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Abstract e @5
The permitted sequences of method calls in an object- ¢ % .
oriented component interface summarize how to correctly @ @ @
use the component. Many components lack such documen- U
tation: even if the documentation specifies the behavior of
each of the component’s methods, it may not state the or-Figure 1. A generic file server. The FSM summarizes the order in
der in which the methods should be invoked. This paper Which the methods should be called.
presents a dynamic technique for automatically extracting
the legal method call sequences in a component interfacethe legal method call sequences in an interface. Even when
expressed as a finite state machine. Compared to previou§eduencing information is implicitly or explicitly present,

techniques, it increases accuracy and reduces dependend@itomated tools can refine or double-check existing doc-

on the test suite. It also identifies certain programming er- Umentation. The technique uses dynamic invariant detec-
rors. tion [ECGNO1] to determine the likely pre/post-conditions

of each of the component’s methods, then uses logical com-
1 Introducti parison of pre/post-conditions to indicate which sequences
ntroduction of calls are likely to be legal. The technique outputs the

Software systems typically contain independently devel- legal call sequences in the form of a finite state machine
oped components. The system integrator needs a thoroughFSM), with states representing methods and transitions
understanding of the component interfaces. Particularly for between states indicating what the next method call may
components that implement or participate in protocols, or be. Such an FSM is an approximation to a set of call
that maintain state, the order in which methods are invokedsequences: transitions indicate that, under some circum-
is crucial to the component’s correct operation. Specifica- Stance, the method may be invoked safely, not that it can
tion of methods in isolation may be inconvenient or insuffi- alwaysbe invoked safely.
cient: correctness of a method invocation often depends on The FSM indicating legal call sequences is useful for a
the order in which the component’s methods were invoked number of purposes, including the following.

previously.

For example, consider a generic file server (Figure 1). 1. The FSM identifies the critical constraints on the order
The server first handles a USER message, which can be fol-  in which methods may be invoked. For example, as
lowed immediately by a PASSWD or another USER mes- shown in Figure 2, a Java Thread’s start() method may

sage if the first username was not accepted. If the password  not be invoked twice in a row. Section 3.1 illustrates
is rejected, only another PASSWD message may come next.  this point.
Otherwise, the PASSWD message may be followed by a 2. Missing transitions in the FSM can indicate holes in

RETRIEVE, SEND, or QUIT message. An arbitrary se- a test suite. Furthermore, the technique indicates the
guence of RETRIEVE or SEND messages can occur. Once reason a transition is disallowed, in the form of incom-
the QUIT message is received, no other methods may fol- patible post- and pre-conditions. Hence, the program-
low. Extracting such ordering information is the goal of this mer is aided in determining the exact test case to add.
research. Section 3.2 presents an example.

This paper presents a dynamic technique for extracting 3. When used in combination with a call trace, our tech-



@ that it must be allowed in all cases. For example, in Fig-
ure 3, the transition in StringTokenizer's FSM from next()

to next() indicates that next() may be called immediately
@ after next() under some circumstance. The transition is not
always legal —it is only legal when there are actually more

tokens available.
Our technique creates the FSM as follows:

oy

Figure 2. An FSM representation of the legal method call se-
quences in a Java Thread object. The states correspond to meth-
ods, and transitions indicate what the next method call may be. In
a Thread, the programmer can call yield() immediately after the

1. Determine the likely pre/post-conditions of each
method. Because of a lack afpriori specifications,
our experiments use the Daikon invariant detector to

constructor or start(). Calling start() immediately after itself is il- identify these likely invariants, as discussed in Sec-
legal. tion 2.2. If available, we could use the pre/post-
conditions provided by the programmer in specifica-

nigue can help identify representation exposure prob- tions.

lems. Section 3.3 contains examples. -
2. Compare the pre-conditions of each method to the

This paper is organized as follows. Section 2 ex- post-conditions of every method (including itself). If
plains our technique for extracting the legal method call se-  they are not mutually exclusive, add the corresponding
quences, including an automatic technique for determining transition to the FSM.
pre/post-conditions. Section 3 experimentally demonstrates ) )
the effectiveness of the technique. Section 4 compares our The resulting FSM summarizes the legal method call se-
technique to previous work by Whaley et al. [WML02], duences. Our prototype tool can present this FSM to the

which our research builds upon. Section 5 discusses adHSer as text or as a graphical representation. _
ditional related work, and section 6 concludes. We follow other researchers [CW98a, WMLO2] in sum-

marizing call sequences by means ofautimisticFSM in
> Techni which a transition between methods A and B indicates that
echnique in some circumstance, a call to method A may be imme-
This section details our technique for extracting legal diately followed by a call to method B. Alternately, in a
method call sequences. Section 2.1 presents the algorithmpessimistid-SM, the transition indicates that after any call
which makes use of method pre/post-conditions. Sec-to method A, a call to method B is permitted, and call se-
tion 2.2 describes an automatic technique for determiningguence pairs represented by missing transitions may some-
pre/post-conditions when they have not been supplied bytimes be possible. We could create a pessimistic FSM by
the original component programmer. Section 2.3 discusseschanging the algorithm to add transitions only when one
two potential shortcomings of the technique that may yield method’s preconditions imply another’s postconditions. We
non-ideal FSMs. found such FSMs both smaller and (in our opinion) less use-
ful, but they might be appropriate in some circumstances.
2.1 Obtaining FSMs from pre/post-conditions

Method pre/post-conditions indicate much about legal 2.2 Determining pre/post-conditions

method call sequences. If the post-conditions of method The technique of Section 2.1 uses method pre/post-
A are mutually exclusive with the pre-conditions of method conditions in order to determine which call sequences are
B, then B may never be called immediately after method A illegal. Preferably, a programmer would supply exhaus-
(from the point of view of the client). Otherwise, there is tive pre/post-conditions, and would ensure their correctness
some circumstance in which a call to method B may imme- via theorem-proving or other verification techniques. (Even
diately follow a call to method A. We consider a method more ideally, the programmer would also document the le-
call sequencdegal if the post-conditions of each method gal method call sequences, removing the necessity to infer
do not conflict with the pre-conditions of the immediately them. That would remove the primary need for our tech-
following method. nigue, though it could still be useful for refining or double-

We represent the set of all legal call sequences as a fi-checking the documentation.) Unfortunately, such speci-
nite state machine (FSM), with methods corresponding tofications are typically absent and, even when present, are
states and transitions between states denoting the methodsarely exhaustive. In particular, the experiments of Sec-
that may be called immediately after another method (Fig- tions 3 and 4 used programs that lacked such specifications.
ure 2). Atransition from method A to B indicates that under Therefore, we automatically generated pre/post-conditions
some circumstance, method B may follow method A, not for use in the experiments.



hasMoreElements()

weak, static analysis. We use dynamic invariant detec-
/] pre: none /] pre: none

for determining likely program properties; a set of likely
and Perl programs, among others, and reports representa-
L . . . always set to -1 when hasMoreElements() is invoked. Then invari-
Dynamic invariant detection monitors program execu-
and generalizes from those values. In particular, at method
eralization step uses an efficient generate-and-check algoand these inaccuracies have the potential to resultin an FSM
niques to enhance its output and to avoid reporting falseanalysis.)
ties that it checks is necessarily finite; that grammar wastest suite. With an incomplete test suite, the invariant de-
iments reported in this paper. However, users can assuagexample. A component programmer comparing his or her
methods. fied the extracted FSM, it still provides useful information
filing, the accuracy of the inferred invariants depends in part
been falsified by an additional test case may be reported. ample, it does not report the invariartis prime . If
2.3 Accuracy of the technique

Given perfect pre/post-conditions, our technique createstechnique would infer incorrect transitions. This never oc-

Various techniques exist for determining method /D?‘ kon: Posi tion = -1 /Aft ual:
pre/post-conditions. Previous work [WML02] obtained ,,B;:i:niem;z'si'tfgn_; 0 ,,gg;:nﬂgﬁe
these invariants from a sound and conservative, but haswmoreEl ements() hasMor eEl enent s()
tion [ECGNO1], which is much more precise and is accurate , ,

. . . [/ post: none /'l post: none
in practice [NEO2] but is not guaranteed to be sound. next () next ()

Dynamic invariant detection is a run-time technique
program properties is also called an operational abstrac-
tion [HMEOQ3]. Our experiments use the Daikon implemen-
tation of invariant detection. Daikon operates on Java, C,
tion invariants and method pre/post-conditions; in this re- o . .
search, we applied it to Java programs and ignored the repF_lgure 3. If the test suite is mco_mpletg, our tecr_mlque mlsse_s_tran-
resentation invariants. sitions. Suppose that while testing StringTokenizer, newPosition is
. h h h h f ant detection incorrectly reports a pre-condition of newPosition ==
tion (Over_W atever runs a user chooses, such as those romy for hasMoreElements(), and our technique misses the transition
a test suite), observes the values the program computeSy,m hasMoreElements() to hasMoreElements().
entry and exit, the Daikon tool compares each variable in programmer-supplied specifications, we use likely invari-
scope (including parameters, return values, class variablesants produced by the Daikon tool, as noted in Section 2.2.
and globals) to each other variable in scope. The gen-pynamic invariant detection is neither sound nor complete,
rithm that postulates many potential invariants and elimi- jth missing or extraneous transitions. (Both problems also
nates those that are ever falsified by observed values. ligccur with non-perfect human-supplied specifications, and
also uses static analysis, statistical analysis, and other techextraneous transitions can result from a conservative static
positives [ECGNOO].

Dynamic invariant detection is neither complete nor Incorrect invariants result in missing transitions. Dy-
sound. It is incomplete because the grammar of proper-namic analysis is inherently dependent on the quality of the
designed to be simple, broad, and generally useful, with un-tector may report over-specific pre/post-conditions —they
complicated invariants that can be applied in a number of held during the execution of the test suite, but will not nec-
situations. We did not modify the grammar for the exper- essarily hold for all executions. Figure 3 presents such an
completeness problems by adding additional invariants tomental model to the extracted model will notice the incom-
the Daikon invariant detector; doing so requires only writ- pleteness, and improve the test suite accordingly (see Sec-
ing a Java class that implements an interface containing fourtion 3.2). When the component programmer has not veri-

Dynamic invariant detection is unsound because theto others, as illustrated in Section 4.1. (Missing transitions
properties are likely, but not guaranteed, to hold in general. can indicate not only poor test suites, but also code errors;
As with other dynamic approaches such as testing and pro-see Section 3.3.)
on the quality and completeness of the test cases. If the ob- Missing invariants result in extraneous transitions. The
served executions do not fully characterize all possible ex-Daikon invariant detector reports many commonly used
ecution environments, a candidate invariant that could havetypes of invariants, but not all possible invariants; for ex-

such an invariant is missing from a pre- or post-condition,

then pre/post-conditions that are actually mutually exclu-

sive may not be identified as mutually exclusive, and our
an ideal FSM. (An FSM is a concise approximation of a curred in our experiments (including ones not reported in
set of call sequences, so some information may be lost, buthis paper), but Figure 4 presents an example of how such a
the FSM would be as good as possible.) In the absence oproblem might occur.



Dai kon: Actual : between a mental model and the tool’s output. Missing tran-

/1 : 11 : .. . . . .. .
,,EL;; "‘X’”i: 0 //S;:t : niniz 0 sitions in the extracted FSM indicate test suite deficiencies.
Pri mesStrean() PrimeStrean) The Daikon extracted FSM contained only 36 transitions,
/lore o : indicating significant deficiencies in the initial test suite.
pre: none [lpre: x is prine . . L .
//post: none /lpost: x is prine While a simple call trace would also indicate holes in the
next () next () test suite, our technique provides useful information on how
_ ) to improve the test suite beyond the sequences of method
PrimeStream() invocations which were not explicitly tested. Furthermore,

the Whaley dynamic technique of Section 4.2 produced an
FSM containing only 6 transitions from this test suite.

In order to determine which test cases to add, we ex-
amined the conflicting invariants that caused transitions to
Figure 4. When invariant detection cannot detect all of the invari- b€ eliminated using our technique. All of the missing tran-
ants present in the program, our technique may infer incorrect tran-Sitions involved the invariantewPosition == - . For
sitions. In this example, suppose the invariant detector cannot de-example, the invariant detector reported a pre-condition of
tect thex is prime invariant. Then our technique incorrectly newPosition == -1 and a post-condition afewPosi-
infers a transition from PrimeStream() to next(), even though itis tion > 0 for the hasMoreElements() method. In develop-
not possible in reality. ing the test suite, we had assumed that hasMoreElements()
3 E . did not change the state of the object, and therefore, the test

Xperiments suite did not need to make consecutive calls to it. However,

This section presents experiments that illustrate the ef-hasMoreElements() does change the state of the object, as
fectiveness of our technique: it extracts important con- it updates thenewPosition  field which indicates where
straints on call sequences, helps locate test suite deficienin the String the next token begins. The technique gave us
cies, and can aid in identifying representation exposurean indication of the state to put the object into before mak-

!

problems. ing the corresponding method invocations, to ensure the ex-
tracted FSM contains the desired transition. In essence, it
3.1 Identifying critical illegal call sequences pinpointed the exact test case to add.

We extracted FSMs representing the legal method call re'?ltce);?-itoe#g:% rntsra}gcsj!ggtr‘eséh:ésre ;;]rot;)heierl¥1 rg'rs.::lg;t:e_
sequences for several Java library classes. Figure 5 listd¢'P ” indi xactly why nvariant Is €x

some components we tested our program on, a brief descripﬁllidi;d fc:g;?btiﬁte i)f(t;af;ﬁigsul\ghiflr}%g :;g?;iﬁnndggbgf
tion of the component, the test suite used, and an English, "~ . P y q ' ) X
havior is more useful to programmers than simply the in-

description of the critical constraints automatically identi- formation that a particular call sequence has not vet been
fied as illegal. The programs shown include all those from par q y
covered by a test suite.

Whaley et al [WMLO02] for which interesting results were

presented. We extracted FSMs from a variety of other pro-
grams as well, but the results were of little value: the true 3.3 Locating representation exposure problems
FSMs permitted all or most transitions and so did not yield

.. ) The data abstraction paradigm requires programmers to
insight regarding component use. P g g brog

hide the implementation details of a software component
from the outside world. Components that adhere to this
principle are easier to maintain and reuse [LG8BEpre-

A programmer can use our technique to identify test suite sentation exposureccurs when an implementation fails to
deficiencies. To illustrate this point, consider the StringTo- fully encapsulate all implementation details. For instance,
kenizer class. We built our own test suite to extract an FSM. clients might be able to observe or, more seriously, to mod-
In building the test suite, we found that our technique pro- ify, concrete data structures held in variables or fields. Rep-
vided useful information on how to improve the test suite. resentation exposure of mutable data structures can allow

We first built a black-box test suite of the component, client code to push a component into an illegal state. Com-
which we believed to be of good quality. A programmer bining our technique with a call trace (an ordered list of
might make a similar test suite in practice. We then ex- observed calls from some program execution) can some-
tracted an FSM for the StringTokenizer using this test suite, times locate such problems. One attractive property of our
and compared the FSM to the actual, known FSM, which technique is that it identifies representation exposures be-
contains all 54 possible transitions. (The lack of interesting fore they cause faults, by noticing inconsistencies between
constraints is why StringTokenizer does not appear in Fig- the inferred FSMs and the actual call traces. Thus, if a client
ure 5.) A programmer might make a similar comparison, modifies an implementation’s data structures directly, butin

3.2 ldentifying test suite deficiencies



Component Description Test Suite Executed Key Constraints Identified
Vector, LinkedList, Data structures | Nimmer [NEO2] Data must be added to a data structure pe-
ArrayList in java.util fore it can be accessed or removed.
FilelnputStream, Streams in Copy program from Java | A stream cannot be read from after it fis
FileOutputStream, java.io Tutorial closed.
FileReader, FileWriten
PlainSocketimpl, Networking HttpTest program from A connection cannot be read/written after it
ServerSocket, componentsin | JCSL is closed.
DatagramSocket, java.net
MulticastSocket
ThreadGroup, Thread Thread HttpTest program from A thread cannot be started twice.
components in | JCSL (uses multi-threaded
java.util server)
Signature Security SimpleSignatureTest from Cannotverify —an object that is irsign
componentin | JCSL state, and vice versa.
java.security

Figure 5. Some components we extracted FSMs for. The table contains the name of the component, a general description of its function,
the test suite we used to extract the FSM, and the method call sequences that our technique identified as illegal.

a safe way that permits the program to continue running, ourthe state of the PlainSocketimpl component without calling
technique can identify the representation exposure nonethea method because tledress field has protected access.
less. This makes for a fragile system—if the programmer of

Suppose a client makes two method calls on an 0|Oject,PIainSocketImpI renames thaldress field, components
with no other calls in between. However’ in between the that depend on P|ainSOCket|mp| will break. A|SO, external
two calls, the client somehow changes the state of the objec€0de could assign thaddress field to null, causing the
without calling a method, i.e., the component programmer PlainSocketimpl to malfunction.
exposed the representation. The call trace shows that the Another variety of representation exposure problems re-
two methods were called consecutively. However, the FSM sults from returning an internal data structure, such as an ar-
extracted using our technique will not necessarily show this ray, instead of a copy of the array. If the exposed data struc-
transition, if the state of the object is changed between theture is mutable, external code can modify it, and thereby
two method invocations in a manner such that the pre/post-push the component into an unexpected state. Figure 6
conditions detected become mutually exclusive. Therefore,shows a simplified example of such an error. The getEle-
if the call trace contains consecutive method invocations ments() method returns tiements  Vector, instead of a
that do not appear in the FSM extracted using our tech-Copy of it. If client code uses the class as indicated in the
nique, there is probably a representation exposure problemmain method, the program continues without error; how-
because invariant detection cannot possibly report mutuallyever, the CharSet contains String objects instead of Char-
exclusive pre/post-conditions between consecutive methodacter objects, which is not the intended behavior. We can
calls unless the state is changed between the two calls, withidentify such a problem by extracting the FSM, and com-
out calling a method. We present two examples where thisparing the results to a call trace as described above. The ex-
technique successfully identifies representation exposure. tracted FSM does not allow calling remove(int) after getEle-

We first consider the PlainSocketimpl class, the default MeNts(), éven though it occurs in the call trace. This in-
implementation of a network socket, in the java.net pack- dicates that the object hag change:\d between the calls to
age. We used as a test suite the HttpTest program, part of €tElements() and remove(int), leading a programmer to the
a larger test suite for many of the standard Java networking'€Presentation exposure in getelements().
components. The call trace contained PlainSocketimpl()—
getOutputStream() pairs (that is, sometimes getOutput-4 Comparison to other techniques
Stream() was called immediately after the constructor), but
such sequences were not permitted by the inferred FSM. This research represents an improvement on Whaley et
The inferred FSM forbade such sequences because getOugl.’s “Automatic extraction of object-oriented component
putStream() requires that thedress field not be null, but  interfaces” [WMLO02]. Whaley presents a technique for ex-
the constructor does not initialize thddress field. When tracting the legal method call sequences in a component in-
we read the code, we found that the ServerSocket class diterface, and presents them as a FSM. (Whaley refers to this
rectly sets theaddress field. External code can modify FSM as the interface, but we call it the legal call sequences



public class CharSet {

private Vector elements = new Vector(): condition of the method that is statically checked. Only

condition of the formvariable == constant or vari-
public void add(char c) { able != constant are considered; all other conditions
F]fh(?f?ﬁef tCh = t”‘?W(%*)];“?Ctef(C); are ignored. For example, suppose the conditional expres-
if (‘elements.contains(c . __ __
elements.add(ch): sions on two separate paths aseafe == 0 andvar, ==
} 2] and [state == 2 andvar == state ]. Whaley's an-
alyzer classifieqot(state == 0 && var == 2) as a
/I Representation exposure: should return a copy pre-condition.
ublic Vector getElements . . .
P return e|emgms; 0 Each pre-condition found by.the static analy;er is guar-
anteed to be correct, but the list of pre-conditions is not
public void remove(int i) { necessarily complete. In some cases, programmers practic-

elements.remove(; ing defensive programming may check pre-conditions; but

} by definition, a precondition is something that a method is
} permitted to assume without checking, and programmers
may omit checks for performance reasons. Furthermore,

public class CharSetClient { the method may throw a runtime exception implicitly that

public static void main(String[] args) {

CharSet s = new CharSet(); does not have to be thrown explicitly [Blo01], or the pre-

s.add(a); condition check may be of another syntactic form, causing

/I Directly modify the elements vector. the analysis to miss the pre-condition.

s.getElements().set(0, "string"); .. . .

// No run-time error Postconditionsare properties of the forwariable ==

s.remove(0); constant that are guaranteed to hold at method exit. The

} analyzer identifies assignments of variables to constants that

} are made on every possible path through the method, and

Figure 6. A simple example of representation exposure that caused'® not later changed on the path.

no run-time error (for this client), but is detected by our technique.

The class incorrectly returns the elements Vector, instead of a copy. -l/—he FSN(I:]. _remalglng_ aft;; _eI|m|nat|ng bconfgctlngh
The CharSetClient class illustrates how to modify the state of the pre/post-conditions (Section 2.1) is an upper bound on the

CharSet without calling its methods. actual FSM. The pre/post-conditions identified are defi-

nitely accurate, so the transitions removed from the FSM

to avoid confusion over better-known meanings for “inter- are definitely not allowed.

face”.) Whaley extracts two such FSMs, using two distinct

strategies. The first strategy conservatively identifies illegal 4.2 Whaley dynamic analysis

transitions using a static analysis of the program text. The

second approach, a dynamic analysis, conservatively iden- Whaley's dynamic analysis runs a program and creates

tifies legal transitions. These two FSMs bound the actual,an FSM from the observed call sequences, adding a tran-

unknown FSM in number of transitions — the static FSM is sition for each successive pair of observed method calls.

an upper bound while the dynamic FSM is a lower bound. Whaley notes two shortcomings of this technique. First,
as with any dynamic analysis, the result is dependent on the

4.1 Whaley static analysis quality of the test suite. Our technique is less prone than

, . . . Whaley's to poor test suites (see Section 4.3.2).
Whaley’s static analysis operates exactly like our dy- .
. . . . Second, accessor methods can cause the technique to
namic analysis presented in Section 2.1, except that the .

pre/post-conditions are obtained via a conservative staticy'(ald an incorrect model. For example, in a data struc-

analysis rather than via a dynamic analysis.

ture, size() and elementAt(int) operations do not change
the state of the object. However, if the test suite always

Preconditions are the conjunctions of the negations of makes calls in the sequence add—size—elementAt, no transi-
the conditions under which a method is guaranteed to throwtion from size() to add() is recorded. To avoid this problem,
an error. Whaley’s static analysis assumes that program-Whaley statically identifies the state-preserving methods by
mers check method pre-conditions and explicitly throw ex- searching the method for assignments to class or instance
ceptions to indicate violations. variables. If there are no such assignments, the method

More specifically, the static analyzer creates a control is considered state-preserving. For each state preserving
flow graph for each method, finds the statements that throwmethod invocation, Whaley adds a transition from the last
exceptions, and identifies the path from the start node instate-modifying method invoked. Additionally, transitions
the graph to these statements. The logieald of all the are added so that all of the state-preserving methods invoked
conditional expressions on the path correspond to one pre-consecutively form cliques in the FSM.



By contrast, our technique does not need such an analerrors (Section 3.3). Fourth, our technique can indicate how
ysis, which is prone to conservatism in identifying state- to improve test suites in terms of data values as well as call
preserving methods. If a method is state-preserving, thensequences (Section 3.2).
the invariant detector will report identical preconditionsand  The major disadvantage of using our technique is that
postconditions for it. Furthermore, the invariant detector the extracted FSM may contain incorrect transitions, as sug-
will report preconditions for every other method that are in- gested in Section 2.3. Given a test suite that executes every
dependent of the methods invoked previously. Thus, ourfeasible pair of method sequences, Whaley'’s dynamic tech-
technique permits method call sequences that were nevenique would produce the true FSM; our technique would
taken to be identified as legal, based on method pre/posthave no missing transitions but might suffer from extra tran-
conditions inferred from observed executions. sitions. This problem never occurred in our experiments

Section 3.3 noted a third problem with Whaley’s dy- over large portions of the Java standard libraries, but makes
namic technique: representation exposure errors can lea case for using the FSMs extracted using each technique in
to incorrect FSMs. As noted in Section 3.3, our technique combination.
permits detection of such errors.

4.3.1 Comparison of extracted FSMs

4.2.1 Comparison with our technique . .
par with ou qu We implemented the three techniques and evaluated them

Our technique extracts FSMs that are at least as completen a collection of programs. The results of several of
as those of the Whaley dynamic technigue. Except in casedhese experiments are shown in Figure 7. For the dy-
where the representation is exposed, the pre/post-conditionsamic analyses, we started with test suites in the Java source
detected for methods that were invoked consecutively can-package available under the Java Community Source Li-
not conflict. This property ensures that the extracted FSM cense [Sun]. When none were available or they were unre-
contains as many transitions as a simple call trace analysisalistically small, we developed our own test suites by hand,
The Whaley dynamic technique adds the additional in- an easy task taking only a few minutes per program.
sight of separating state-preserving methods. Our technique The test subjects of Figure 7 are StackAr, QueueAr,
inherently separates state-preserving methods —the invariVector, StringTokenizer, PlainSocketimpl, and Signature.
ants detected at method entry and exit are identical for theseStackAr and QueueAr are array-based implementations of
methods. Hence, the extracted FSM is guaranteed to consimple data structures, found in a Java data structures
tain all of the transitions that are in the Whaley dynamically book [Wei99]. Vector is the implementation of a vector
extracted FSM. data structure from the java.util package in the Java Stan-
Our technique achieves greater completeness by usinglard Development Kit. The StringTokenizer class, a utility
invariants to infer transitions that were not seen at runtime. class for parsing a string, also originates from this source.
The technique can infer these transitions because the dyThe PlainSocketimpl class is the default implementation of
namically detected invariants generalize to future runs. If network sockets in Java. Signature, from the java.security
the pre/post-conditions of two methods do not conflict, then package, provides authentication.
it is likely that consecutive invocation of the two methodsis  Because extracting call sequence FSMs is an information
legal. Even if such consecutive invocation did not occur in retrieval task, we report our results in terms of the standard
the specific test suite, our technique infers it from the condi- precision and recall measures [Sal68, vR79]. Precision, a
tions that hold when each of the methods is invoked in other measure of correctness, is the fraction of reported transi-

circumstances. tions that appear in the go e%gﬁ‘é% Recall, a measure of
] ] completeness, is the fraction of goal transitions that are re-
4.3 Experimental comparison ported: %gaeﬁt. Both measures are always between 0 and 1.

The Whaley techniques and our technigue have the same As expected, the Whaley static FSM was an upper bound
goal: producing an FSM that approximates legal call se- on the actual FSM, and the Whaley dynamic FSM was a
guences. Our experiments suggest that our technique hakwer bound. Our technique induced the actual FSM in ev-
several advantages over Whaley’s techniques. (We expecery case.
that combining the techniques, rather than using either in  We briefly give an example of the differences. In the case
isolation, will prove most advantageous in the long run.) of Vector, the static analysis identified that calling firstEle-
First, our technique produces an estimate that is closer toment() or lastElement() immediately after removeAllEle-
the correct FSM than either of Whaley’s techniques (Sec- ments() or the constructor is illegal. The Whaley dynamic
tion 4.3.1). Second, our technique is less sensitive to testanalysis also classified such transitions as illegal, but con-
suite than Whaley’s dynamic technique: it produces a goodcluded that the only method that could be called immedi-
estimate of the true FSM even from a poor test suite (Sec-ately after two of the constructors is addElement(Object).
tion 4.3.2). Third, our technique can identify representation Our technique extracted the correct model.



Total | Actual Whaley static Daikon dynamic Whaley dynamic | Suite
Class possible trans.| rec. | prec. | trans.| rec. | prec. | trans.| rec. | prec.| Ssize
Vector 648 628 640 | 1.00| .981 | 628 | 1.00| 1.00 | 112 | .178]| 1.00 76
StackAr 63 63 63 | 1.00| 1.00 63 | 1.00| 1.00 42 | .666 | 1.00 18
QueueAr 48 45 48 | 1.00| 1.00 45 | 1.00| 1.00 32 | .711| 1.00 12
Signature 289 275 276 | 1.00| .938 | 275 | 1.00| 1.00 | 177 | .644| 1.00 | 177
StringTokenizer 54 54 54 | 1.00| 1.00 54 | 1.00| 1.00 24 | 444 | 1.00 21
PlainSocketimpl| 324 316 324 | 1.00| .975| 316 | 1.00| 1.00 | 215 | .664 | 1.00 | 215
Average 238 230 234 | 1.00| .982 | 230 | 1.00| 1.00 | 2117 | .551| 1.00 87

Figure 7. For each class listed in the first column, we compared the FSMs extracted using each technique. The chart shows the number of
legal transitions, precision, and recall of each technique compared to the actual FSM. Test suite size is number of consecutive invocations
(number of calls in the call trace); we made no effort to reduce the size of the test suites.

4.3.2 Dependence on test suite cause testing a pair of consecutive methods requires some
setup. For example, in a Vector, to test the transitions from
A test suite that tests every possible sequence of method inadd(Object) to remove(int), the Vector() to add(Object)
vocations in every possible state of the component yieldstransition must also be tested. For uniformity, we always
identical models in our experiments using the Daikon basedran a set of simple test that have the same effect as this setup
technique or the Whaley dynamic technique; however, suchcode. The simple test for Signature is the one described in
test suites are burdensome to write. The Whaley dynamicSection 3, which accounts for six transitions in the Whaley
technique relies more heavily on the quality of the test dynamic FSM and 38 in the Daikon FSM. For the Vec-
suite — poor test suites yield poor results. By contrast, our tor test, we simply created a new Vector, added an element,
technique both gives better results and improves its resultschecked the size, and removed the element. This accounts
more rapidly as the test suite improves. for three transitions in the Whaley dynamic FSM and eight
For example, we ran both dynamic techniques using thein the Daikon FSM.
(bare-bones) Sun-provided test suites for the PlainSock- Figure 8 gives the results of these experiments. Our tech-
etlmpl, Signature, and StringTokenizer classes. Both dy-nique’s FSM approaches a final value far more quickly than
namic approaches yielded 100% precision. The Whaley dy-the Whaley dynamic FSM. The Daikon curve quickly ap-
namic approach gave average recall of 11%, and the Daikorproaches its final value, while the Whaley dynamic tech-
dynamic approach had average recall of 47%. This differs nique takes significantly longer to stabilize. This is further
from the numbers show in Figure 7, which benefited from a indication that our technique is more tolerant of poor test
modest amount of work (far less than one hour per class) tosuites than the Whaley dynamic technigue.
augment poor test suites.

To further quantify the effect of test suite quality, we S Related work

performed an experiment using the Vector and Signature  Aytomatically extracting legal method call sequences is
classes in the java.SeCUrity package. We chose Vector befar from a new concept. Parnas [BP78, PW89] first sug-
cause it is fairly easy to write a test suite for. We selected gested using legal method call sequences to specify inter-
Signature because it has a model more complex than thgaces. He introduced a language for specifying the legal
simple put/get relations of Vector, and the documentation sequences. However, the constraints become difficult to ex-
explicitly states the legal call sequences. For each class, Weyress on large components because the number of possible
builta thOfOUgh test suite that would yleld the correctresults |ega| seqguences becomes too |arge_ C|a_ssifying each possi_
using the Whaley dynamic analyzer. However, we limited pje sequence as legal or illegal manually is impractical, and
the methods we tested for each class, because we cared Onbﬂaces too large a burden on the programmer.
about the methods that have interesting constraints on the  Koskimies [KMST96] proposed using dynamic program
call sequences. For Vector, we tested the constructor and th%’aces to extract state charts from |egacy Code, but the tools
elementAt, addElement, removeElement, and size methodswere not automated. The extracted information is equiva-
In the Signature test SUite, we called Only the nine meth- lent to a call trace of the program. Wha|ey’5 dynamic ana-
ods that are important in the model: initVerify, initSign  |yzer is an automation of this technique, with the additional
initSigny, signi, sigry, sign;, update, update, and verify,  insight on state-preserving transitions.
where subscripts indicate overloaded method names. Cook and Wolf [CW98a] generalize from event traces
We randomly selected test cases from these suites, ando finite state machines, in the domain of software change
extracted FSMs using both dynamic analyses. Some ofprocesses. Their FSMs capture sequence, selection, and it-
the test cases exercised more than just two methods, beeration, and they evaluate three different techniques: one



Signature two approaches are complementary, and each may be more
appropriate for certain applications.

Recently, the Daikon system has been augmented to de-
tect temporal invariants in addition to pre/post-conditions.
The system analyzes program traces to identify ordering
constraints on various types of inputs, such as the assign-
ment of a variable or the invocation of a method. The sys-

tem can identify put/get and open/close constraints such as
e the ones we have extracted, but will most likely prove to
—— Whaley Dynamic Technique be more dependent on test suite quality, because it does not
make use of pre/post-conditions.
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TestCases 6 Conclusion

Vector This paper presents a novel method for extracting legal
method call sequences from software components. As oth-
ers have done, we extract a finite state machine represent-
ing the sequences, with methods as states and transitions
between states indicating what the next method called may
be.

Our technique uses dynamically detected likely method
e ST p_re/post-conditions, to iden_tify illegal tran_sitions. The tgch-
—_ Daikon Technique nique can thus use execution traces to infer the legality of
- —— Whaley Dynamic Technique transitions that were never taken during the observed execu-
tions. The technique may theoretically result in missing or
e — extraneous transitions, but we found the former to be both

Test Cases relatively infrequent and easy to fix (and the technique aids
in such corrections), and the latter never occurred in prac-
Figure 8. For the Signature and Vector classes, we compared thrediCe.
FSM extraction techniques over test suites of varying size. This ~ Our technique improves over previous techniques in sev-
figure graphs the number of transitions versus the number of testeral respects: the extracted FSM is more accurate (is closer
cases executed, averaged over ten runs at each test suite size. Otw the true FSM), is less dependent on the quality of the test
technique extracts an FSM that converges more quickly to the truesuite for the component, is useful in identifying test suite

FSM than the Whaley dynamically extracted FSM; the Whaley deﬁciencieS, and can |dent|fy representation errors.
statically extracted FSM never converges to the true FSM, but does

provide an upper bound.
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