReadOnly MathVector

Mutability



Speculative analysis suggests a change composition
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Speculative analysis suggests a change composition
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Speculative analysis suggests a change composition
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Cascade Tree
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Cascade Tree
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Cascade Tree
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The speculative analysis computes a tree 
recursively
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The speculative analysis computes a tree 
recursively
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A change is represented as an AST path
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Primitive Change Representation

Variable Decl. Fixer Compilation Unit + Variable 
Decl. + New Type

Method Return Fixer Compilation Unit + Method 
Decl. + New Type

Method Receiver 
Fixer

Compilation Unit + Method 
Decl. + New Type



Research Questions

How does Cascade compare with
Julia, a batch qualifier inference tool?
◼ Learnability

◼ Quality of results

◼ Task completion time

◼ Control over process

◼ Willingness to use
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User study

Subjects:
◼ 12 computer science graduate students

from 9 different research labs

◼ Familiar with Java and Eclipse

◼ Average of 10 years of programming experience
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Training

◼ Nullness Checker

◼ Julia

◼ Cascade
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github.com/reprogrammer/tqi-study



Task Design
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Julia then Cascade Cascade then Julia

MST then BH 3 participants 3 participants
BH then MST 3 participants 3 participants

BH Barnes-Hut, a hierarchical force-calculation algorithm

MST Bentley’s algorithm for finding the minimum spanning tree of a 
graph



Users complete tasks faster with Cascade

t test
◼ p = 0.01

◼ Cohen’s d = 1.13
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Users added less inaccurate annotations with 
Cascade
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BH + MST

Julia Cascade

Correct 13.9 9.6

Incorrect  2.8 0.1

Redundant  1.7 0.4

Unnecessary warning 
suppressions  7.2 0



Postquestionnaire Results
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Questions
(T = Julia or Cascade)

Cascad
e

better

Equal 
Rating

Julia 
better

I found T easy to learn. 3 6 3
I know why T inserted 
each annotation. 8 4 0

Using T, I have control 
over the process of 
annotating the code.

9 0 3

I'm willing to use T in the 
future. 11 0 1



Qualitative Interview Results

The participants believe that:

◼ Cascade's speculative analysis is useful (N = 8).

◼ Cascade is more predictable (N = 7).

◼ Cascade's tree computation is slow (N = 5).

◼ The overhead of fixing Julia's annotations is high (N = 7).
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Future Work

◼ Improve the performance of Cascade.

◼ Evaluate compositional refactoring and Cascade in the field.

◼ Make Cascade support bidirectional speculative analysis.
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Cascade: A Universal Type Qualifier Inference Tool

◼ Cascade is easy to use and helps users complete tasks fast.

◼ Compositional refactoring and speculative analysis.

◼ Less is sometimes more in the automation of software 
evolution tasks.
◼ More automation is not always better
◼ Some tasks need problem-solving and creativity
◼ Applicable to other fields
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