
Finding Bugs in Web Applications Using
Dynamic Test Generation and Explicit-State

Model Checking
Shay Artzi, Adam Kie _zun, Julian Dolby, Frank Tip, Danny Dig,

Amit Paradkar, Senior Member, IEEE, and Michael D. Ernst

Abstract—Web script crashes and malformed dynamically generated webpages are common errors, and they seriously impact the

usability of Web applications. Current tools for webpage validation cannot handle the dynamically generated pages that are ubiquitous

on today’s Internet. We present a dynamic test generation technique for the domain of dynamic Web applications. The technique

utilizes both combined concrete and symbolic execution and explicit-state model checking. The technique generates tests

automatically, runs the tests capturing logical constraints on inputs, and minimizes the conditions on the inputs to failing tests so that

the resulting bug reports are small and useful in finding and fixing the underlying faults. Our tool Apollo implements the technique for

the PHP programming language. Apollo generates test inputs for a Web application, monitors the application for crashes, and validates

that the output conforms to the HTML specification. This paper presents Apollo’s algorithms and implementation, and an experimental

evaluation that revealed 673 faults in six PHP Web applications.

Index Terms—Software testing, Web applications, dynamic analysis, PHP, reliability, verification.

Ç

1 INTRODUCTION

DYNAMIC test generation tools, such as DART [17], Cute
[39], and EXE [7], generate tests by executing an

application on concrete input values, and then creating
additional input values by solving symbolic constraints
derived from exercised control-flow paths. To date, such
approaches have not been practical in the domain of Web
applications, which pose special challenges due to the
dynamism of the programming languages, the use of
implicit input parameters, their use of persistent state, and
their complex patterns of user interaction.

This paper extends dynamic test generation to the domain
of web applications that dynamically create web (HTML)
pages during execution, which are typically presented to the
user in a browser. Apollo applies these techniques in the
context of the scripting language PHP, one of the most
popular languages for server-side Web programming.
According to the Internet research service, Netcraft,1 PHP
powered 21 million domains as of April 2007, including

large, well-known websites such as Wikipedia and
WordPress. In addition to dynamic content, modern
Web applications may also generate significant application
logic, typically in the form of JavaScript code that is
executed on the client side. Our techniques are primarily
focused on server-side PHP code, although we do some
minimal analysis of client-side code to determine how it
invokes additional server code through user-interface
mechanisms such as forms.

Our goal is to find two kinds of failures in web
applications: execution failures that are manifested as
crashes or warnings during program execution, and HTML
failures that occur when the application generates mal-
formed HTML. Execution failures may occur, for example,
when a web application calls an undefined function or
reads a nonexistent file. In such cases, the HTML output
contains an error message and execution of the application
may be halted, depending on the severity of the failure.
HTML failures occur when output is generated that is not
syntactically well-formed HTML (e.g., when an opening
tag is not accompanied by a matching closing tag). HTML
failures are generally not as important as execution failures
because Web browsers are designed to tolerate some
degree of malformedness in HTML, but they are undesir-
able for several reasons. First and most serious is that
browsers’ attempts to compensate for malformed web-
pages may lead to crashes and security vulnerabilities.2

Second, standard HTML renders faster.3 Third, malformed
HTML is less portable across browsers and is vulnerable to

474 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 36, NO. 4, JULY/AUGUST 2010

. S. Artzi, J. Dolby, F. Tip, and A. Paradkar are with the IBM Thomas J.
Watson Research Center, Hawthorne, NY 10598.
E-mail: {artzi, dolby, ftip, paradkar}@us.ibm.com.

. A. Kie _zun is with the Brigham and Women’s Hospital/Harvard Medical
School, Boston, MA 02138. E-mail: akiezun@rics.bwh.harvard.edu.

. D. Dig is with the University of Illinois at Urbana-Champaign, Urbana,
IL 61820. E-mail: dig@illinois.edu.

. M.D. Ernst is with the Computer Science and Engineering, University of
Washington, Box 352350, Seattle, WA 98195-2350.
E-mail: mernst@cs.washington.edu.

Manuscript received 2 Feb. 2009; revised 30 Aug. 2009; accepted 15 Dec.
2009; published online 9 Feb. 2010.
Recommended for acceptance by B. Ryder and A. Zeller.
For information on obtaining reprints of this article, please send e-mail to:
tse@computer.org, and reference IEEECS Log Number TSESI-2009-02-0025.
Digital Object Identifier no. 10.1109/TSE.2010.31.

1. See http://news.netcraft.com/.

2. See bug reports 269095, 320459, and 328937 at https://bugzilla.
mozilla.org/show_bug.cgi?

3. See http://weblogs.mozillazine.org/hyatt/archives/2003_03.
html#002904. According to a Mozilla developer, one reason why malformed
HTML renders slower is that “improper tag nesting [...] triggers residual
style handling to try to produce the expected visual result, which can be
very expensive” [37].

0098-5589/10/$26.00 � 2010 IEEE Published by the IEEE Computer Society

breaking or looking strange when displayed by browser
versions on which it is not tested. Fourth, a browser might
succeed in displaying only part of a malformed webpage,
while silently discarding important information. Fifth,
search engines may have trouble indexing malformed
pages [48].

Web developers widely recognize the importance of
creating legal HTML. Many websites are checked using
HTML validators.4 However, HTML validators can only
point out problems in HTML pages, and are by themselves
incapable of finding faults in applications that generate
HTML pages. Checking dynamic Web applications (i.e.,
applications that generate pages during execution) requires
checking that the application creates a valid HTML page on
every possible execution path. In practice, even profession-
ally developed and thoroughly tested applications often
contain multiple faults (see Section 6).

There are two general approaches to finding faults in
web applications: static analysis and dynamic analysis
(testing). In the context of Web applications, static
approaches have limited potential because 1) Web applica-
tions are often written in dynamic scripting languages that
enable on-the-fly creation of code, and 2) control in a Web
application typically flows via the generated HTML text
(e.g., buttons and menus that require user interaction to
execute), rather than solely via the analyzed code. Both of
these issues pose significant challenges to approaches based
on static analysis. Testing of dynamic Web applications is
also challenging because the input space is large and
applications typically require multiple user interactions.
The state of the practice in validation for Web-standard
compliance of real Web applications involves the use of
programs such as HTML Kit5 that validate each generated
page, but require manual generation of inputs that lead to
displaying different pages. We know of no automated tool
that automatically generates inputs that exercise different
control-flow paths in a Web application, and validates the
dynamically generated HTML pages that the Web applica-
tion generates when those paths are executed.

This paper presents an automated technique for finding
failures in HTML-generating web applications. Our techni-
que is based on dynamic test generation, using combined
concrete and symbolic (concolic) execution, and constraint
solving [7], [17], [39]. We created a tool, Apollo, that
implements our technique in the context of the publicly
available PHP interpreter.

Apollo first executes the Web application under test with
an empty input. During each execution, Apollo monitors the
program to record path constraints that reflect how input
values affect control flow. Additionally, for each execution,
Apollo determines whether execution failures or HTML
failures occur (for HTML failures, an HTML validator is used
as an oracle). Apollo automatically and iteratively creates
new inputs using the recorded path constraints to create
inputs that exercise different control flow. Most previous
approaches for concolic execution only detect “standard
errors” such as crashes and assertion failures. Our approach
detects such standard errors as well, but also uses an oracle to
detect specification violations in the application’s output.

Another novelty in our work is the inference of input
parameters, which are not manifested in the source code,

but which are interactively supplied by the user (e.g., by
clicking buttons in generated HTML pages). The desired
behavior of a PHP application is usually achieved by a
series of interactions between the user and the server (e.g., a
minimum of five user actions are needed from opening the
main Amazon page to buying a book). We handle this
problem by enhancing the combined concrete and symbolic
execution technique with explicit-state model checking
based on automatic dynamic simulation of user interac-
tions. In order to simulate user interaction, Apollo stores the
state of the environment (database, sessions, and cookies)
after each execution, analyzes the output of the execution to
detect the possible user options that are available, and
restores the environment state before executing a new script
based on a detected user option.

Techniques based on combined concrete and symbolic
executions [7], [17], [39] may create multiple inputs that
expose the same fault. In contrast to previous techniques, to
avoid overwhelming the developer, our technique automa-
tically identifies the minimal part of the input that is
responsible for triggering the failure. This step is similar in
spirit to Delta Debugging [9]. However, since Delta Debug-
ging is a general, black box input minimization technique, it is
oblivious to the properties of inputs. In contrast, our
technique is white box: It uses the information that certain
inputs induce partially overlapping control-flow paths. By
intersecting these paths, our technique significantly mini-
mizes the constraints on the inputs.

The contributions of this paper are the following:

. We adapt the established technique of dynamic test
generation, based on combined concrete and sym-
bolic execution [7], [17], [39], to the domain of PHP
Web applications. This involves:

1. using an HTML verifier as an oracle to find
errors in dynamically generated HTML,

2. dynamically discovering possible input
parameters,6

3. dealing with data types and operations specific
to the PHP language,

4. tracking the use of persistent state and how
input flows through it, and

5. automatically discovering input values based on
the examination of branch conditions on execu-
tion paths.

. We created a tool, Apollo, that implements the
technique for PHP.

. We evaluated our tool by applying it to six real
Web applications and comparing the results with
random testing. We show that dynamic test gen-
eration can be effective when adapted to the
domain of Web applications written in PHP: Apollo
identified 673 faults while achieving line coverage
of 52.9 percent.

. We present a detailed classification of the faults
found by Apollo.

The remainder of this paper is organized as follows:
Section 2 presents an overview of PHP, introduces our

ARTZI ET AL.: FINDING BUGS IN WEB APPLICATIONS USING DYNAMIC TEST GENERATION AND EXPLICIT-STATE MODEL CHECKING 475

4. http://validator.w3.org, http://www.htmlhelp.com/tools/validator.
5. http://www.htmlkit.com.

6. Halfond and Orso [20] use static analysis techniques to solve a similar
problem in the context of Web applications written in Java.

running example, and discusses classes of failures in PHP
web applications. Section 3 presents a simplified version of
the algorithm and illustrates it on an example program.
Section 4 presents the complete algorithm handling stateful
execution with the simulation of interactive user inputs and
illustrates it on an example program. Section 5 discusses the
implementation of Apollo. Section 6 presents our experi-
mental evaluation of Apollo on open-source Web applica-
tions. Section 7 gives an overview of related work, and
Section 8 presents conclusions.

2 CONTEXT: PHP WEB APPLICATIONS

2.1 The PHP Scripting Language

This section briefly reviews the PHP scripting language,
focusing on those aspects of PHP that differ from main-
stream languages. Readers familiar with PHP may skip to
the discussion of the running example in Section 2.2.

PHP is widely used for implementing Web applications,
in part due to its rich library support for network
interaction, HTTP processing, and database access. The
input to a PHP program is a map from strings to strings.
Each key is a parameter that the program can read, write, or
check if it is set. The string value corresponding to a key
may be interpreted as a numerical value if appropriate. The
output of a PHP Web application is an HTML document
that can be presented in a Web browser.

PHP is object oriented, in the sense that it has classes,
interfaces, and dynamically dispatched methods with
syntax and semantics similar to that of Java. PHP also has
features of scripting languages, such as dynamic typing and
an eval construct that interprets and executes a string
value that was computed at runtime as a code fragment. For
example, the following code fragment:

$code ¼ ‘$x ¼ 3;’; $x ¼ 7; evalð$codeÞ; echo $x;

prints the value 3 (names of PHP variables start with the
$ character). Other examples of the dynamic nature of

PHP are a predicate that checks whether a variable has
been defined, and class and function definitions are
statements that may occur anywhere.

The code in Fig. 1 illustrates the flavor of PHP. The
require statement that is used in line 11 of Fig. 1 resembles
the C #include directive in the sense that it includes the
code from another source file. However, the C version is a
preprocessor directive with a constant argument, whereas
the PHP version is an ordinary statement in which the file
name is computed at runtime. There are many similar cases
where runtime values are used, e.g., switch labels need
not be constant. This degree of flexibility is prized by PHP
developers for enabling rapid application prototyping and
development. However, the flexibility can make the overall
structure of program hard to discern and it can make
programs prone to code quality problems.

2.2 PHP Example

The PHP program of Fig. 1 is a simplified version of
SchoolMate,7 which allows school administrators to manage
classes and users, teachers to manage assignments and
grades, and students to access their information.

Lines 6 and 7 read the global parameter page that is
supplied to the program in the URL, e.g., http://www.
mywebsite.com/index.php?page=1. Line 10 examines the
value of the global parameter page2 to determine
whether to evaluate file printReportCards.php.

Function validateLogin (lines 27-39) sets the global
parameter page to the correct value based on the identity of
the user. This value is used in the switch statement on line
18, which presents the login screen or one of the teacher/
student screens.

2.3 Failures in PHP Programs

Our technique targets two types of failures that can be
automatically identified during the execution of PHP web
applications. First, execution failures may be caused by a

476 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 36, NO. 4, JULY/AUGUST 2010

Fig. 1. A simplified PHP program excerpt from SchoolMate. This excerpt contains three faults (two real, one seeded), explained in Section 2.3.

7. http://sourceforge.net/projects/schoolmate.

missing included file, an incorrect MySQL query, or an
uncaught exception. Such failures are easily identified as
the PHP interpreter generates an error message and halts
execution. Less serious execution failures, such as those
caused by the use of deprecated language constructs,
produce obtrusive error messages but do not halt
execution. The last kind of execution failures are execution
halting calls signaling unclean exits, such as die with a
nonempty message or exit with a nonzero value.
Second, HTML failures involve situations in which the
generated HTML page is not syntactically correct accord-
ing to an HTML validator. Section 1 discussed several
negative consequences of malformed HTML.

Since HTML failures might be the result of an earlier
execution failure, Apollo ignores HTML failures in cases
where the execution contains any execution failure.

As an example, the program of Fig. 1 contains three
faults, which cause the following failures when the program
is executed:

1. Executing line 11 of the program results in an
execution failure because the file printReport-

Cards.php referenced on that line is missing.
2. In some cases, the program execution may result in

an execution failure when the default case of the
switch statement on line 23 is executed. Specifically,
line 23 terminates program execution uncleanly
when the global parameter page is not 0, 1, or 2
and when page is not written by function Validate
Login. The output in this case is malformed HTML
because the make footer method is not executed,
resulting in an unclosed HTML tag in the output.
However, this HTML failure is not reported since
Apollo does not check for malformed HTML when
the execution results in an execution failure.

3. The program produces malformed HTML when line 29
generates an illegal HTML tag j2.

The first failure is similar to a failure that our tool found in
one of the PHP applications we studied. The second failure is
caused by a fault that exists in the original code of the
SchoolMate program. The third failure is the result of a fault
that was artificially inserted into the example for illustration.

2.4 Completeness

The analysis presented in this paper is a dynamic analysis.
There is no guarantee of completeness (in terms of the
number of bugs found or in terms of code coverage) for
several reasons, including the fact that the application being
analyzed may contain dead code and because the tool may
be unable to cover certain parts of the application. This may,
for example, occur when the solver is incapable of inferring
the conditions under which a given statement is reachable,
and also because our analysis of user options (e.g., in
JavaScript that is embedded in the generated HTML pages)
is incomplete.

3 FINDING FAILURES IN PHP WEB APPLICATIONS

Our technique for finding failures in PHP applications is a
variation on an established dynamic test generation
technique [7], [17], [18], [39] sometimes referred to as
concolic testing. For expository purposes, we will present

the algorithm in two steps. First, this section presents a
simplified version of the algorithm that does not simulate
user inputs or keep track of persistent session state. We will
demonstrate this simplified algorithm on the example of
Fig. 1. Then, Section 4 presents a generalized version of the
algorithm that handles user-input simulation and stateful
executions, and illustrates it on a more complex example.

The basic idea behind the technique is to execute an
application on some initial input (e.g., an arbitrarily or
randomly chosen input), and then on additional inputs
obtained by solving constraints derived from exercised
control-flow paths. We adapted this technique to PHP Web
applications as follows:

. We extend the technique to consider failures other
than execution failures by using an oracle to deter-
mine whether or not program output is correct. In
particular, we use an HTML validator to determine
whether the output is a well-formed HTML page.

. The PHP language contains constructs such as
isset (checking whether a variable is defined),
isempty (checking whether a variable contains a
value from a specific set), require (dynamic
loading of additional code to be executed), header
for redirection of execution, and several others that
require the generation of constraints that are absent
in languages such as C or Java.

. PHP applications typically interact with a database
and need appropriate values for user authentication
(i.e., username and password). It is not possible to
infer these values by either static or dynamic
analysis, or by randomly guessing. Therefore, our
tool was designed to use a prespecified set of
values for database authentication, e.g., User = joe,
Password = “12345.” Currently, the only values we
need to specify are username/password pairs for
user authentication. From this information, Apollo
has been able to extract all other required informa-
tion from the database.

3.1 Algorithm

Fig. 2 shows pseudocode for our algorithm. The inputs to
the algorithm are: a program P, an oracle for the output O,
and an initial state of the environment S0. The output of the
algorithm is a set of bug reports B for the program P,
according to O. Each report consists of a single failure,
defined by the error message and the set of statements that
is related to the failure. In addition, the report contains the
set of all inputs under which the failure was exposed, and
the set of all path constraints that lead to the inputs
exposing the failure.

The algorithm uses a queue of configurations. Each
configuration is a pair of a path constraint and an input. A
path constraint is a conjunction of conditions on the
program’s input parameters. The queue is initialized with
the empty path constraint and the empty input (line 3). The
program is executed concretely on the input (line 6) and
tested for failures by the oracle (line 7). Then, the path
constraint and input for each detected failure are merged
into the corresponding bug report (lines 7 and 8).

Next, the algorithm uses a subroutine, getConfigs, to find
new configurations. First, the program is executed symbo-
lically on the same input (line 15). The result of symbolic

ARTZI ET AL.: FINDING BUGS IN WEB APPLICATIONS USING DYNAMIC TEST GENERATION AND EXPLICIT-STATE MODEL CHECKING 477

execution is a path constraint,
Vn
i¼1 ci, that is satisfied by the

path that was just executed from entry to exit of the whole
program. The subroutine then creates new inputs by
solving modified versions of the path constraint (lines 16-
20), as follows: For each prefix of the path constraint, the
algorithm negates the last conjunct (line 17). A solution, if it
exists, to such an alternative path constraint corresponds to
an input that will execute the program along a prefix of the
original execution path, and then take the opposite branch,
presumably covering new code. The algorithm uses a
constraint solver to find a concrete input for each path
constraint (line 18).

3.2 Example

Let us now consider how the algorithm of Fig. 2 exposes the
third fault in the example program of Fig. 1.

Iteration 1. The first input to the program is the empty
input, which is the result of solving the empty path
constraint. During the execution of the program on the
empty input, the condition on line 6 evaluates to true, and
page is set to ;. The condition on line 10 evaluates to false.
The condition on line 16 evaluates to false because
parameter login is not defined. The switch statement on
line 18 selects the case on line 20 because page has the value
of 0. Execution terminates on line 26. The HTML verifier
determines that the output is legal, and executeSymbolic
produces the following path constraint:

NotSetðpageÞ ^ page2 6¼ 1337 ^ login 6¼ 1 (I)

The algorithm now enters the foreach loop on line 16 of
Fig. 2, and starts generating new path conditions by system-
atically traversing subsequences of the above path constraint,
and negating the last conjunct. Hence, from (I), the algorithm
derives the following three path constraints:

NotSetðpageÞ ^ page2 6¼ 1337 ^ login ¼ 1 ðIIÞ
NotSetðpageÞ ^ page2 ¼ 1337 ðIIIÞ
SetðpageÞ ðIVÞ

Iteration 2. For path constraint (II), the constraint solver
may find the following input (the solver is free to select any
value for page2 other than 1337): page2 ;; login 1.

When the program is executed with this input, the
condition of the if-statement on line 16 evaluates to true,
resulting in a call to the validateLogin method. Then,
the condition of the if-statement on line 28 evaluates to
true because the username parameter is not set, resulting
in the generation of output containing an incorrect HTML
tag j2 on line 29. When the HTML validator checks the
page, the failure is discovered and a bug report is created
and added to the output set of bug reports.

3.3 Path Constraint Minimization

The failure detection algorithm (Fig. 2) returns bug reports.
Each bug report contains a set of path constraints, and a set of
inputs exposing the failure. Previous dynamic test genera-
tion tools [7], [17], [39] presented the whole input (i.e., many
hinputParameter; valuei pairs) to the user without an
indication of the subset of the input responsible for the
failure. As a postmortem phase, our minimization algorithm
attempts to find a shorter path constraint for a given bug
report (Fig. 3). This eliminates irrelevant constraints, and a
solution for a shorter path constraint is often a smaller input.

For a given bug report b, the algorithm first intersects all
the path constraints exposing b:failure (line 1). The
minimizer systematically removes one conjunct at a time
(lines 3-6). If one of these shorter path constraints does not

478 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 36, NO. 4, JULY/AUGUST 2010

Fig. 2. The failure detection algorithm. The output of the algorithm is a
set of bug reports. Each bug report contains a failure, a set of path
constraints exposing the failure, and a set of inputs exposing the failure.
The solve auxiliary function uses the constraint solver to find an input
satisfying the path constraint or returns ? if no satisfying input exists.
The merge auxiliary function merges the pair of pathConstraint and input
for an already detected failure into the bug report for that failure.

Fig. 3. The path constraint minimization algorithm. The method intersect
returns the set of conjuncts that are present in all given path constraints,
and the method shortest returns the path constraint with fewest
conjuncts. The other auxiliary functions are the same as in Fig. 2.

expose b:failure, then the removed conjunct is required for
exposing b:failure. The set of all such required conjuncts
determines the minimized path constraint. From the
minimized path constraint, the algorithm produces a
concrete input that exposes the failure.

The algorithm in Fig. 3 does not guarantee that the
returned path constraint is the shortest possible that
exposes the failure. However, the algorithm is simple, fast,
and effective in practice (see Section 6.3.2).

Our approach for minimization is similar in spirit to delta
debugging [10], [47], a well-known input minimization
technique. However, our algorithm operates on the path
constraint that exposes the failure, and not directly on the
input. A constraint concisely describes a class of inputs (e.g.,
the constraint page2 6¼ 1337 describes all inputs different
than 1337). Since a concrete input is an instantiation of a
constraint, it is more effective to reason about input proper-
ties in terms of their constraints. Our current minimization
algorithm also differs from delta debugging in that it does
not rely on efficient binary search like techniques to identify
redundant components of path constraints (thus far, the
identified path constraints were quite small in practice, and
the use of such techniques was unnecessary).

Each failure might be encountered along several execution
paths that might partially overlap. Without any information
about the properties of the inputs, delta debugging mini-
mizes only a single input at a time, while our algorithm
handles multiple path constraints that lead to a failure.

3.4 Minimization Example

The malformed HTML failure described in Section 3.2 can be
triggered along different execution paths. For example, both
of the following path constraints lead to inputs that expose
the failure. Path constraint (a) is the same as (II) in Section 3.2.

NotSetðpageÞ ^ page2 6¼ 1337 ^ login ¼ 1 ðaÞ
SetðpageÞ ^ page ¼ ; ^ page2 6¼ 1337 ^ login ¼ 1 ðbÞ

First, the minimizer computes the intersection of the path
constraints (line 1). The intersection is:

page2 6¼ 1337 ^ login ¼ 1 ða \ bÞ

Then, the minimizer creates two shorter path constraints
by removing each of the two conjuncts in turn. First, the
minimizer creates path constraint login ¼ 1. This path
constraint corresponds to an input that reproduces the
failure, namely login 1. The minimizer determines this
by executing the program on the input (line 14 in Fig. 3).
Second, the minimizer creates path constraint page2 6¼
1337. This path constraint does not correspond to an input
that exposes the failure. Thus, the minimizer concludes that
the condition login ¼ 1, that was removed from (a \ b) to
form the second path constraint, is required. In this
example, the minimizer returns login ¼ 1. The result is
the minimal path constraint that describes the minimal
failure-inducing input, namely, login 1.

4 COMBINED CONCRETE AND SYMBOLIC

EXECUTION WITH EXPLICIT-STATE MODEL

CHECKING

A typical PHP Web application is a client-server application
in which data and control flows interactively between a

server that runs PHP scripts and a client, which is usually a
Web browser. The PHP scripts that run on the server
generate HTML that includes interactive user-input widgets
such as buttons and menu items that, when selected by the
user, invoke other PHP scripts. When these other PHP
scripts are invoked, they are passed a combination of user
input and constant values taken from the generated HTML.
Modeling such user input is important because coverage of
the application will typically remain very low otherwise.

In Section 3, we described how to find failures in PHP
Web applications by adapting an existing test generation
approach to consider language constructs that are specific
to PHP, by using an oracle to validate the output, and by
having the user supply values that are needed for database
authentication. However, in practice, a PHP application
starts by executing a script, which generates an HTML page
from which other PHP scripts may be invoked as a result of
user actions (e.g., by selecting a menu entry). Such
additional scripts may refer to: 1) parameters that are
transferred as part of the call, 2) session state that is
persisted in the environment, and 3) to the database (after it
has been updated as a result of executing a previous script).
The solution that we previously presented does not handle
these issues, and is therefore incapable of achieving good
coverage for realistic PHP applications.

To handle this problem, Apollo implements a form of
explicit-state software model checking. That is, Apollo
systematically explores the state space of the system, i.e.,
the program under test. The algorithm in Section 3 always
restarts the execution from the same initial state and discards
the state reached at the end of each execution. Thus, the
algorithm reaches only one-level deep into the application,
where each level corresponds to a cycle of: a PHP script that
generates an HTML form that the user interacts with to
invoke the next PHP script. In contrast, the algorithm
presented in this section remembers and restores the state
between executions of PHP scripts. This technique, known as
state matching, is widely known in model checking [22], [42]
and implemented in tools such as SPIN [13] and JavaPath-
Finder [21]. To our knowledge, we are the first to implement
state matching in the context of Web applications and PHP.

4.1 Interactive User Simulation Example

Fig. 4 shows an example of a PHP application that is designed
to illustrate the particular complexities of finding faults in an
interactive web application. In particular, the figure shows:
an index.php top-level script that contains static HTML in
Fig. 4a, a generic login script login.php in Fig. 4c, and a
skeleton of a data display script view.php in Fig. 4d. The
PHP scripts in Fig. 4 rely on a shared include file
constants.php that defines some standard constants,
which is shown in Fig. 4b. Note that the code in Fig. 4 is an
ad-hoc mixture of PHP statements and HTML fragments. The
PHP code is delimited by <?php and ?> tokens (see, e.g.,
lines 44 and 69 in Fig. 4d). The use of HTML in the middle of
PHP code indicates that HTML is generated as if it were the
argument of a print statement. The dirname function—
which returns the directory component of a filename—is
used in therequire statements as an example of including a
file whose name is computed at runtime.

These PHP scripts are part of the client-server work flow
in a Web application: The user first sees the index.php

ARTZI ET AL.: FINDING BUGS IN WEB APPLICATIONS USING DYNAMIC TEST GENERATION AND EXPLICIT-STATE MODEL CHECKING 479

page of Fig. 4a and enters credentials. The user-input
credentials are processed by the script in Fig. 4c, which
generates a response page that allows the user to enter
further input—a topic—that in turn entails further proces-
sing by the script in Fig. 4d. Note that the username and
password that are entered by the user during the execution
of login.php are stored in special locations $ SESSION

½ $userTag � and $ SESSION½ $pwTag �, respectively. More-
over, if the user is the administrator, this fact is recorded
similarly, in $ SESSION½ $typeTag �. These locations illus-
trate how PHP handles session state, which are data that
persist from one page to another, typically for a particular
interaction by a particular user. Thus, the updates to
SESSION in Fig. 4c will be seen (as the SESSION

information is saved and read locally on the server) by
the code in Fig. 4d when the user follows the link to
view.php in the HTML page that is returned by
login.php. The view.php script uses this session
information to verify the username/password in line 46.

Our example program contains an error in the HTML
produced for the administrative details: The H2 tag that is
opened on line 62 of Fig. 4d is not closed. While this fault
itself is trivial, finding it is not. Assume that testing starts
(as an ordinary user would) by entering credentials to the
script in Fig. 4c. A tester must then discover that setting
$user to the value “admin” results in the selection of a
different branch that records the user type “admin” in the
session state (see lines 37-39 in login.php). After that, a
tester would have to enter a topic in the form generated by
the login script, and would then proceed to Fig. 4d with the
appropriate session state, which will finally generate HTML

exhibiting the fault as is shown in Fig. 5a. Thus, finding the
fault requires a careful selection of inputs to a series of
interactive scripts, as well as making sure that updates to
the session state during the execution of these scripts are
preserved (i.e., making sure that the executions of the
different scripts happen during the same session).

4.2 Algorithm

Fig. 6 shows pseudocode for the algorithm, which extends the
algorithm in Fig. 2 with explicit-state model checking to
handle the complexity of simulating user inputs. The
algorithm tracks the state of the environment, and auto-
matically discovers additional configurations based on an
analysis of the output for available user options. In particular,
the algorithm 1) tracks changes to the state of the environment
(i.e., session state, cookies, and the database) and 2) performs
an “on-the-fly” analysis of the output produced by the
program to determine what user options it contains, with
their associated PHP scripts. By determining the state of the
environment as it exists when an HTML page is produced, the
algorithm can determine the environment in which addi-
tional scripts are executed as a result of user interaction. This
is important because a script is much more likely to perform
complex behavior when executed in the correct context
(environment). For example, if the Web application does not
record in the environment that a user is logged in, most
subsequent calls will terminate quickly (e.g., when the
condition in line 46 of Fig. 4d is false) and will not present
useful information. For simplicity, the algorithm implicitly
handles the fact that there are possibly multiple entry points

480 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 36, NO. 4, JULY/AUGUST 2010

Fig. 4. Example of a PHP Web application. (a) index.php, (b) constants.php, (c) login.php, and (d) view.php.

into a PHP program. Thus, an input will contain the script to
execute in addition to the values of the parameters. For
instance, the first call might be to the index.php script, while
subsequent calls can execute other scripts.

There are four differences (underlined in the figure) with
the simplified algorithm that was previously shown in Fig. 2.

1. A configuration contains an explicit state of the
environment (before the only state that was used
was the initial state S0) in addition to the path
constraint and the input (line 3).

2. Before the program is executed, the algorithm
(method executeConcrete) will restore the en-
vironment to the state given in the configuration
(line 7) and will return the new state of the
environment after the execution.

3. When the getConfigs subroutine is executed to
find new configurations, it analyzes the output to find
possible transitions from the new environment state
(lines 24-27). The analyzeOutput function extracts
parameter names and possible values for each
parameter, and represents the extracted information
as a path constraint. For simplicity, the algorithm uses
only one entry point into the program. However, in
practice, there maybe several entry points into the
program (e.g., it is possible to call different PHP
scripts). The analyzeOutput function discovers
these entry points in addition to the path constraints.
In practice, each transition is expressed as a pair of a
path constraint and an entry point.

4. The algorithm uses a set of configurations that are
already in the queue (line 14) and it performs state
matching in order to only explore new configura-
tions (line 11).

4.3 Example

We will now illustrate the algorithm of Fig. 6 using the
example application of Fig. 4. The inputs to the algorithm
are: P is the code from Fig. 4, the initial state of the
environment is empty, the first script to execute is the script
in Fig. 4a, and O is the WDG HTML validator.8 The
algorithm begins on line 3 by initializing the work queue
with one item: an empty input to the script of Fig. 4a with an
empty path constraint and an empty initial environment.

Iteration 1. The first iteration of the outer loop (lines 5-14)
removes that item from the queue (line 6), restores the empty
initial state, and executes the script (line 7).

ARTZI ET AL.: FINDING BUGS IN WEB APPLICATIONS USING DYNAMIC TEST GENERATION AND EXPLICIT-STATE MODEL CHECKING 481

Fig. 5. (a) HTML produced by the script of Fig. 4d. (b) Output mapping constructed during execution. (c) Part of output of WDG Validator on the
HTML of (a).

Fig. 6. The failure detection algorithm. The output of the algorithm is a
set of bug reports; each reports a failure and the set of tests exposing
that failure. The solve auxiliary function uses the constraint solver to find
an input satisfying the path constraint, or returns ? if no satisfying input
exists. The merge auxiliary function merges the pair of pathConstraint
and input for an already detected failure into the bug report for that
failure. The analyzeOutput auxiliary function performs an analysis of the
output to extract possible transitions from the current environment state.8. http://htmlhelp.com/tools/validator/.

No failures are observed. The call to executeSymbolic on

line 18 returns an empty path constraint, so the function

analyzeOutput on line 24 is executed next, and returns one

user option; hlogin:php; ;; ;i for executing login.php

with no input, and the empty state. This configuration is

added to the queue (line 13) since it was not seen before.
Iteration 2-5. The next iteration of the top-level loop

dequeues the new work item, and executes login.phpwith

empty input, and empty state. No failures are found. The call

to executeSymbolic in line 18 returns a path constraint

user 6¼ admin ^ user 6¼ reg, indicating that the call to

check password on line 22 in Fig. 4c returned false.9 Given

this, the loop at lines 19-23 will generate several new work

items for the same script with the following path constraints:

user 6¼ admin ^ user ¼ reg and user ¼ admin, which are

obtained by negating the previous path constraint. The loop

on lines 24-27 is not entered because no user-input options

are found. After several similar iterations, two inputs are

discovered: user ¼ admin ^ pw ¼ admin and user ¼ reg ^
pw ¼ reg. These corresponds to alternate control flows in

which the check password test succeeds.
Iteration 6-7. The next iteration of the top-level loop

dequeues an item. Using this item, the call to check password

will succeed (assume it selected user ¼ reg . . .). Once again,

no failures are observed, but now the session state with user

and pw set is recorded at line 7. Also, this time analyzeOutput

(line 24) finds the link to the script in Fig. 4d, and so the loop at

lines 24-27 adds one item to the queue, executing view.php

with the current session state.
The next iteration of the top-level loop dequeues one

work item. Assume that it takes the last one described

above. Thus, it executes the script in Fig. 4d with a session

that defines user and pw but not type. Hence, it produces an
execution with no errors.

Iteration 8-9. The next loop iteration takes that last work
item, containing a user and password pair for which the
call to check_password succeeds, with the username as
“admin.” Once again, no failures occur, but now the
session state with user, pw, and type set is recorded at line 7.
This time, there are no new inputs to be derived from the
path constraint since all prefixes have been covered
already. Once again, parsing the output finds the link to
the script in Fig. 4d and adds a work item to the queue, but
with a different session state (in this case, the session state
also includes a value for type). The resulting execution of
the script in Fig. 4d with the session state that includes type
results in an HTML failure.

5 IMPLEMENTATION

We created a tool called Apollo that implements our
technique for PHP. Apollo consists of three major compo-
nents, Executor, Bug Finder, and Input Generator illu-
strated in Fig. 7. This section first provides a high-level
overview of the components and then discusses the
pragmatics of the implementation.

The inputs to Apollo are the program under test and an
initial value for the environment. The environment of a PHP
program consists of the database, cookies, and stored
session information. The initial environment usually con-
sists of a database populated with some values, and user-
supplied information about username/password pairs to be
used for database authentication.10

482 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 36, NO. 4, JULY/AUGUST 2010

Fig. 7. The architecture of Apollo.

9. For simplicity, we omit the details of this function. It compares the
username and password to some constants “admin” and “reg.”

10. Attempting to retrieve information from the database using
randomly chosen values for username/password is unlikely to be
successful. Symbolic execution is equally helpless without the database
manager because reversing cryptographic functions is beyond the state of
the art for constraint solvers.

The Executor is responsible for executing a PHP script
with a given input in a given state. The executor contains
two subcomponents:

. The Shadow Interpreter is a PHP interpreter that we
have modified to propagate and record path
constraints and positional information associated
with output. This positional information is used to
determine which failures are likely to be symptoms
of the same fault.

. The State Manager restores the given state of the
environment (database, session, and cookies) before
the execution and stores the new environment after
the execution.

The Bug Finder uses an oracle to find HTML failures,
stores all bug reports, and finds the minimal conditions on
the input parameters for each bug report. The Bug Finder
has the following subcomponents:

. The Oracle finds HTML failures in the output of the
program.

. The Bug Report Repository stores all bug reports
found during all executions.

. The Input Minimizer finds, for a given bug report,
the smallest path constraint on the input para-
meters that results in inputs inducing the same
failure as in the report.

The Input Generator implements the algorithm de-
scribed in Fig. 6. The Input Generator contains the following
subcomponents:

. The UI Option Analyzer analyzes the HTML output
of each execution to convert the interactive user
options into new inputs to execute.

. The Symbolic Driver generates new path constraints
from the constraints found during the execution.

. The Constraint Solver computes an assignment of
values to input parameters that satisfies a given path
constraint.

. The Value Generator generates values for para-
meters that are not otherwise constrained, using a
combination of random value generation and con-
stant values mined from the program source code.

5.1 Executor

We modified the Zend PHP interpreter 5.2.211 to produce
symbolic path constraints for the executed program, using
the “shadow interpreter” approach [11]. The shadow
interpreter performs the regular (concrete) program execu-
tion using the concrete values, and simultaneously per-
forms symbolic execution. Creating the shadow interpreter
required five alterations to the PHP runtime:

1. Associating Symbolic Parameters with Values.
Conceptually, we associate a symbolic variable with
every value that arises at runtime; however, we are
interested in tracking uses of input values, and so
the only variables that contain nonempty values are
those for the inputs themselves and values computed
from them in one of the following ways: variable
assignment, parameter passing, string concatenation,

and conversion to a number. Clearly, this potentially
leaves many uses of input unaccounted for. How-
ever, our results suggest that this is sufficient to
capture the bulk of how PHP code uses inputs in
practice. Values derived directly from input are those
read from one of the special arrays POST, GET, and
REQUEST, which store parameters supplied to the

PHP program. For example, executing the statement
$x ¼ $ GET½‘‘param1}� results in associating the value
read from the global parameter param1 and bound
to parameter x with the symbolic variable param1.
Values maintain their associations through the
operations mentioned above; that is, the symbolic
variables for the new values receive the same value as
the source value had. Importantly, during program
execution, the concrete values remain, and the
shadow interpreter does not influence execution.

Unlike other projects that perform concrete and
symbolic execution [7], [17], [18], [39], our interpreter
does not associate complex symbolic expressions
with all runtime values, but only symbolic variables,
which exist only for input-derived values. This
design keeps the constraint solver simple and
reduces the performance overhead. As our results
(Section 6) indicate, this lightweight approach is
sufficient for the analyzed PHP programs.

2. Storing Constraints at Branch Points. At branching
points (i.e., value comparisons) that involve values
associated with symbolic variables, the interpreter
extends the initially empty path constraint with a
conjunct that corresponds to the branch actually
taken in the execution. For example, if the program
executes a statement if ($name == “John”) and this
condition succeeds, where $name is associated with
the symbolic variable username, then the algorithm
appends the conjunct username = “John” to the
path constraint.

3. Handling PHP Native Functions. Our modified
interpreter records conditions for PHP-specific com-
parison operations, such as isset and empty, which
can be applied to any variable. Operation isset

returns a boolean value that indicates whether or not
a value different from NULL was supplied for a
variable. The empty operator returns true when
applied to: the empty string, ;, “;,” NULL, false, or
an empty array. The interpreter records the use of
isset on values with an associated symbolic
variable, and on uninitialized parameters.

The isset comparison creates either the NotSet or
the Set condition. The constraint solver chooses an
arbitrary value for a parameter p if the only condition
for p is Set (p). Otherwise, it will also take into account
other conditions. The NotSet condition is used only in
checking the feasibility of a path constraint. A path
constraint with the NotSet (p) condition is feasible
only if it does not contain any other conditions on p.
The empty comparison creates equality or inequality
conditions between the parameter and the values that
are considered empty by PHP.

4. Propagating Inputs through Sessions and Cookies.
While HTTP is a stateless protocol, various mechan-
isms are used to thread a series of HTTP requests

ARTZI ET AL.: FINDING BUGS IN WEB APPLICATIONS USING DYNAMIC TEST GENERATION AND EXPLICIT-STATE MODEL CHECKING 483

11. http://www.php.net/.

into a transaction, a major one being server-side
session state. In PHP, this is exposed directly as the
_SESSION variable, and the interpreter propagates
this persistent state across multiple requests that are
deemed part of the same session by the server.

The use of session state allows a PHP application
to store user-supplied information on the server for
retrieval by other scripts. We enhanced the PHP
interpreter to record when input parameters are
stored in session state. This enables Apollo to track
constraints on input parameters in all scripts that
use them.

5. Web Server Integration. Dynamic Web applications
often depend on information supplied by a Web
server (such as Apache), and some PHP constructs
are simply ignored by the command line interpreter
(e.g., header). In order to allow Apollo to analyze
more PHP code, Apollo supports execution through
the Apache Web server in addition to the stand-
alone command line executor. A developer can use
Apollo to silently analyze the execution and record
any failure found while manually using the subject
program on an Apache server.

The modified interpreter performs symbolic execution
along with concrete execution, i.e., every variable during
program execution has a concrete value and may have
additionally a symbolic value. Only the concrete values
influence the control flow during the program execution,
while the symbolic execution is only a “witness” that
records, but does not influence, control-flow decisions at
branching points. This design deals with exceptions natu-
rally because exceptions do not disrupt the symbolic-value
mapping for variables.

Our approach to symbolic execution allows us to handle
many PHP constructs that are problematic in a purely static
approach. For instance, for computed variable names (e.g.,
$x =${$foo}), any symbolic information associated with
the value that is held by the variable named by foo will be
passed to x by the assignment.12 In order to heuristically
group HTML failures that may be manifestations of the
same fault, Apollo records the output statement (i.e., echo
or print) that generated each fragment of HTML output.

Retargeting the existing PHP interpreter for concolic

execution required the following changes to the interpreter:

1. Extending the values manipulated during execution
(zval in the case of the Zend implementation of the
PHP interpreter) to track symbolic expressions.

2. Instrumenting user-input access to start the symbolic
tracking or to note that the program queries about a
missing input parameter. In the case of the Zend
PHP interpreter, this was done by instrumenting
accesses to the global parameter tables.

3. Detecting interesting execution states, such excep-
tions, and unclean exits.

4. Instrumenting all internal calls responsible for out-
put, in order to track the relations between output
and executed statements.

5. Instrumenting the calls to read and write sessions
and cookies, and changing the representation of the
stored value in order to store symbolic expressions
in the environment.

State manager. PHP applications make use of persistent
state such as the database, session information, and cookies.
The State Manager is in charge of 1) restoring the environment
prior to each execution and 2) storing the new environment
after each execution.

5.2 Bug Finder

The bug finder is in charge of transforming the results of the
executed inputs into bug reports. Below is a detailed
description of the components of the bug finder.

Bug report repository. This repository stores the bug
reports found in all executions. Each time a failure is
detected, the corresponding bug report (if the same failure
was discovered before) is updated with the path constraint
and the configuration inducing the failure. A failure is
uniquely defined by the following set of characteristics: the
type of the failure (execution failure or HTML failure), the
corresponding message (PHP error/warning message for
execution failures and validator message for HTML fail-
ures), and the PHP statement generating the problematic
HTML fragments identified by the validator (for HTML
failures) or the PHP statement involved in the PHP
interpreter error report (for execution failures). When the
exploration is complete, each bug report contains one
failure characteristic (error message and statement involved
in the failure) and the sets of path constraints and inputs
exposing failures with the same characteristics. Recording
the constraints under which a failure occurs can be helpful
for debugging because the state could be large or complex,
and an error might only be reproducible in a certain state.

Oracle. PHP Web applications output HTML/XHTML.
Therefore, in Apollo, we use as oracle an HTML validator
that returns syntactic (malformed) HTML failures found in
a given document. We experimented with both the offline
WDG validator13 and the online W3C markup validation
service.14 Both oracles identified the same HTML failures.
Our experiments use the faster WDG validator.

Input minimizer. Apollo implements the algorithm
described in Fig. 3 to perform postmortem minimization of
the path constraints. For each bug report, the minimizer
executes the program multiple times, with multiple inputs
that satisfy different path constraints, and attempts to find
the shortest path constraint that results in the same failure
characteristics.

5.3 Input Generator

UI option analyzer. Many PHP Web applications create
interactive HTML pages that contain user-interface elements
such as buttons and menus that allow the user interaction
needed to execute further parts of the application. In such
cases, pressing the button may result in the execution of
additional PHP source files. There are two challenges
involved in dealing with such interactive applications.

484 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 36, NO. 4, JULY/AUGUST 2010

12. On the other hand, any data flow that passes outside PHP, such as via
JavaScript code in the generated HTML, will not be tracked by this
approach.

13. http://htmlhelp.com/tools/validator/offline.
14. http://validator.w3.org.

. The HTML output must be examined to find the
referenced scripts and the different values that can
be supplied as parameters.

. Apollo needs to be able to follow input parameters
through the shared global information (database, the
session, and the cookie mechanisms).

Apollo’s approach to the above challenges is to simulate
user interaction by analyzing the dynamically created
HTML output and tracking the symbolic parameters
through the environment:

. Apollo automatically extracts the available user
options from the HTML output so that it collects
all HTML forms in the page and their components,
e.g., buttons and text areas, through which the user
can provide input. Any default values for such
elements are also collected.

. Apollo collects static HTML documents that can be
called from the dynamic HTML output, i.e., Apollo
gather all href attributes in the HTML document.

. Apollo performs a cursory analysis of JavaScript
code to find other syntactic references, for instance, a
window.open call with a static url as a parameter.

Since additional code on the client side (for instance,
JavaScript) might be executed when a button is pressed,
this approach might induce false positive bug reports. In
our experiments, this limitation produced no false positive
bug reports.

For example, after analyzing the output of the program
of Fig. 8, the UI Option Analyzer will return the following
two options:

1. Script: “mainmenu.php”
PathConstraint:

txtNick ¼ 00Admin00 ^ Exist ðpwdPasswordÞ

2. Script: “newuser.php”
PathConstraint: ;

For instance, the first of the items in the above list comes
from the submit option to the form in Fig. 8: The
mainmenu.php script is directly specified by the submit
option, and the path constraint comes from the input items
in the form. Any string may be provided for pwdPassword,
so we generate a constraint just that it exist. But the txtNick
item is given the default value since that input is provided

directly by the form. Note that further exploration can cause
either of these constraints to be negated, which will simulate
providing other possible inputs. The second of these items
comes from onClick = “window.open(‘newuser.php’,
‘_self’”, which directly opens a new window pointing to the
newuser.php script.

The Symbolic Driver implements the combined concrete
and symbolic algorithm of Fig. 2. The driver has two main
tasks: Select which input to consider next (line 5), and create
additional inputs from each executed input (by negating
conjuncts in the path constraint). To select which input to
consider next, the driver uses a coverage heuristic, similar to
those used in EXE [7] and SAGE [18]. Each conjunct in the
path constraint knows the branch that created the conjunct,
and the driver keeps track of all branches previously
executed and favors inputs created from path constraints
that contain unexecuted branches.

To avoid redundant exploration of similar executions,
Apollo performs state matching (performed implicitly in
Line 11 of Fig. 6) by not adding already explored transitions.

Constraint solver. The interpreter implements a light-
weight symbolic execution, in which the only constraints
are equality and inequality with constants. Apollo trans-
forms path constraints into integer constraints in a
straightforward way, and uses choco15 to solve them.

This approach still allows us to handle values of the
standard types (integer, string), and is straightforward
because the only constraints are equality and inequality.16

In cases where parameters are unconstrained, Apollo
randomly chose values from a predefined list of constants.

While limiting to the basic types number and string and
only comparisons may seem very restrictive, note that all
input comes to PHP as strings; furthermore, in our
experience, the bulk of use of input values consists of the
kinds of simple operations that are captured by our tracing
and the kinds of simple comparisons captured here. Our
coverage results suggest this is valid for a significant range
of PHP applications.

6 EVALUATION

We experimentally measured the effectiveness of Apollo by
using it to find faults in PHP Web applications. We designed
experiments to answer the following research questions:

Q1. How many faults can Apollo find, and of what
varieties?

Q2. How effective is the fault detection technique of
Apollo compared to alternative approaches in terms
of the number and severity of discovered faults and
the line coverage achieved?

Q3. How effective is our minimization technique in
reducing the size of input parameter constraints and
failure-inducing inputs?

For the evaluation, we selected six open-source PHP
programs from http://sourceforge.net (see Fig. 9):

. faqforge: tool for creating and managing documents;

. webchess: online chess game;

ARTZI ET AL.: FINDING BUGS IN WEB APPLICATIONS USING DYNAMIC TEST GENERATION AND EXPLICIT-STATE MODEL CHECKING 485

Fig. 8. A simplified version of the main entry point (index.php) to a
PHP program. The HTML output of this program contains a form with
two buttons. Pressing the login button executes mainmenu.php and
pressing the newAccount button will execute the newuser.php
script.

15. http://choco-solver.net/index.php?title=Main_Page.
16. Floating-point values can be handled in the same way, though none

of the examined programs required it.

. schoolmate: PHP/MySQL solution for administer-
ing elementary, middle, and high schools;

. phpsysinfo: displays system information, e.g., up-
time, CPU, memory, etc.;

. timeclock is a Web-based timeclock system;

. phpBB2 is a discussion forum.

6.1 Generation Strategies

We use the following test input-generation strategies in the
remainder of this section:

. Apollo generates test inputs using the technique
described in Section 3.

. Randomized is a test input generation strategy that
generates test inputs by giving random values to
parameters. These values are chosen from constants
harvested from the program’s source code and from
default values.17 A difficulty is that the names and
types of parameters are not declared explicitly in
PHP applications. The Randomized algorithm dis-
covers the names of parameters by monitoring what
string values are used to access the global arrays
$ POST, $ GET, and $ REQUEST that are used to read
the parameters supplied to PHP programs. The
algorithm starts by executing the application on the
empty input, and in each subsequent execution,
randomly chosen harvested constants and default
values are assigned to a randomly selected subset of
parameters that have been detected in previous
executions.18

To avoid bias, we ran both strategies inside the same
experimental harness. This includes the Database Manager
(Section 5), which supplies usernames and passwords for
database access, and the UI option analyzer.

6.2 Methodology

To answer the first research question (Q1) we applied
Apollo to the six subject programs and we classified the
discovered failures into five groups based on their different
failure characteristics:

. Execution crash: The PHP interpreter terminates
with an exception.

. Execution error: The PHP interpreter emits an error
message that is visible in the generated HTML.

. Execution warning: The PHP interpreter emits an
error message that is invisible in the generated HTML.

. HTML error: The program generates HTML for
which the validator produces an error report.

. HTML warning: The program generates HTML for
which the validator produces a warning report.

This classification is a refinement of the one presented in
Section 2.3.

To answer the second research question (Q2) we
compared both the coverage achieved and the number of
faults found with the Randomized generation strategy.
Coverage was measured using the line coverage metric, i.e.,
the ratio of the number of executed lines to the total number
of lines with executable PHP code in each application.

We ran each test input-generation strategy for 20 minutes
on each subject program, by which time the coverage
achieved and number of bugs found by Apollo starts to
level off. During this time each strategy generated hundreds
of inputs.

This time budget includes all experimental tasks, i.e.,
program execution, harvesting of constant values from
program source, test generation, constraint solving (where
applicable), output validation via an oracle, and line cover-
age measurement. For our experiments, we use the WDG
offline HTML validator, version 1.2.2.

We also compared Apollo’s results to the results
reported by Minamide’s static analysis [34] on the four
subject programs that we have in common (Section 6.3.1
presents the results).

To answer the third research question, about the effec-
tiveness of the input minimization, we performed the
following experiments. Recall that several execution paths
and inputs may expose the same failure. Our input
minimization algorithm attempts to produce the shortest
possible input that exposes each failure. The inputs to the
minimizer are the failure found by the algorithm of Fig. 6
along with all the execution paths that expose each failure.

6.3 Results

The graphs in Figs. 11 and 12 visualize how coverage and
the number of failures found increases over time, when
both techniques are given up to 20 minutes. For each of the
failures reported by the two algorithms, we manually
investigated the problem and identified the faulty state-
ments that caused the problem by fixing the problems and
making sure that the failures did not recur. Fig. 10 tabulates
the final line coverage and faults when both techniques are
given 20 minutes. To the best of our knowledge, all reported
faults are counted only once.

In most cases, Apollo finds many more failures and
achieves much better coverage than Randomized. The only
notable exception to this is phpsysinfo (Fig. 12b), which is
not a Web application, but a program that displays system
information, and therefore does not rely much on user
input. In this case, using the UI analyzer, Randomized was
able to perform almost as well as Apollo.

On most applications, Apollo’s coverage converges after
about 10 minutes while Randomized converges sooner, and
at a much lower level. Apollo coverage of webchess (Fig. 11d)

486 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 36, NO. 4, JULY/AUGUST 2010

Fig. 9. Characteristics of subject programs. The #files column lists the
number of .php and .inc files in the program. The PHP LOC column
lists the number of lines that contain executable PHP code. The
#downloads column lists the number of downloads from http://
sourceforge.net.

17. Halfond and Orso [20] presented a similar static analysis for Web
applications written in Java; however, they discover an approximation of
the set of values for each parameter.

18. Two additional features of the Randomized algorithm are: 1) The
user may supply specific values to use for specific parameters (such as
username/password), and 2) it detects additional scripts that may be
invoked from the output of each execution (user-input simulation).

converges earlier since Apollo fails to login two players, and
thus is unable to simulate a chess game. On faqforge
(Fig. 11a), Apollo quickly covers almost 100 percent of the
code. In both cases, new failures are still found in the covered
code until the last minute of execution. We note that our
results confirm the common belief that there is a very strong
correlation between coverage and number of failures found.

The Apollo strategy found 673 faults in the subject
applications versus only 182 faults for Randomized. More-
over, the Apollo test generation strategy achieved an average
line coverage of 52.9 percent versus only 19.8 percent for
Randomized.

The coverage of phpbb2 and timeclock is relatively low
as the output of these applications contains client-side

ARTZI ET AL.: FINDING BUGS IN WEB APPLICATIONS USING DYNAMIC TEST GENERATION AND EXPLICIT-STATE MODEL CHECKING 487

Fig. 10. Experimental results for 20 minute test generation runs. The table presents results for each subject program, and each strategy, separately.
The #inputs column presents the number of inputs that each strategy created in the given time budget. The coverage column lists the line coverage
achieved by the generated inputs. The execution crashes, errors, and warnings and HTML errors and warnings columns list the number of faults
in the respective categories. The Total faults columns sums up the number of discovered faults.

Fig. 11. Percentage of line coverage (bottom) and failures found (top) achieved by Apollo (full line) and Randomized (dashed line) input-generation
techniques in 20 minutes of execution for subject programs (a) faqforge, (b) schoolmate, (c) phpsysinfo, and (d) webchess.

scripts written in JavaScript, which Apollo currently does
not analyze.

Figs. 13 and 14 classify the faults reported by Apollo.
The execution errors (Fig. 13) are dominated by database-
related errors, where the application had difficulties
accessing the database, resulting in error messages such
as 1) “supplied argument is not a valid MySQL result
resource” and 2) “Unable to jump to row 0 on MySQL
result.” The two SQL-related error messages quoted above
occurred in faqforge (9 cases of error 1) and webchess
(19 cases of error 1 and 1 case of error 2), schoolmate
(20 cases of error 1 and 9 cases of error 2), timeclock (1 case
of error 1), and phpbb2 (1 case of error 1).

These failures have the same cause: User-supplied input
parameters are concatenated directly into SQL query strings
and leaving these parameters blank results in malformed
SQL, which in turn causes the mysql_query functions to
return an invalid result. The subject programs failed to
check the return value of mysql_query and simply
assume that a valid result is returned. These faults are
indications of a potentially serious problem: The concatena-
tion of user-supplied strings into SQL queries makes these
programs vulnerable to SQL-injection attacks [12]. Thus,
our testing approach indicates possible SQL-injection
vulnerabilities despite not being specifically designed to
look for security issues.

The three execution crashes (when the interpreter
terminates with an exception) in Fig. 10 happen when the
interpreter tries to load files or functions that are missing.

For instance, for some inputs that can be supplied to the
schoolmate subject program, the PHP interpreter attempts
to load a file that does not exist in the current distribution of
schoolmate. Since schoolmate has 63 files and PHP is an
interpreted language that allows the use of runtime string
values when loading files, it is hard to detect such faults.
Apollo also discovers a severe fault in the webchess subject
program. This fault occurs when the interpreter tries to call
to a function that is undefined since the PHP file
implementing it is not included due to a value supplied
as one of the parameters.

The 673 malformed HTML faults can be divided into
several categories (Fig. 14). These faults are mainly
concerned with HTML elements that occur in the wrong
place, HTML elements with incorrect values, and with
unclosed tags. The breakdown of HTML faults is similar
across the different PHP applications.

488 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 36, NO. 4, JULY/AUGUST 2010

Fig. 12. Percentage of line coverage (bottom) and failures found (top) achieved by Apollo (full line) and Randomized (dashed line) input-generation
techniques in 20 minutes of execution for subject programs (a) timeclock and (b) phpbb2.

Fig. 13. Classification of the execution faults found by Apollo. Fig. 14. Classification of the HTML faults found by Apollo.

6.3.1 Comparison with Static Analysis

Minamide [34] presents a static analysis for discovering
HTML malformedness faults in PHP applications.
Minamide’s analysis tool approximates the string output
of a program with a context-free grammar, and then
discovers unmatched tags by intersecting this grammar
with the regular expression of matched pairs of delimiters
(open/closed tags). In contrast, our analysis uses an HTML
validator and covers the entire language standard.

We performed our evaluation on four of the benchmarks
studied by Minamide (webchess, faqforge, schoolmate, and
timeclock), and we compare the number of faults found by
both tools (using a time budget of 20 minutes for Apollo). For
these four subject programs, Apollo found 2.2 times as many
unmatched tags failures as Minamide (12519 versus 56). The
faults found by Minamide’s tool are not publicly available so
we do not know whether Apollo discovered all faults that
Minamide’s tool discovered. However, Apollo also found
453 other malformed HTML failures and 66 execution faults,
both of which are out of reach for Minamide’s tool.

6.3.2 Path Constraint Minimization

We measure the effectiveness of the minimization algorithm
of Section 3.3 via the reduction ratio between the size of the
shortest original (unminimized) path constraint (and input)
and the minimized path constraint (and input).

Fig. 15 tabulates the results. The results show that our
input minimization technique effectively reduces the size of
inputs by at least 42 percent. The minimization technique
managed to reduce the exposing input size for more than
50 percent of the faults.

6.4 Threats to Validity

Construct validity. Why do we count malformed HTML as
a defect in dynamically generated webpages? Does a
webpage with malformed HTML pose a real problem or
this is an artificial problem generated by the overly
conservative specification of the HTML language?
Although Web browsers are resilient to malformed HTML,
we have encountered cases when malformed HTML
crashed the popular Internet Explorer Web browser. More
importantly, even though a particular browser might

tolerate malformed HTML, different browsers or different
versions of the same browser may not display all informa-
tion in the presence of malformed HTML. This becomes
crucial for some websites; for example, for sites related to
financial transactions. Many websites provide a button for
verifying the validity of statically generated HTML. The
challenges of dynamically generated webpages prevent the
same institutions from validating the content.

Why do we use line coverage as a quality metric? We use
line coverage only as a secondary metric, our primary metric
being the number of faults found. Line coverage indicates
how much of the application was explored by the analysis.
An analysis can only find faults in lines that are covered, so
more coverage generally leads to more faults being detected.

Why do we present the user with minimized path
constraints and inputs in addition to the inputs exposing
the failure? Although an input that corresponds to a longer
path constraint still exposes the same failure, in our
experience, the removal of superfluous information helps
programmers with pinpointing the location of the fault.

Internal validity. Did Apollo discover real, unseeded,
and unknown faults? Since we used subject projects
developed by others, we could not influence the quality of
the subject programs. Apollo does not search for known or
seeded faults, but it finds real faults in real programs. For
those subject programs that connect to a database, we
populated the database with random records. The only
thing that is “seeded” into the experiment is a username/
password combination, so that Apollo can access the
records stored in the database.

External validity. Will our results generalize beyond the
subject programs? We only used Apollo to find faults in six
PHP projects. These may have serious quality problems, or
may be unrepresentative in other ways. Four of the subject
programs were also used as subject programs by Minamide
[34]. We chose two additional subject programs, phpsysinfo
and phpBB2, in order to ensure we use high quality
programs. Both programs were chosen using the following
three criteria: applications with more than 10K LOC, that
had been edited recently (i.e., recent CVS commits), and
have a large number of downloads (more than 100,000).
Both programs are ranked among the top 0.5 percent
projects on sourceforge (phpBB is ranked the 29th most
popular project out of all 154,880 sourceforge applications,
as of 27 August 2009). Nevertheless, Apollo managed to
find faults in both of these programs.

While it is true that Apollo finds hundreds of faults in the
subject programs, this does not mean that these applications
are of poor quality. Many of the faults Apollo discovers are
malformed HTML faults. PHP applications tend to have
many malformed HTML faults for several reasons. First, it is
hard to avoid malformed HTML faults when writing a
program in one language that generates code in another.
Second, for the same reason, it is hard to find malformed
HTML faults with manual inspection and code reviews.
Third, in order to find malformed HTML faults automati-
cally, the developer needs to generate and inspect all possible
output of the applications. Fourth, malformed HTML faults
usually have low priority when fixing faults as browsers are
attempting to recover from them automatically.

Similarly, the fact the randomized version finds many
faults does not mean that the applications are of low

ARTZI ET AL.: FINDING BUGS IN WEB APPLICATIONS USING DYNAMIC TEST GENERATION AND EXPLICIT-STATE MODEL CHECKING 489

Fig. 15. Results of minimization. The success rate indicates the
percentage of faults whose exposing input was successfully minimized
(i.e., the minimizer found a shorter exposing input). The orig. size
columns list the average size of original (un-minimized) path constraints
and inputs. The size of a path constraint is the number of conjuncts. The
size of an input is the number of key-value pairs in the input. The
reduction columns list the amount by which the minimized size is
smaller than the unminimized size (i.e., 1� minimized

unminimizedÞ. The higher the
percentage, the more often minimization is helpful.

19. 125 is the sum of Malformed HTML failures related to tags: Missing
end tag, unopened close tag, end tag for unfinished element, and unfinished
tag.

quality. Even the randomized version is doing a consider-
able amount of work to automate the discovery of faults. It
discovers input parameters, constants, and simulates user
input, in order to find as many faults as it does.

Reliability. Are the results reproducible? The subject
programs that we used are publicly available from
sourceforge. The faults that we found are available for
examination at http://pag.csail.mit.edu/apollo.

6.5 Limitations

Simulating user inputs based on locally executed Java-
Script. The HTML output of a PHP script might contain
buttons and arbitrary snippets of JavaScript code that are
executed when the user presses the corresponding button.
The actions that the JavaScript interpreter might perform are
currently not analyzed by Apollo. For instance, the Java-
Script code might pass specific arguments to the PHP script.
As a result, Apollo might report false positives. For
example, Apollo might report a false positive if Apollo
decides to execute a PHP script as a result of simulating a
user pressing a button that is not visible. Apollo might also
report a false positive if it attempts to set an input parameter
that would have been set by the JavaScript code. In our
experiments, Apollo did not report any false positives.

Limited tracking in native methods. Apollo has limited
tracking of input parameters through PHP native methods.
PHP native methods are implemented in C, which make it
difficult to automatically track how input parameters are
transformed into output parameters. We have modified the
PHP interpreter to track parameters across a very small
subset of the PHP native methods. Similarly to [44], we plan
to create an external language to model the dependencies
between inputs and outputs for native methods to increase
Apollo line coverage when native methods are executed.

Limited tracking of input parameters through the
database. Apollo does not track input parameters through
the database. Thus, Apollo might not be able to explore call
sequences in which subsequent calls depend on specific
values of input parameters stored in the database by earlier
calls. It is possible to extend Apollo to track input
parameters through the database in the same way Emmi
et al. [14] extended concolic testing to database applications.

Limited sources of input parameters. Apollo currently
considers parameters as only inputs coming from the
global arrays _POST, _GET, and _REQUEST. Supporting
other global parameters such as _ENV and _COOKIE is
straightforward.

Limited forms of constraints to be solved. In theory,
Apollo might be unable to cover certain parts of an
application because the constraints that use are fairly simple.
However, from what we have observed in our experiments
so far, PHP Web applications do not seem to manipulate their
input parameters in complex ways, and the very simple
constraints that can be solved with Choco have been
adequate for our purposes. We have only observed a very
few isolated cases where the solving of more complex
constraints (see, e.g., [28]) would have helped.

7 RELATED WORK

An earlier version of this paper was presented at ISSTA ’08
[2]. The Apollo tool presented there did not handle the

problem of automatically simulating user interactions in
Web applications. Instead, it relied on a manual transfor-
mation of the program under test to enable the exploration
of a few selected user inputs. The current paper also
extends [2] by providing a more extensive evaluation,
which includes two new large Web applications, and by
presenting a detailed classification of the faults found by
Apollo. In addition, the Apollo tool presented in [2] did not
yet support Web server integration.

In the remainder of this section, we discuss three
categories of related work: 1) combined concrete and
symbolic execution, 2) techniques for input minimization,
and 3) testing of Web applications.

7.1 Combined Concrete and Symbolic Execution

DART [17] is a tool for finding combinations of input values
and environment settings for C programs that trigger errors
such as assertion failures, crashes, and nontermination.
DART combines random test generation with symbolic
reasoning to keep track of constraints for executed control-
flow paths. A constraint solver directs subsequent execu-
tions toward uncovered branches. Experimental results
indicate that DART is highly effective at finding large
numbers of faults in several C applications and frame-
works, including important and previously unknown
security vulnerabilities. CUTE [39] is a variation (called
concolic testing) on the DART approach. The authors of
CUTE introduce a notion of approximate pointer con-
straints to enable reasoning over memory graphs and
handle programs that use pointer arithmetic.

Subsequent work extends the original approach of
combining concrete and symbolic executions to accomplish
two primary goals: 1) improving scalability [1], [5], [15],
[16], [18], [32], and 2) improving execution coverage and
fault detection capability through better support for
pointers and arrays [7], [39], better search heuristics [18],
[25], [31], or by encompassing wider domains such as
database applications [14].

Godefroid [15] proposed a compositional approach to
improve the scalability of DART. In this approach,
summaries of lower level functions are computed dynami-
cally when these functions are first encountered. The
summaries are expressed as pre and postconditions of the
function in terms of its inputs. Subsequent invocations of
these lower level functions reuse the summary. Anand et al.
[1] extend this compositional approach to be demand-
driven to reduce the summary computation effort.

Exploiting the structure of the program input may
improve scalability [16], [32]. Majumdar and Xu [32]
abstract context-free grammars that represent the program
inputs to produce a symbolic grammar. This grammar
reduces the number of input strings to enumerate during
test generation.

Majumdar and Sen [31] describe hybrid concolic testing,
which interleaves random testing with bounded exhaustive
symbolic exploration to achieve better coverage. Inkumsah
and Xie [25] combine evolutionary testing using genetic
mutations with concolic testing to produce longer sequences
of test inputs. SAGE [18] also uses improved heuristics,
called white box fuzzing, to achieve higher branch coverage.

Emmi et al. [14] extend concolic testing to database
applications. This approach creates and inserts database

490 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 36, NO. 4, JULY/AUGUST 2010

records and enables testing program code that depends on
embedded SQL queries.

Wassermann et al. present a concolic-testing tool [45] for
identifying SQL-injection vulnerabilities in PHP applica-
tions by using dynamic input generation and a string
analysis [34]. Our work is related to Wassermann et al.’s but
differs significantly in goals and technique. We discuss the
similarities (1-3) and differences (4-7) below.

1. Both tools aim at creating inputs that expose faults in
PHP programs and at achieving high code coverage.

2. Both tools use dynamic analysis to track the flow of
input data though the execution of the program,
collect symbolic constraints, and use a constraint
solver to create additional inputs.

3. Both tools use test oracles to check the results of the
execution.

4. The focus of the work of Wassermann et al. is
software security, while the focus of ours is correct-
ness of the output. Their tool aims to construct
inputs that expose known SQL-injection vulnerabil-
ities (the tool requires an indication of a vulner-
ability). In contrast, our tool aims to construct inputs
that lead to previously unknown faults that result in
invalid output.

5. Their tool is not fully automatic, while ours is. Their
tool requires manual loading of pages and supplying
of inputs to the page. Also, it is unable to explore
realistic executions which result from a sequence of
user interactions with the program. In contrast, our
tool automatically handles interactive user input,
including discovering new inputs by analysis of
generated HTML pages and propagation of symbolic
inputs through sessions and cookies. Full automati-
zation of user interaction is a major contribution of
this work.

6. Their tool requires a specialized solver for a logic of
string constraints that includes strings, integers,
regular-language constraints, and array constraints.
Their constraint solver is based on finite-state auto-
mata and transducers. The authors do not discuss the
algorithmic complexity of the solving problem or the
empirical efficiency of the solver. In contrast, our tool
creates constraints that can be efficiently solved by
any linear-arithmetic solver. In principle, a potential
advantage of using a more complex constraint theory
is that it may allow achieving higher coverage. In
practice, however, using a simple but efficient
constraint theory works well. Our tool achieved high
line coverage, 52.9 percent (Wassermann et al.
mention that the aim of their work is to “achieve a
designated code-coverage metric” but provide no
coverage results for their experiments).

7. Their approach to concolic execution relies on
performing source-code instrumentation and back-
ward-slice computation by reexecuting the same
input multiple times and instrumenting additional
code.

As the authors mention, this “is effective only when the
points of possible failure are known and relatively
localized.” In contrast, our tool works on unchanged

application code, generates symbolic constraints directly
using a modified interpreter, and does execute any input
more than once. These features make our approach to
concolic execution more generally applicable.

Some approaches aim at checking functional correctness.
A number of tools [4], [6] use a separate implementation of the
function being tested to compare outputs. This limits the
approach to situations where a second implementation exists.

While our work builds on this significant body of
research, there are two significant differences. First, our
work goes beyond simple assertion failures and crashes by
using on an oracle (in the form of an HTML validator) to
determine correctness, which means that our tool can
handle situations where the program has functionally
incorrect behavior without relying on programmer asser-
tions. Second, our work addresses PHP’s complex execution
model, which involves multiple scripts invoked via user-
interface options in generated HTML pages, and commu-
nicating values via session state and cookies. The only other
concolic-testing approach for PHP [45] does not present a
fully automatic solution for dealing with multiple inter-
related PHP scripts.

7.2 Minimizing Failure-Inducing Inputs

Our work minimizes the constraints on the input para-
meters. This shortens the failure-inducing inputs and helps
with pinpointing the cause of faults. Godefroid et al. [18]
faced this challenge since their technique produces several
distinct inputs that expose the same fault. Their approach
hashes all such inputs and returns an example failure-
inducing input. Our work also addresses another issue:
identifying the minimal set of program variables that are
essential to induce the failure. In this regard, our work is
similar to delta debugging [9], [47] and its extension
hierarchical delta debugging [35]. These approaches modify
the failure-inducing input directly, thus leading to a single,
minimal failure-inducing input. In contrast, our technique
modifies the set of constraints on the failure-inducing input.
This creates minimal patterns of failure-inducing inputs,
which facilitates debugging. Moreover, our technique is
more efficient because it takes advantage of the (partial)
overlapping of different inputs.

Two recent papers present other approaches to mini-
mizing faulty input. Clause and Orso [8] present a
technique, based on dynamic tainting, to find the minimal
subset of input responsible for the fault. Given a program
that fails with a runtime exception caused by an incorrect
value, Sinha et al.’s technique [40] identifies the source
statement at which the incorrect assignment was made,
which helps to locate the fault.

7.3 Testing of Web Applications

Existing techniques for fault detection in Web applications
focus on output correctness and security.

Minamide [34] uses static string analysis and language
transducers to model PHP string operations to generate
potential HTML output—represented by a context-free
grammar—from the Web application. This method can
be used to generate HTML document instances of the
resulting grammar and to validate them using an existing
HTML validator. As a more complete alternative, Minamide

ARTZI ET AL.: FINDING BUGS IN WEB APPLICATIONS USING DYNAMIC TEST GENERATION AND EXPLICIT-STATE MODEL CHECKING 491

proposes a matching validation which checks for containment
of the generated context-free grammar against a regular
subset of the HTML specification. However, this approach
can only check for matching start and end tags in the HTML
output, while our technique covers the entire HTML
specification. Also, flow-insensitive and context-insensitive
approximations in the static analysis techniques used in this
method result in false positives, while our method reports
only real faults.

Benedikt et al. [3] present a tool, VeriWeb, for auto-
matically testing dynamic webpages. They use a model
checker to systematically explore all paths (up to a certain
bound) of user navigatable components in a website. When
the exploration encounters HTML forms, VeriWeb uses
SmartProfiles. SmartProfiles are user-specified attribute-
value pairs that are used to automatically populate forms
and supply values that should be provided as inputs.
Although VeriWeb can automatically fill in the forms, the
human tester needs to prepopulate the user profiles with
values that a user would provide. Similarly, the WAVES
tool by Huang et al. [23] performs automatic form
completion by using a textual analysis to associate “topics”
with input values that occur in HTML forms, in combina-
tion with a self-learning knowledge base that associates
values with topics. In contrast, Apollo automatically dis-
covers input values based on the examination of branch
conditions on execution paths. Benedikt et al. do not report
any faults found, while we report 673.

Halfond and Orso [20] use static analysis of the server-
side implementation logic to extract a Web application’s
interface, i.e., the set of input parameters and their potential
values. (Halfond et al. later extended that approach [19] to
include dynamic analysis and specialized constraint sol-
ving.) They implemented their technique for Web applica-
tions written in Java. They obtained better code coverage
with test cases based on the interface extracted using their
technique as compared to the test cases based on the
interface extracted using a conventional Web crawler.
However, the coverage may depend on the choices made
by the test generator to combine parameter values—an
exhaustive combination of values may be needed to
maximize code coverage. In contrast, our work uses
dynamic analysis of server-side implementation logic for
fault detection and minimizes the number of inputs needed
to maximize the coverage. Furthermore, we include results
on fault detection capabilities of our technique.

Like us, McAllister et al. [33] tackle the problem of
testing interactive Web applications. Their method relies on
prerecorded traces of user interactions, while our approach
automatically discovers allowable interactions. Moreover,
their approach to handling persistent state relies on
instrumenting one particular Web application framework,
Django. In contrast, our approach is to instrument the PHP
runtime system and observe database interactions. This
allows handling state of PHP applications regardless of any
framework they may use.

Dynamic analysis of string values generated by Web
applications has been considered in a reactive mode to
prevent the execution of insidious commands (intrusion
prevention) and to raise an alert (intrusion detection) [26], [30],

[36], [38], [41]. As far as we know, our work is the first
attempt at proactive fault detection in Web applications using
dynamic analysis.

Existing techniques for detection of security vulnerabil-
ities (e.g., SQL injection or cross-site scripting) in Web
applications use static analysis [24], [27], [34], [43], [46] or
dynamic analysis [29].

Kie _zun et al. present a dynamic tool, Ardilla [29], to
create SQL and XSS attacks. Their tool uses dynamic
tainting, concolic execution, and attack-candidate genera-
tion and validation. Like ours, their tool reports only real
faults. However, Kie _zun et al. focus on finding security
faults, while we concentrate on functional correctness. Their
tool builds on and extends the input-generation component
of Apollo, but does not address the problem of user
interaction. It is an area of future research to combine
Apollo’s user interaction and state matching with Ardilla’s
exploit-detection capabilities.

8 CONCLUSIONS

We have presented a technique for finding faults in PHP
Web applications that is based on combined concrete and
symbolic execution. The work is novel in several respects.
First, the technique not only detects runtime errors but also
uses an HTML validator as an oracle to determine situations
where malformed HTML is created. Second, we address a
number of PHP-specific issues, such as the simulation of
interactive user input that occurs when user-interface
elements on generated HTML pages are activated, resulting
in the execution of additional PHP scripts. Third, we
perform an automated analysis to minimize the size of
failure-inducing inputs.

We created a tool, Apollo, that implements the analysis.
We evaluated Apollo on six open-source PHP web applica-
tions. Apollo’s test generation strategy achieves over
50 percent line coverage. Apollo found a total of 673 faults
in these applications: 72 execution problems and 601 cases
of malformed HTML. Finally, Apollo also minimizes the
size of failure-inducing inputs: The minimized inputs are
up to 5:3� smaller than the unminimized ones.

REFERENCES

[1] S. Anand, P. Godefroid, and N. Tillmann, “Demand-Driven
Compositional Symbolic Execution,” Proc. Int’l Conf. Tools and
Algorithms for the Construction and Analysis of Systems, pp. 367-381,
2008.

[2] S. Artzi, A. Kiezun, J. Dolby, F. Tip, D. Dig, A. Paradkar, and M.D.
Ernst, “Finding Bugs in Dynamic Web Applications,” Proc. Int’l
Symp. Software Testing and Analysis, pp. 261-272, 2008.

[3] M. Benedikt, J. Freire, and P. Godefroid, “VeriWeb: Automatically
Testing Dynamic Web Sites,” Proc. Int’l Conf. World Wide Web,
2002.

[4] D. Brumley, J. Caballero, Z. Liang, J. Newsome, and D. Song,
“Towards Automatic Discovery of Deviations in Binary Imple-
mentations with Applications to Error Detection and Fingerprint
Generation,” Proc. 16th USENIX Security Symp., 2007.

[5] C. Cadar, D. Dunbar, and D.R. Engler, “Klee: Unassisted and
Automatic Generation of High-Coverage Tests for Complex
Systems Programs,” Proc. USENIX Symp. Operating Systems Design
and Implementation, pp. 209-224, 2008.

[6] C. Cadar and D.R. Engler, “Execution Generated Test Cases: How
to Make Systems Code Crash Itself,” Proc. Int’l SPIN Workshop
Model Checking of Software, pp. 2-23, 2005.

492 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 36, NO. 4, JULY/AUGUST 2010

[7] C. Cadar, V. Ganesh, P.M. Pawlowski, D.L. Dill, and D.R. Engler,
“EXE: Automatically Generating Inputs of Death,” Proc. Conf.
Computer and Comm. Security, pp. 322-335, 2006.

[8] J. Clause and A. Orso, “Penumbra: Automatically Identifying
Failure-Relevant Inputs Using Dynamic Tainting,” Proc. Int’l
Symp. Software Testing and Analysis, 2009.

[9] H. Cleve and A. Zeller, “Locating Causes of Program Failures,”
Proc. Int’l Conf. Software Eng., pp. 342-351, 2005.

[10] H. Cleve and A. Zeller, “Locating Causes of Program Failures”
Proc. Int’l Conf. Software Eng., pp. 342-351, May 2005.

[11] C. Csallner, N. Tillmann, and Y. Smaragdakis, “DySy: Dynamic
Symbolic Execution for Invariant Inference,” Proc. Int’l Conf.
Software Eng., pp. 281-290, 2008.

[12] D. Dean and D. Wagner, “Intrusion Detection via Static Analysis,”
Proc. Symp. Research in Security and Privacy, pp. 156-169, May 2001.

[13] C. Demartini, R. Iosif, and R. Sisto, “A Deadlock Detection Tool
for Concurrent Java Programs,” Software—Practice and Experience,
vol. 29, no. 7, pp. 577-603, June 1999.

[14] M. Emmi, R. Majumdar, and K. Sen, “Dynamic Test Input
Generation for Database Applications,” Proc. Int’l Symp. Software
Testing and Analysis, pp. 151-162, 2007.

[15] P. Godefroid, “Compositional Dynamic Test Generation,” Proc.
Ann. Symp. Principles of Programming Languages, pp. 47-54, 2007.

[16] P. Godefroid, A. Kie _zun, and M.Y. Levin, “Grammar-Based
Whitebox Fuzzing,” Proc. ACM SIGPLAN Conf. Programming
Language Design and Implementation, pp. 206-215, 2008.

[17] P. Godefroid, N. Klarlund, and K. Sen, “DART: Directed
Automated Random Testing,” Proc. ACM SIGPLAN Conf. Pro-
gramming Language Design and Implementation, pp. 213-223, 2005.

[18] P. Godefroid, M.Y. Levin, and D. Molnar, “Automated Whitebox
Fuzz Testing,” Proc. Network Distributed Security Symp., pp. 151-
166, 2008.

[19] W.G. Halfond, S. Anand, and A. Orso, “Precise Interface
Identification to Improve Testing and Analysis of Web Applica-
tions,” Proc. Int’l Symp. Software Testing and Analysis, 2009.

[20] W.G.J. Halfond and A. Orso, “Improving Test Case Generation for
Web Applications Using Automated Interface Discovery,” Proc.
Joint Meeting European Software Eng. Conf. and ACM SIGSOFT
Symp. Foundations of Software Eng., pp. 145-154, 2007.

[21] K. Havelund and T. Pressburger, “Model Checking Java Programs
Using Java PathFinder,” Int’l J. Software Tools for Technology
Transfer, vol. 2, no. 4, pp. 366-381, 2000.

[22] G.J. Holzmann, “The Model Checker SPIN,” Software Eng., vol. 23,
no. 5, pp. 279-295, 1997.

[23] Y.-W. Huang, S.-K. Huang, T.-P. Lin, and C.-H. Tsai, “Web
Application Security Assessment by Fault Injection and Behavior
Monitoring,” Proc. 12th Int’l Conf. World Wide Web, pp. 148-159,
2003.

[24] Y.-W. Huang, F. Yu, C. Hang, C.-H. Tsai, D.T. Lee, and S.-Y. Ku,
“Verifying Web Applications Using Bounded Model Checking,”
Proc. Int’l Conf. Dependable Systems and Networks, pp. 199-208, 2004.

[25] K. Inkumsah and T. Xie, “Evacon: A Framework for Integrating
Evolutionary and Concolic Testing for Object-Oriented Pro-
grams,” Proc. IEEE/ACM Int’l Conf. Automated Software Eng., 2007.

[26] M. Johns and C. Beyerlein, “SMask: Preventing Injection Attacks
in Web Applications by Approximating Automatic Data/Code
Separation,” Proc. ACM Symp. Applied Computing, 2007.

[27] N. Jovanovic, C. Kruegel, and E. Kirda, “Pixy: A Static Analysis
Tool for Detecting Web Application Vulnerabilities (Short Paper),”
Proc. IEEE Symp. Security and Privacy, pp. 258-263, 2006.

[28] A. Kie _zun, V. Ganesh, P.J. Guo, P. Hooimeijer, and M.D. Ernst,
“HAMPI: A Solver for String Constraints,” Proc. Int’l Symp.
Software Testing and Analysis, 2009.

[29] A. Kie _zun, P. Guo, K. Jayaraman, and M. Ernst, “Automatic
Creation of SQL Injection and Cross-Site Scripting Attacks,” Proc.
Int’l Conf. Software Eng., pp. 199-209, 2009.

[30] B. Livshits, M. Martin, and M.S. Lam, “SecuriFly: Runtime
Protection and Recovery from Web Application Vulnerabilities,”
technical report, Stanford Univ., 2006.

[31] R. Majumdar and K. Sen, “Hybrid Concolic Testing,” Proc. Int’l
Conf. Software Eng., pp. 416-426, 2007.

[32] R. Majumdar and R.-G. Xu, “Directed Test Generation Using
Symbolic Grammars,” Proc. IEEE/ACM Int’l Conf. Automated
Software Eng., pp. 134-143, 2007.

[33] S. McAllister, E. Kirda, and C. Kruegel, “Leveraging User
Interactions for In-Depth Testing of Web Applications,” Proc.
11th Int’l Symp. Recent Advances in Intrusion Detection, pp. 191-210,
2008.

[34] Y. Minamide, “Static Approximation of Dynamically Generated
Web Pages,” Proc. Int’l Conf. World Wide Web 2005.

[35] G. Misherghi and Z. Su, “HDD: Hierarchical Delta Debugging,”
Proc. Int’l Conf. Software Eng., pp. 142-151, 2006.

[36] A. Nguyen-Tuong, S. Guarnieri, D. Greene, J. Shirley, and D.
Evans, “Automatically Hardening Web Applications Using Pre-
cise Tainting,” Proc. Int’l Conf. Information Security, 2005.

[37] R. O’Callahan, personal communication, 2008.
[38] T. Pietraszek and C.V. Berghe, “Defending against Injection

Attacks through Context-Sensitive String Evaluation,” Proc. Recent
Advances in Intrusion Detection, pp. 124-145, 2005.

[39] K. Sen, D. Marinov, and G. Agha, “CUTE: A Concolic Unit Testing
Engine for C,” Proc. ACM SIGSOFT Int’l Symp. Foundations of
Software Eng., pp. 263-272, 2005.

[40] S. Sinha, H. Shah, C. Görg, S. Jiang, and M. Kim, “Fault
Localization and Repair for Java Runtime Exceptions,” Proc. Int’l
Symp. Software Testing and Analysis, 2009.

[41] Z. Su and G. Wassermann, “The Essence of Command Injection
Attacks in Web Applications,” Proc. Ann. Symp. Principles of
Programming Languages, pp. 372-382, 2006.

[42] W. Visser, C.S. P�as�areanu, and R. Pelánek, “Test Input Generation
for Java Containers Using State Matching,” Proc. Int’l Symp.
Software Testing and Analysis, pp. 37-48, 2006.

[43] G. Wassermann and Z. Su, “Sound and Precise Analysis of Web
Applications for Injection Vulnerabilities,” Proc. ACM SIGPLAN
Conf. Programming Language Design and Implementation, pp. 32-41,
2007.

[44] G. Wassermann and Z. Su, “Static Detection of Cross-Site
Scripting Vulnerabilities,” Proc. Int’l Conf. Software Eng., pp. 171-
180, 2008.

[45] G. Wassermann, D. Yu, A. Chander, D. Dhurjati, H. Inamura, and
Z. Su, “Dynamic Test Input Generation for Web Applications,”
Proc. ACM/SIGSOFT Int’l Symp. Software Testing and Analysis,
pp. 249-260, 2008.

[46] Y. Xie and A. Aiken, “Static Detection of Security Vulnerabilities
in Scripting Languages,” Proc. Conf. USENIX Security Symp.,
pp. 179-192, 2006.

[47] A. Zeller, “Yesterday, My Program Worked. Today, It Does Not.
Why?” Proc. ACM SIGSOFT Int’l Symp. Foundations of Software
Eng., pp. 253-267, 1999.

[48] F. Zoufaly,, “Web Standards and Search Engine Optimization
(SEO)—Does Google Care About the Quality of Your Markup?”
2008.

Shay Artzi received the PhD degree in compu-
ter science from the Massachusetts Institute of
Technology (MIT) with a thesis entitled “Dyna-
mically Fighting Bugs: Detection, Prevention,
and Elimination,” and the MS and BS degrees in
computer science from the Technion (Israel
Institute of Technology). He is a researcher at
IBM’s Thomas J. Watson Research Center in
Hawthorne, New York. He has published numer-
ous conference papers and journal articles on

various aspects of improving software quality.

Adam Kie _zun received the doctorate degree
from the Massachusetts Institute of Technology,
doing research on refactoring and on using
automated formal-method tools to improve soft-
ware testing. He is a researcher at Harvard
Medical School, working on computational sys-
tems biology and human genetics. He previously
worked at IBM Research in Switzerland, where
he was one of the founding developers of the
refactoring engine in the Eclipse Java IDE.

ARTZI ET AL.: FINDING BUGS IN WEB APPLICATIONS USING DYNAMIC TEST GENERATION AND EXPLICIT-STATE MODEL CHECKING 493

Julian Dolby has been a research staff member
at the IBM Thomas J. Watson Research Center
since 2000. He has worked in the past on VM
technology; he currenlty works on scalable
reasoning technologies for ontologies, program
analysis of a range of languages, concurrent
programming, and program testing.

Frank Tip has been at IBM Research since
1995, where he is currently managing the
Program Analysis and Transformation Group.
His current research interests include bug
finding and fault localization, refactoring, appli-
cations of program analysis in collaborative
development, and the design of data-centric
mechanisms for synchronization in object-or-
iented programming languages.

Danny Dig received the PhD degree from the
University of Illinois at Urbana-Champaign on
automated upgrading of software applications to
use the newer APIs of software libraries. After
receiving the PhD, he joined the Massachusetts
Institute of Technology as a postdoctoral re-
searcher, working on interactive program trans-
formations for retrofitting concurrency into
existing sequential applications, then he re-
turned to the University of Illinois. He is a

principal investigator in the Universal Parallel Computing Research
Center (UPCRC) at the University of Illinois, where he leads research on
refactorings for parallelism. He started the ACM Workshop on
Refactoring Tools, now in its third instance, and has served on several
program committees in software engineering conferences, including the
Workshop on Multicore Software Engineering and OOPSLA.

Amit Paradkar has been at IBM Research since
1996, where he is currently managing the
Software and Services Testing Group. His
current research interests include requirements
elicitation techniques, application of natural
language analysis to the domain of software
requirements, holistic requirements analysis
where requirements are defined using multiple
techniques—such as text, sketches, and dia-
grams, and requirements-based test generation.

He is a senior member of the IEEE.

Michael D. Ernst is an associate professor in
the Computer Science and Engineering Depart-
ment at the University of Washington. His
research aims to make software more reliable,
more secure, and easier (and more fun!) to
produce. His primary technical interests are in
software engineering and related areas, includ-
ing programming languages, type theory, secur-
ity, program analysis, bug prediction, testing,
and verification. His research combines strong

theoretical foundations with realistic experimentation, with an eye to
changing the way that software developers work. He was previously a
tenured professor at the Massachusetts Institute of Technology, and
before that was a researcher at Microsoft Research.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

494 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 36, NO. 4, JULY/AUGUST 2010

