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Abstract

The permitted sequences of method calls in an object-
oriented component interface summarize how to correctly
use the component. Many components lack such documen-
tation: even if the documentation specifies the behavior of
each of the component’s methods, it may not state the or-
der in which the methods should be invoked. This paper
presents a dynamic technique for automatically extracting
the legal method call sequences in a component interface,
expressed as a finite state machine. Compared to previous
techniques, it increases accuracy and reduces dependence
on the test suite. It also identifies certain programming er-
rors.

1 Introduction

Software systems typically contain independently devel-
oped components. The system integrator needs a thorough
understanding of the component interfaces. Particularly for
components that implement or participate in protocols, or
that maintain state, the order in which methods are invoked
is crucial to the component’s correct operation. Specifica-
tion of methods in isolation may be inconvenient or insuffi-
cient: correctness of a method invocation often depends on
the order in which the component’s methods were invoked
previously.

For example, consider a generic file server (Figure 1).
The server first handles a USER message, which can be fol-
lowed immediately by a PASSWD or another USER mes-
sage if the first username was not accepted. If the password
is rejected, only another PASSWD message may come next.
Otherwise, the PASSWD message may be followed by a
RETRIEVE, SEND, or QUIT message. An arbitrary se-
quence of RETRIEVE or SEND messages can occur. Once
the QUIT message is received, no other methods may fol-
low. Extracting such ordering information is the goal of this
research.

This paper presents a dynamic technique for extracting
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Figure 1. A generic file server. The FSM summarizes the order in
which the methods should be called.

the legal method call sequences in an interface. Even when
sequencing information is implicitly or explicitly present,
automated tools can refine or double-check existing doc-
umentation. The technique uses dynamic invariant detec-
tion [ECGN01] to determine the likely pre/post-conditions
of each of the component’s methods, then uses logical com-
parison of pre/post-conditions to indicate which sequences
of calls are likely to be legal. The technique outputs the
legal call sequences in the form of a finite state machine
(FSM), with states representing methods and transitions
between states indicating what the next method call may
be. Such an FSM is an approximation to a set of call
sequences: transitions indicate that, under some circum-
stance, the method may be invoked safely, not that it can
alwaysbe invoked safely.

The FSM indicating legal call sequences is useful for a
number of purposes, including the following.

1. The FSM identifies the critical constraints on the order
in which methods may be invoked. For example, as
shown in Figure 2, a Java Thread’s start() method may
not be invoked twice in a row. Section 3.1 illustrates
this point.

2. Missing transitions in the FSM can indicate holes in
a test suite. Furthermore, the technique indicates the
reason a transition is disallowed, in the form of incom-
patible post- and pre-conditions. Hence, the program-
mer is aided in determining the exact test case to add.
Section 3.2 presents an example.

3. When used in combination with a call trace, our tech-
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Thread()
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Figure 2. An FSM representation of the legal method call se-
quences in a Java Thread object. The states correspond to meth-
ods, and transitions indicate what the next method call may be. In
a Thread, the programmer can call yield() immediately after the
constructor or start(). Calling start() immediately after itself is il-
legal.

nique can help identify representation exposure prob-
lems. Section 3.3 contains examples.

This paper is organized as follows. Section 2 ex-
plains our technique for extracting the legal method call se-
quences, including an automatic technique for determining
pre/post-conditions. Section 3 experimentally demonstrates
the effectiveness of the technique. Section 4 compares our
technique to previous work by Whaley et al. [WML02],
which our research builds upon. Section 5 discusses ad-
ditional related work, and section 6 concludes.

2 Technique

This section details our technique for extracting legal
method call sequences. Section 2.1 presents the algorithm,
which makes use of method pre/post-conditions. Sec-
tion 2.2 describes an automatic technique for determining
pre/post-conditions when they have not been supplied by
the original component programmer. Section 2.3 discusses
two potential shortcomings of the technique that may yield
non-ideal FSMs.

2.1 Obtaining FSMs from pre/post-conditions

Method pre/post-conditions indicate much about legal
method call sequences. If the post-conditions of method
A are mutually exclusive with the pre-conditions of method
B, then B may never be called immediately after method A
(from the point of view of the client). Otherwise, there is
some circumstance in which a call to method B may imme-
diately follow a call to method A. We consider a method
call sequencelegal if the post-conditions of each method
do not conflict with the pre-conditions of the immediately
following method.

We represent the set of all legal call sequences as a fi-
nite state machine (FSM), with methods corresponding to
states and transitions between states denoting the methods
that may be called immediately after another method (Fig-
ure 2). A transition from method A to B indicates that under
some circumstance, method B may follow method A, not

that it must be allowed in all cases. For example, in Fig-
ure 3, the transition in StringTokenizer’s FSM from next()
to next() indicates that next() may be called immediately
after next() under some circumstance. The transition is not
always legal — it is only legal when there are actually more
tokens available.

Our technique creates the FSM as follows:

1. Determine the likely pre/post-conditions of each
method. Because of a lack ofa priori specifications,
our experiments use the Daikon invariant detector to
identify these likely invariants, as discussed in Sec-
tion 2.2. If available, we could use the pre/post-
conditions provided by the programmer in specifica-
tions.

2. Compare the pre-conditions of each method to the
post-conditions of every method (including itself). If
they are not mutually exclusive, add the corresponding
transition to the FSM.

The resulting FSM summarizes the legal method call se-
quences. Our prototype tool can present this FSM to the
user as text or as a graphical representation.

We follow other researchers [CW98a, WML02] in sum-
marizing call sequences by means of anoptimisticFSM in
which a transition between methods A and B indicates that
in some circumstance, a call to method A may be imme-
diately followed by a call to method B. Alternately, in a
pessimisticFSM, the transition indicates that after any call
to method A, a call to method B is permitted, and call se-
quence pairs represented by missing transitions may some-
times be possible. We could create a pessimistic FSM by
changing the algorithm to add transitions only when one
method’s preconditions imply another’s postconditions. We
found such FSMs both smaller and (in our opinion) less use-
ful, but they might be appropriate in some circumstances.

2.2 Determining pre/post-conditions

The technique of Section 2.1 uses method pre/post-
conditions in order to determine which call sequences are
illegal. Preferably, a programmer would supply exhaus-
tive pre/post-conditions, and would ensure their correctness
via theorem-proving or other verification techniques. (Even
more ideally, the programmer would also document the le-
gal method call sequences, removing the necessity to infer
them. That would remove the primary need for our tech-
nique, though it could still be useful for refining or double-
checking the documentation.) Unfortunately, such speci-
fications are typically absent and, even when present, are
rarely exhaustive. In particular, the experiments of Sec-
tions 3 and 4 used programs that lacked such specifications.
Therefore, we automatically generated pre/post-conditions
for use in the experiments.
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Various techniques exist for determining method
pre/post-conditions. Previous work [WML02] obtained
these invariants from a sound and conservative, but
weak, static analysis. We use dynamic invariant detec-
tion [ECGN01], which is much more precise and is accurate
in practice [NE02] but is not guaranteed to be sound.

Dynamic invariant detection is a run-time technique
for determining likely program properties; a set of likely
program properties is also called an operational abstrac-
tion [HME03]. Our experiments use the Daikon implemen-
tation of invariant detection. Daikon operates on Java, C,
and Perl programs, among others, and reports representa-
tion invariants and method pre/post-conditions; in this re-
search, we applied it to Java programs and ignored the rep-
resentation invariants.

Dynamic invariant detection monitors program execu-
tion (over whatever runs a user chooses, such as those from
a test suite), observes the values the program computes,
and generalizes from those values. In particular, at method
entry and exit, the Daikon tool compares each variable in
scope (including parameters, return values, class variables,
and globals) to each other variable in scope. The gen-
eralization step uses an efficient generate-and-check algo-
rithm that postulates many potential invariants and elimi-
nates those that are ever falsified by observed values. It
also uses static analysis, statistical analysis, and other tech-
niques to enhance its output and to avoid reporting false
positives [ECGN00].

Dynamic invariant detection is neither complete nor
sound. It is incomplete because the grammar of proper-
ties that it checks is necessarily finite; that grammar was
designed to be simple, broad, and generally useful, with un-
complicated invariants that can be applied in a number of
situations. We did not modify the grammar for the exper-
iments reported in this paper. However, users can assuage
completeness problems by adding additional invariants to
the Daikon invariant detector; doing so requires only writ-
ing a Java class that implements an interface containing four
methods.

Dynamic invariant detection is unsound because the
properties are likely, but not guaranteed, to hold in general.
As with other dynamic approaches such as testing and pro-
filing, the accuracy of the inferred invariants depends in part
on the quality and completeness of the test cases. If the ob-
served executions do not fully characterize all possible ex-
ecution environments, a candidate invariant that could have
been falsified by an additional test case may be reported.

2.3 Accuracy of the technique

Given perfect pre/post-conditions, our technique creates
an ideal FSM. (An FSM is a concise approximation of a
set of call sequences, so some information may be lost, but
the FSM would be as good as possible.) In the absence of

hasMoreElements()
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hasMoreElements()
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Daikon:

//pre: newPosition == -1

//post: newPosition > 0

hasMoreElements()


//pre: none

//post: none

next()


Actual:

//pre: none

//post: none

hasMoreElements()


//pre: none

//post: none

next()


Figure 3. If the test suite is incomplete, our technique misses tran-
sitions. Suppose that while testing StringTokenizer, newPosition is
always set to -1 when hasMoreElements() is invoked. Then invari-
ant detection incorrectly reports a pre-condition of newPosition ==
-1 for hasMoreElements(), and our technique misses the transition
from hasMoreElements() to hasMoreElements().

programmer-supplied specifications, we use likely invari-
ants produced by the Daikon tool, as noted in Section 2.2.
Dynamic invariant detection is neither sound nor complete,
and these inaccuracies have the potential to result in an FSM
with missing or extraneous transitions. (Both problems also
occur with non-perfect human-supplied specifications, and
extraneous transitions can result from a conservative static
analysis.)

Incorrect invariants result in missing transitions. Dy-
namic analysis is inherently dependent on the quality of the
test suite. With an incomplete test suite, the invariant de-
tector may report over-specific pre/post-conditions — they
held during the execution of the test suite, but will not nec-
essarily hold for all executions. Figure 3 presents such an
example. A component programmer comparing his or her
mental model to the extracted model will notice the incom-
pleteness, and improve the test suite accordingly (see Sec-
tion 3.2). When the component programmer has not veri-
fied the extracted FSM, it still provides useful information
to others, as illustrated in Section 4.1. (Missing transitions
can indicate not only poor test suites, but also code errors;
see Section 3.3.)

Missing invariants result in extraneous transitions. The
Daikon invariant detector reports many commonly used
types of invariants, but not all possible invariants; for ex-
ample, it does not report the invariantx is prime . If
such an invariant is missing from a pre- or post-condition,
then pre/post-conditions that are actually mutually exclu-
sive may not be identified as mutually exclusive, and our
technique would infer incorrect transitions. This never oc-
curred in our experiments (including ones not reported in
this paper), but Figure 4 presents an example of how such a
problem might occur.
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Daikon:

//pre: none

//post: x == 0

PrimeStream()
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//post: none
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Actual:

//pre: none

//post: x == 0

PrimeStream()


//pre: x is prime

//post: x is prime

next()


Figure 4. When invariant detection cannot detect all of the invari-
ants present in the program, our technique may infer incorrect tran-
sitions. In this example, suppose the invariant detector cannot de-
tect thex is prime invariant. Then our technique incorrectly
infers a transition from PrimeStream() to next(), even though it is
not possible in reality.

3 Experiments

This section presents experiments that illustrate the ef-
fectiveness of our technique: it extracts important con-
straints on call sequences, helps locate test suite deficien-
cies, and can aid in identifying representation exposure
problems.

3.1 Identifying critical illegal call sequences

We extracted FSMs representing the legal method call
sequences for several Java library classes. Figure 5 lists
some components we tested our program on, a brief descrip-
tion of the component, the test suite used, and an English
description of the critical constraints automatically identi-
fied as illegal. The programs shown include all those from
Whaley et al [WML02] for which interesting results were
presented. We extracted FSMs from a variety of other pro-
grams as well, but the results were of little value: the true
FSMs permitted all or most transitions and so did not yield
insight regarding component use.

3.2 Identifying test suite deficiencies

A programmer can use our technique to identify test suite
deficiencies. To illustrate this point, consider the StringTo-
kenizer class. We built our own test suite to extract an FSM.
In building the test suite, we found that our technique pro-
vided useful information on how to improve the test suite.

We first built a black-box test suite of the component,
which we believed to be of good quality. A programmer
might make a similar test suite in practice. We then ex-
tracted an FSM for the StringTokenizer using this test suite,
and compared the FSM to the actual, known FSM, which
contains all 54 possible transitions. (The lack of interesting
constraints is why StringTokenizer does not appear in Fig-
ure 5.) A programmer might make a similar comparison,

between a mental model and the tool’s output. Missing tran-
sitions in the extracted FSM indicate test suite deficiencies.
The Daikon extracted FSM contained only 36 transitions,
indicating significant deficiencies in the initial test suite.
While a simple call trace would also indicate holes in the
test suite, our technique provides useful information on how
to improve the test suite beyond the sequences of method
invocations which were not explicitly tested. Furthermore,
the Whaley dynamic technique of Section 4.2 produced an
FSM containing only 6 transitions from this test suite.

In order to determine which test cases to add, we ex-
amined the conflicting invariants that caused transitions to
be eliminated using our technique. All of the missing tran-
sitions involved the invariantnewPosition == -1 . For
example, the invariant detector reported a pre-condition of
newPosition == -1 and a post-condition ofnewPosi-

tion > 0 for the hasMoreElements() method. In develop-
ing the test suite, we had assumed that hasMoreElements()
did not change the state of the object, and therefore, the test
suite did not need to make consecutive calls to it. However,
hasMoreElements() does change the state of the object, as
it updates thenewPosition field which indicates where
in the String the next token begins. The technique gave us
an indication of the state to put the object into before mak-
ing the corresponding method invocations, to ensure the ex-
tracted FSM contains the desired transition. In essence, it
pinpointed the exact test case to add.

Alternately, for transitions that are properly missing, the
pre/post-conditions indicate exactly why the invariant is ex-
cluded from the extracted FSM, aiding in understanding of
the impossibility of a call sequence. This abstraction of be-
havior is more useful to programmers than simply the in-
formation that a particular call sequence has not yet been
covered by a test suite.

3.3 Locating representation exposure problems

The data abstraction paradigm requires programmers to
hide the implementation details of a software component
from the outside world. Components that adhere to this
principle are easier to maintain and reuse [LG86].Repre-
sentation exposureoccurs when an implementation fails to
fully encapsulate all implementation details. For instance,
clients might be able to observe or, more seriously, to mod-
ify, concrete data structures held in variables or fields. Rep-
resentation exposure of mutable data structures can allow
client code to push a component into an illegal state. Com-
bining our technique with a call trace (an ordered list of
observed calls from some program execution) can some-
times locate such problems. One attractive property of our
technique is that it identifies representation exposures be-
fore they cause faults, by noticing inconsistencies between
the inferred FSMs and the actual call traces. Thus, if a client
modifies an implementation’s data structures directly, but in
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Component Description Test Suite Executed Key Constraints Identified
Vector, LinkedList,
ArrayList

Data structures
in java.util

Nimmer [NE02] Data must be added to a data structure be-
fore it can be accessed or removed.

FileInputStream,
FileOutputStream,
FileReader, FileWriter

Streams in
java.io

Copy program from Java
Tutorial

A stream cannot be read from after it is
closed.

PlainSocketImpl,
ServerSocket,
DatagramSocket,
MulticastSocket

Networking
components in
java.net

HttpTest program from
JCSL

A connection cannot be read/written after it
is closed.

ThreadGroup, Thread Thread
components in
java.util

HttpTest program from
JCSL (uses multi-threaded
server)

A thread cannot be started twice.

Signature Security
component in
java.security

SimpleSignatureTest from
JCSL

Cannotverify an object that is insign

state, and vice versa.

Figure 5. Some components we extracted FSMs for. The table contains the name of the component, a general description of its function,
the test suite we used to extract the FSM, and the method call sequences that our technique identified as illegal.

a safe way that permits the program to continue running, our
technique can identify the representation exposure nonethe-
less.

Suppose a client makes two method calls on an object,
with no other calls in between. However, in between the
two calls, the client somehow changes the state of the object
without calling a method, i.e., the component programmer
exposed the representation. The call trace shows that the
two methods were called consecutively. However, the FSM
extracted using our technique will not necessarily show this
transition, if the state of the object is changed between the
two method invocations in a manner such that the pre/post-
conditions detected become mutually exclusive. Therefore,
if the call trace contains consecutive method invocations
that do not appear in the FSM extracted using our tech-
nique, there is probably a representation exposure problem,
because invariant detection cannot possibly report mutually
exclusive pre/post-conditions between consecutive method
calls unless the state is changed between the two calls, with-
out calling a method. We present two examples where this
technique successfully identifies representation exposure.

We first consider the PlainSocketImpl class, the default
implementation of a network socket, in the java.net pack-
age. We used as a test suite the HttpTest program, part of
a larger test suite for many of the standard Java networking
components. The call trace contained PlainSocketImpl()–
getOutputStream() pairs (that is, sometimes getOutput-
Stream() was called immediately after the constructor), but
such sequences were not permitted by the inferred FSM.
The inferred FSM forbade such sequences because getOut-
putStream() requires that theaddress field not be null, but
the constructor does not initialize theaddress field. When
we read the code, we found that the ServerSocket class di-
rectly sets theaddress field. External code can modify

the state of the PlainSocketImpl component without calling
a method because theaddress field has protected access.
This makes for a fragile system — if the programmer of
PlainSocketImpl renames theaddress field, components
that depend on PlainSocketImpl will break. Also, external
code could assign theaddress field to null, causing the
PlainSocketImpl to malfunction.

Another variety of representation exposure problems re-
sults from returning an internal data structure, such as an ar-
ray, instead of a copy of the array. If the exposed data struc-
ture is mutable, external code can modify it, and thereby
push the component into an unexpected state. Figure 6
shows a simplified example of such an error. The getEle-
ments() method returns theelements Vector, instead of a
copy of it. If client code uses the class as indicated in the
main method, the program continues without error; how-
ever, the CharSet contains String objects instead of Char-
acter objects, which is not the intended behavior. We can
identify such a problem by extracting the FSM, and com-
paring the results to a call trace as described above. The ex-
tracted FSM does not allow calling remove(int) after getEle-
ments(), even though it occurs in the call trace. This in-
dicates that the object has changed between the calls to
getElements() and remove(int), leading a programmer to the
representation exposure in getElements().

4 Comparison to other techniques

This research represents an improvement on Whaley et
al.’s “Automatic extraction of object-oriented component
interfaces” [WML02]. Whaley presents a technique for ex-
tracting the legal method call sequences in a component in-
terface, and presents them as a FSM. (Whaley refers to this
FSM as the interface, but we call it the legal call sequences
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public class CharSet {
private Vector elements = new Vector();

public void add(char c) {
Character ch = new Character(c);
if (!elements.contains(ch)) {

elements.add(ch);
}

}
// Representation exposure: should return a copy
public Vector getElements() {

return elements;
}
public void remove(int i) {

elements.remove(i);
}
...

}

public class CharSetClient {
public static void main(String[] args) {

CharSet s = new CharSet();
s.add(’a’);
// Directly modify the elements vector.
s.getElements().set(0, "string");
// No run-time error
s.remove(0);

}
}

Figure 6. A simple example of representation exposure that causes
no run-time error (for this client), but is detected by our technique.
The class incorrectly returns the elements Vector, instead of a copy.
The CharSetClient class illustrates how to modify the state of the
CharSet without calling its methods.

to avoid confusion over better-known meanings for “inter-
face”.) Whaley extracts two such FSMs, using two distinct
strategies. The first strategy conservatively identifies illegal
transitions using a static analysis of the program text. The
second approach, a dynamic analysis, conservatively iden-
tifies legal transitions. These two FSMs bound the actual,
unknown FSM in number of transitions — the static FSM is
an upper bound while the dynamic FSM is a lower bound.

4.1 Whaley static analysis

Whaley’s static analysis operates exactly like our dy-
namic analysis presented in Section 2.1, except that the
pre/post-conditions are obtained via a conservative static
analysis rather than via a dynamic analysis.

Preconditions are the conjunctions of the negations of
the conditions under which a method is guaranteed to throw
an error. Whaley’s static analysis assumes that program-
mers check method pre-conditions and explicitly throw ex-
ceptions to indicate violations.

More specifically, the static analyzer creates a control
flow graph for each method, finds the statements that throw
exceptions, and identifies the path from the start node in
the graph to these statements. The logicalnand of all the
conditional expressions on the path correspond to one pre-

condition of the method that is statically checked. Only
condition of the formvariable == constant or vari-

able != constant are considered; all other conditions
are ignored. For example, suppose the conditional expres-
sions on two separate paths are [state == 0 andvar ==

2] and [state == 2 andvar == state ]. Whaley’s an-
alyzer classifiesnot(state == 0 && var == 2) as a
pre-condition.

Each pre-condition found by the static analyzer is guar-
anteed to be correct, but the list of pre-conditions is not
necessarily complete. In some cases, programmers practic-
ing defensive programming may check pre-conditions; but
by definition, a precondition is something that a method is
permitted to assume without checking, and programmers
may omit checks for performance reasons. Furthermore,
the method may throw a runtime exception implicitly that
does not have to be thrown explicitly [Blo01], or the pre-
condition check may be of another syntactic form, causing
the analysis to miss the pre-condition.

Postconditionsare properties of the formvariable ==

constant that are guaranteed to hold at method exit. The
analyzer identifies assignments of variables to constants that
are made on every possible path through the method, and
are not later changed on the path.

The FSM remaining after eliminating conflicting
pre/post-conditions (Section 2.1) is an upper bound on the
actual FSM. The pre/post-conditions identified are defi-
nitely accurate, so the transitions removed from the FSM
are definitely not allowed.

4.2 Whaley dynamic analysis

Whaley’s dynamic analysis runs a program and creates
an FSM from the observed call sequences, adding a tran-
sition for each successive pair of observed method calls.
Whaley notes two shortcomings of this technique. First,
as with any dynamic analysis, the result is dependent on the
quality of the test suite. Our technique is less prone than
Whaley’s to poor test suites (see Section 4.3.2).

Second, accessor methods can cause the technique to
yield an incorrect model. For example, in a data struc-
ture, size() and elementAt(int) operations do not change
the state of the object. However, if the test suite always
makes calls in the sequence add–size–elementAt, no transi-
tion from size() to add() is recorded. To avoid this problem,
Whaley statically identifies the state-preserving methods by
searching the method for assignments to class or instance
variables. If there are no such assignments, the method
is considered state-preserving. For each state preserving
method invocation, Whaley adds a transition from the last
state-modifying method invoked. Additionally, transitions
are added so that all of the state-preserving methods invoked
consecutively form cliques in the FSM.
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By contrast, our technique does not need such an anal-
ysis, which is prone to conservatism in identifying state-
preserving methods. If a method is state-preserving, then
the invariant detector will report identical preconditions and
postconditions for it. Furthermore, the invariant detector
will report preconditions for every other method that are in-
dependent of the methods invoked previously. Thus, our
technique permits method call sequences that were never
taken to be identified as legal, based on method pre/post-
conditions inferred from observed executions.

Section 3.3 noted a third problem with Whaley’s dy-
namic technique: representation exposure errors can lead
to incorrect FSMs. As noted in Section 3.3, our technique
permits detection of such errors.

4.2.1 Comparison with our technique

Our technique extracts FSMs that are at least as complete
as those of the Whaley dynamic technique. Except in cases
where the representation is exposed, the pre/post-conditions
detected for methods that were invoked consecutively can-
not conflict. This property ensures that the extracted FSM
contains as many transitions as a simple call trace analysis.

The Whaley dynamic technique adds the additional in-
sight of separating state-preserving methods. Our technique
inherently separates state-preserving methods — the invari-
ants detected at method entry and exit are identical for these
methods. Hence, the extracted FSM is guaranteed to con-
tain all of the transitions that are in the Whaley dynamically
extracted FSM.

Our technique achieves greater completeness by using
invariants to infer transitions that were not seen at runtime.
The technique can infer these transitions because the dy-
namically detected invariants generalize to future runs. If
the pre/post-conditions of two methods do not conflict, then
it is likely that consecutive invocation of the two methods is
legal. Even if such consecutive invocation did not occur in
the specific test suite, our technique infers it from the condi-
tions that hold when each of the methods is invoked in other
circumstances.

4.3 Experimental comparison
The Whaley techniques and our technique have the same

goal: producing an FSM that approximates legal call se-
quences. Our experiments suggest that our technique has
several advantages over Whaley’s techniques. (We expect
that combining the techniques, rather than using either in
isolation, will prove most advantageous in the long run.)
First, our technique produces an estimate that is closer to
the correct FSM than either of Whaley’s techniques (Sec-
tion 4.3.1). Second, our technique is less sensitive to test
suite than Whaley’s dynamic technique: it produces a good
estimate of the true FSM even from a poor test suite (Sec-
tion 4.3.2). Third, our technique can identify representation

errors (Section 3.3). Fourth, our technique can indicate how
to improve test suites in terms of data values as well as call
sequences (Section 3.2).

The major disadvantage of using our technique is that
the extracted FSM may contain incorrect transitions, as sug-
gested in Section 2.3. Given a test suite that executes every
feasible pair of method sequences, Whaley’s dynamic tech-
nique would produce the true FSM; our technique would
have no missing transitions but might suffer from extra tran-
sitions. This problem never occurred in our experiments
over large portions of the Java standard libraries, but makes
a case for using the FSMs extracted using each technique in
combination.

4.3.1 Comparison of extracted FSMs

We implemented the three techniques and evaluated them
on a collection of programs. The results of several of
these experiments are shown in Figure 7. For the dy-
namic analyses, we started with test suites in the Java source
package available under the Java Community Source Li-
cense [Sun]. When none were available or they were unre-
alistically small, we developed our own test suites by hand,
an easy task taking only a few minutes per program.

The test subjects of Figure 7 are StackAr, QueueAr,
Vector, StringTokenizer, PlainSocketImpl, and Signature.
StackAr and QueueAr are array-based implementations of
simple data structures, found in a Java data structures
book [Wei99]. Vector is the implementation of a vector
data structure from the java.util package in the Java Stan-
dard Development Kit. The StringTokenizer class, a utility
class for parsing a string, also originates from this source.
The PlainSocketImpl class is the default implementation of
network sockets in Java. Signature, from the java.security
package, provides authentication.

Because extracting call sequence FSMs is an information
retrieval task, we report our results in terms of the standard
precision and recall measures [Sal68, vR79]. Precision, a
measure of correctness, is the fraction of reported transi-
tions that appear in the goal:correct

reported. Recall, a measure of
completeness, is the fraction of goal transitions that are re-
ported: correct

goal . Both measures are always between 0 and 1.
As expected, the Whaley static FSM was an upper bound

on the actual FSM, and the Whaley dynamic FSM was a
lower bound. Our technique induced the actual FSM in ev-
ery case.

We briefly give an example of the differences. In the case
of Vector, the static analysis identified that calling firstEle-
ment() or lastElement() immediately after removeAllEle-
ments() or the constructor is illegal. The Whaley dynamic
analysis also classified such transitions as illegal, but con-
cluded that the only method that could be called immedi-
ately after two of the constructors is addElement(Object).
Our technique extracted the correct model.
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Total Actual Whaley static Daikon dynamic Whaley dynamic Suite
Class possible trans. rec. prec. trans. rec. prec. trans. rec. prec. size
Vector 648 628 640 1.00 .981 628 1.00 1.00 112 .178 1.00 76
StackAr 63 63 63 1.00 1.00 63 1.00 1.00 42 .666 1.00 18
QueueAr 48 45 48 1.00 1.00 45 1.00 1.00 32 .711 1.00 12
Signature 289 275 276 1.00 .938 275 1.00 1.00 177 .644 1.00 177
StringTokenizer 54 54 54 1.00 1.00 54 1.00 1.00 24 .444 1.00 21
PlainSocketImpl 324 316 324 1.00 .975 316 1.00 1.00 215 .664 1.00 215
Average 238 230 234 1.00 .982 230 1.00 1.00 117 .551 1.00 87

Figure 7. For each class listed in the first column, we compared the FSMs extracted using each technique. The chart shows the number of
legal transitions, precision, and recall of each technique compared to the actual FSM. Test suite size is number of consecutive invocations
(number of calls in the call trace); we made no effort to reduce the size of the test suites.

4.3.2 Dependence on test suite

A test suite that tests every possible sequence of method in-
vocations in every possible state of the component yields
identical models in our experiments using the Daikon based
technique or the Whaley dynamic technique; however, such
test suites are burdensome to write. The Whaley dynamic
technique relies more heavily on the quality of the test
suite — poor test suites yield poor results. By contrast, our
technique both gives better results and improves its results
more rapidly as the test suite improves.

For example, we ran both dynamic techniques using the
(bare-bones) Sun-provided test suites for the PlainSock-
etImpl, Signature, and StringTokenizer classes. Both dy-
namic approaches yielded 100% precision. The Whaley dy-
namic approach gave average recall of 11%, and the Daikon
dynamic approach had average recall of 47%. This differs
from the numbers show in Figure 7, which benefited from a
modest amount of work (far less than one hour per class) to
augment poor test suites.

To further quantify the effect of test suite quality, we
performed an experiment using the Vector and Signature
classes in the java.security package. We chose Vector be-
cause it is fairly easy to write a test suite for. We selected
Signature because it has a model more complex than the
simple put/get relations of Vector, and the documentation
explicitly states the legal call sequences. For each class, we
built a thorough test suite that would yield the correct results
using the Whaley dynamic analyzer. However, we limited
the methods we tested for each class, because we cared only
about the methods that have interesting constraints on the
call sequences. For Vector, we tested the constructor and the
elementAt, addElement, removeElement, and size methods.
In the Signature test suite, we called only the nine meth-
ods that are important in the model: initVerify, initSign1,
initSign2, sign1, sign2, sign3, update1, update2, and verify,
where subscripts indicate overloaded method names.

We randomly selected test cases from these suites, and
extracted FSMs using both dynamic analyses. Some of
the test cases exercised more than just two methods, be-

cause testing a pair of consecutive methods requires some
setup. For example, in a Vector, to test the transitions from
add(Object) to remove(int), the Vector() to add(Object)
transition must also be tested. For uniformity, we always
ran a set of simple test that have the same effect as this setup
code. The simple test for Signature is the one described in
Section 3, which accounts for six transitions in the Whaley
dynamic FSM and 38 in the Daikon FSM. For the Vec-
tor test, we simply created a new Vector, added an element,
checked the size, and removed the element. This accounts
for three transitions in the Whaley dynamic FSM and eight
in the Daikon FSM.

Figure 8 gives the results of these experiments. Our tech-
nique’s FSM approaches a final value far more quickly than
the Whaley dynamic FSM. The Daikon curve quickly ap-
proaches its final value, while the Whaley dynamic tech-
nique takes significantly longer to stabilize. This is further
indication that our technique is more tolerant of poor test
suites than the Whaley dynamic technique.

5 Related work
Automatically extracting legal method call sequences is

far from a new concept. Parnas [BP78, PW89] first sug-
gested using legal method call sequences to specify inter-
faces. He introduced a language for specifying the legal
sequences. However, the constraints become difficult to ex-
press on large components because the number of possible
legal sequences becomes too large. Classifying each possi-
ble sequence as legal or illegal manually is impractical, and
places too large a burden on the programmer.

Koskimies [KMST96] proposed using dynamic program
traces to extract state charts from legacy code, but the tools
were not automated. The extracted information is equiva-
lent to a call trace of the program. Whaley’s dynamic ana-
lyzer is an automation of this technique, with the additional
insight on state-preserving transitions.

Cook and Wolf [CW98a] generalize from event traces
to finite state machines, in the domain of software change
processes. Their FSMs capture sequence, selection, and it-
eration, and they evaluate three different techniques: one
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Figure 8. For the Signature and Vector classes, we compared three
FSM extraction techniques over test suites of varying size. This
figure graphs the number of transitions versus the number of test
cases executed, averaged over ten runs at each test suite size. Our
technique extracts an FSM that converges more quickly to the true
FSM than the Whaley dynamically extracted FSM; the Whaley
statically extracted FSM never converges to the true FSM, but does
provide an upper bound.

statistical, one algorithmic, and one mixed. They also
discuss how to detect patterns of concurrent behavior
from event traces, inferring system behavior from statis-
tics over number, frequency and regularity of event occur-
rences [CW98b].

Much work has been devoted to extracting and verifying
temporal properties of components. Ammons et al [ABL02]
used machine learning to extract temporal constraints on
interfaces. Like our technique, traces of program execu-
tion are recorded. The Ammons technique inputs these
traces to machine learning software, which attempts to iden-
tify the important temporal specifications. One difference
is that Ammons’s technique uses a machine learning tech-
nique that handles noise; it can infer sequences that do not
perfectly match the observed executions. By contrast, our
technique is not resilient to noise: its output is a faithful ab-
straction of its input (up to the limits of its accuracy). The

two approaches are complementary, and each may be more
appropriate for certain applications.

Recently, the Daikon system has been augmented to de-
tect temporal invariants in addition to pre/post-conditions.
The system analyzes program traces to identify ordering
constraints on various types of inputs, such as the assign-
ment of a variable or the invocation of a method. The sys-
tem can identify put/get and open/close constraints such as
the ones we have extracted, but will most likely prove to
be more dependent on test suite quality, because it does not
make use of pre/post-conditions.

6 Conclusion

This paper presents a novel method for extracting legal
method call sequences from software components. As oth-
ers have done, we extract a finite state machine represent-
ing the sequences, with methods as states and transitions
between states indicating what the next method called may
be.

Our technique uses dynamically detected likely method
pre/post-conditions, to identify illegal transitions. The tech-
nique can thus use execution traces to infer the legality of
transitions that were never taken during the observed execu-
tions. The technique may theoretically result in missing or
extraneous transitions, but we found the former to be both
relatively infrequent and easy to fix (and the technique aids
in such corrections), and the latter never occurred in prac-
tice.

Our technique improves over previous techniques in sev-
eral respects: the extracted FSM is more accurate (is closer
to the true FSM), is less dependent on the quality of the test
suite for the component, is useful in identifying test suite
deficiencies, and can identify representation errors.
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