
CBCD: Cloned Buggy Code Detector

Jingyue Li
DNV Research & Innovation

Høvik, Norway
Jingyue.Li@dnv.com

Michael D. Ernst
University of Washington

Seattle, WA, USA
mernst@uw.edu

Abstract—Developers often copy, or clone, code in order to
reuse or modify functionality. When they do so, they also clone
any bugs in the original code. Or, different developers may
independently make the same mistake. As one example of a
bug, multiple products in a product line may use a component
in a similar wrong way. This paper makes two contributions.
First, it presents an empirical study of cloned buggy code. In a
large industrial product line, about 4% of the bugs are
duplicated across more than one product or file. In three open
source projects (the Linux kernel, the Git version control
system, and the PostgreSQL database) we found 282, 33, and
33 duplicated bugs, respectively. Second, this paper presents a
tool, CBCD, that searches for code that is semantically
identical to given buggy code. CBCD tests graph isomorphism
over the Program Dependency Graph (PDG) representation
and uses four optimizations. We evaluated CBCD by searching
for known clones of buggy code segments in the three projects
and compared the results with text-based, token-based, and
AST-based code clone detectors, namely Simian, CCFinder,
Deckard, and CloneDR. The evaluation shows that CBCD is
fast when searching for possible clones of the buggy code in a
large system, and it is more precise for this purpose than the
other code clone detectors.

Keywords- Validation, Debugging aids

I. INTRODUCTION

Although copy-paste is generally regarded as a bad
coding practice, it is sometimes necessary, and some
developers do it to save development effort. Baker found that
24% of files examined included exact matches of code lines
[4]. Ducasse et al. reported that two files of gcc have more
than 60% duplication [3]. A study of code clones in Linux
[2] showed that:
 A few copy-pasted segments were copied more than

eight times.
 Device drivers and cryptography have the highest

percentage of clones, because many drivers share similar
functionality and cryptographic algorithms consist of
multiple similar computational steps.

Code copy-paste and software reuse makes buggy code
appear in multiple places in a system or in different systems.
For example, code clones and software reuse have caused
duplicated software security vulnerabilities [18]. Cut-and-
paste is a major cause of operating system bugs [11].

This paper makes two contributions. First, we examined
the data in the SCM (Software Configuration Management
System) of 4 projects: an industrial software product line, the

Linux kernel, Git, and PostgreSQL. We discovered that
identical buggy code does exist in all 4 projects.

Second, to find clones of buggy code, we developed a
clone detection tool, CBCD. Given an example of buggy
code, CBCD uses isomorphism matching in the Program
Dependence Graph (PDG) [15] to search for identical code
— that is, clones. Subgraph isomorphism is NP-complete
[13], so we implemented four optimizations that reduce the
number and complexity of graphs in the PDG isomorphism
matching. Evaluation of CBCD on real cloned buggy code
confirms that CBCD is scalable to large systems. To evaluate
how well CBCD can find cloned bugs, we also compared
CBCD with text-based, token-based, and AST-based code
clone detectors, using the identified buggy codes and their
clones as oracles. CBCD outperformed the other approaches.
(Our evaluation focuses on the important problem of finding
clones of buggy code. For other tasks, the other clone
detectors may be better than CBCD.)

The rest of this paper is organized as follows. Section 2
presents our empirical study of cloned buggy code in one
commercial product line and three large open source
systems. Section 3 describes the design and implementation
of CBCD, which can find cloned buggy code. Section 4
presents our experimental evaluation. Section 5 discusses
related work, and Section 6 concludes.

II. AN EMPIRICAL STUDY OF CLONED BUGGY CODE

We first manually investigated whether buggy lines of
code are cloned in real systems. We examined the SCM of
the Linux kernel, Git, and PostgreSQL, and the bug reporting
system of a commercial software product line.

A. The Linux Kernel

For the Linux kernel, we searched for the keywords in
Table I in commit messages and in the bug tracking system,
which records discussions between developers during
debugging. For each match, we read the description of the
commit, the discussions between developers, and the “diff”
of the original file and the changed file. This information
indicated to us whether the commit was necessitated by
duplication of a bug. If so, we identified the buggy code and
its clones manually.

The second column of Table I shows the number of
distinct, independent bugs that exist in multiple locations. By
distinct, we mean that we count a bug once, even if it
appears in 3 places. By independent, we mean that if a
commit message said, “The same problem as commit
#1234”, we count only one of the two bugs. Finally, there is
no double-counting: if a commit message said “the same

1

problem as #1234, with the same fix”, then it only appears in
one row of Table I. Some examples of these cloned bugs are
shown in Table II. However, for some of these bugs, we
cannot locate the cloned buggy code, because the developers
did not give enough details. The third column of Table I
omits such bugs. For example, one developer said, “The
same bug that existed in the 64bit memcpy() also exists here
so fix it here too” but did not specify which version of which
file of the system includes the fix of the bug in 64bit
memcpy(). As there are many files and many versions of
Linux, it would be difficult to search all of them to find the
fixes to memcpy(). Even if we found a change to memcpy(),
without further information, we do not know if that change is
the fix mentioned by the developer.

TABLE I. CLONED BUGS WHICH EXIST IN MORE THAN ONE PLACE IN THE
LINUX KERNEL

Key words used
for searching the

SCM

Number of distinct
bugs existing in more

than one place

Number of bugs
whose clones we

can locate
same bug
same fix

same issue
same error

same problem

53
48
62
7

112

23
24
39
6
65

Sum 282 157

TABLE II. EXAMPLES OF CLONED BUGS IN THE LINUX KERNEL

Phrases in the SCM
explaining the cloned bugs

Code modified (i.e., the lines of
code modified by the bug fix)

This is quite the same fix as
in 2cb96f86628d6e97fcbda5f
e4d8d74876239834c

static int my_atoi(const char *name){
 int val = 0;
 for (;; name++) {
 switch (*name) {
 case '0' ... '9':
 val = 10*val+(*name-'0');
 break;
 default:
 return val;} }}

This patch fixes iwl3945
deadlock during suspend by
moving notify_mac out
of iwl3945 mutex. This is a
portion of the same fix for
iwlwifi by Tomas.

 ieee80211_notify_mac(priv->hw,
IEEE80211_NOTIFY_RE_ASSOC);

It turns out that at least one of
the caller had the same bug.

ret = btrfs_drop_extents(trans, root,
inode, start,
aligned_end, start, &hint_byte);

Other platforms have this
same bug, in one form or
another

atomic_inc(&call_data->finished);
func(info);

B. Git and PostgreSQL

For the Git and PostgreSQL projects, we used the same
methodology. Table III shows the number of bugs that exist
in multiple places.

C. A Commercial Software Product Line

We also evaluated a commercial product line in which a
single product is produced for more than 40 different
operating systems and mobile devices. For 17 of the projects,
we have access to bug reports and developer discussions.
These projects have a total of 25420 valid bugs that are
confirmed and resolved as a bug in the code, not a user error.

We searched for the same keywords in the bug reports.
Unlike the Linux kernel, Git, and PostgreSQL, we do not
have full access to the source code in the SCM. Thus, we
did not check the code differences. Our assessment of
whether a bug was duplicated (as shown in Table IV) was
based on reading the discussions between developers during
debugging. It turns out that 3.8% (969/25420) of the bugs in
these 17 projects exist in more than one place.

TABLE III. CLONED BUGS WHICH EXIST IN MORE THAN ONE PLACE IN GIT
AND POSTGRESQL

Key words
used for

searching the
SCM

GIT POSTGRESQL

Number of
distinct bugs
existing in

more than one
place

Number of
bugs whose
clones we
can locate

Number of
distinct bugs
existing in

more than one
place

Number of
bugs whose
clones we
can locate

same bug
same fix

same issue
same error

same problem

7
7
14
0
5

5
4
3
0
0

9
5
2
1
16

9
4
0
8
1

Sum 33 12 33 22

TABLE IV. CLONED BUGS WHICH EXIST IN MORE THAN ONE PLACE IN THE
COMMERCIAL SOFTWARE PRODUCT LINE

Key words used for searching
the bug reports

Number of distinct bugs
existing in more than one place

same bug
same fix

same issue
same error

same problem

170
40
302
56
401

Sum 969

III. CBCD, A TOOL TO SEARCH FOR CLONED BUGGY
CODE

Once a bug is detected, it is necessary to check the whole
system to see if the bug exists somewhere else. Section II
shows that this is not merely a theoretical concern, but is
important in practice. It is especially important for a software
product line, because of high similarity among products.
Customer satisfaction drops when a customer re-encounters a
bug that the vendor claimed to have fixed. Although
regression testing can check whether a bug is fixed, or can
detect an identical manifestation of the bug in other products,
regression testing cannot find all occurrences of the bug,
especially when testers do not know where the buggy code
may appear. Thus, it is important to supplement regression
testing by a search for clones to locate code that may behave
similarly to the buggy code.

D. PDG Based Code Clone Detectors

Some buggy lines may be copy-pasted “as-is”, but often,
developers slightly modify the copy-pasted code to fit a new
context [2]. More than 65% of copy-pasted segments in
Linux require renaming at least one identifier, and code
insertion and deletion happened in more than 23% of the
copy-pasted segments [2]. Statement reordering, identifier
renaming, and statement insertion or deletion are also
common in buggy code clones, especially clones introduced
due to code or component reuse. For example, in Table II, a

2

developer stated that “Other platforms have this same bug, in
one form or another.”

Our approach is to adapt Program Dependence Graph
(PDG)-based code clone detection methods [7, 8, 9, 10],
because we believe that the PDG-based approach is more
resilient to code changes than text-based, token-based, and
AST-based approaches.

E. Tool Architecture

Our tool, CBCD (for “Cloned Buggy Code Detector”)
has a pipe-and-filter architecture, as shown in Fig. 1. CBCD
represents a program or code fragment as a PDG, which is a
directed graph. Each vertex represents an entity of the code,
such as a variable, statement, and so on; CBCD also records
the vertex kind (e.g., “control-point”, “declaration”, or
“expression”), the position (i.e., the file name and the line of
the represented source code), and the source code text itself.
Each edge of a PDG represents control or data dependency
between two vertexes.

CBCD’s algorithm consists of three steps.
Step 1: CodeSurfer [14] generates the PDG of both the

buggy code (the “Bug PDG”) and of the system to be
searched for clones of the buggy code (the “System PDG”).
The Bug PDG may consist of multiple sub-graphs depending
on the structure of the buggy code; CBCD handles this case,
but for simplicity of presentation this paper assumes the Bug
PDG is connected. The System PDG consists of a collection
of interlinked per-procedure PDGs.

Step 2: CBCD prunes and splits the System PDG (see
Section III.C) to reduce its complexity and make subgraph
checking cheaper. Optionally, CBCD also splits the original
Bug PDG into multiple smaller PDGs (see Section III.C.4).

Step 3: CBCD determines whether the Bug PDG is a
subgraph of the System PDG. It uses igraph’s [16]
implementation of subgraph isomorphism matching. igraph
is faster than other tools, such as Nauty [17], when
comparing randomly-connected graphs with less than 200
nodes [12].

CBCD filters the matches reported by igraph. CBCD
only outputs matches where, for each corresponding vertex,
the vertex kinds match and the source code text matches.
When comparing vertex kinds, CBCD tolerates control
replacement, e.g., when developers change a “for” loop to a
“while” loop to provide the same functionality. When
comparing source code text, vertexes that represent
parameters of a function call are exempted. Note that even if
all vertex kinds and text match identically (which CBCD
does not require), the source code could still be different so
long as it led to the same PDG. For example, reordering of
(non-dependent) statements does not affect the PDG, nor
does insertion of extra statements, such as debugging printf
statements.

CBCD aims to find all semantically identical code
clones. Two code snippets are semantically identical if there
is no program context that can distinguish them—that is, if
one snippet is substituted for the other in a program, the
program behaves identically to before, for all inputs.
Determining semantic equivalence is undecidable, so CBCD
reports code with matching PDGs. As a result, every match
that CBCD finds is semantically identical to the buggy code,

but CBCD is not guaranteed to find all semantically-identical
clones.

F. Pruning the Search Space for Isomorphism Graph
Matching

All code clone detection tools that rely on graph
matching face scalability problems. CBCD’s isomorphism
matching step is the most time-consuming step, especially
for matching two big graphs. The reason for this is that
subgraph isomorphism identification is NP-complete [13]. In
the worst case, the fast subgraph isomorphism algorithm [12]
implemented by igraph [16] requires O(N!N) time, where N
is the sum of the number of nodes and edges of both graphs
to be compared. Liu et al. [9] claim that “PDGs cannot be
arbitrarily large as procedures are designed to be of
reasonable size for developers to manage.” In practice, a
procedure can be very big. For example, we used Git as a
subject program, and its “handle_revision_opt” procedure
has 817 vertexes and 2479 edges. But, even smaller
comparisons can be intractable in practice. Consider a
modest example: the buggy code has 5 lines of code (with
around 10 vertexes and 15 edges in the PDG) and the
procedure has 100 lines of code (around 200 vertexes and
300 edges). In this example, N = 525 and N!N is 3.6 × 101204.

Output:
bug

clones

Step 3:
subgraph
testing

Split Bug
PDG

Pruned
System
PDG

Step 2:
Split the
Bug PDG
and prune
the System

PDG

Bug vertex
Info.

Bug
PDG

System
PDG

System
vertex Info.

Temporary file CBCD steps

Step 1:
Create
Bug
PDG

Step 1:
Create
System
PDG

Buggy
lines

System to
be

checked

Figure 1. Architecture of CBCD

To deal with the scalability problem, Step 2 of CBCD
prunes the number and complexity of the graphs to be
compared.

We have implemented four optimizations. The first three
optimizations are sound: each never excludes a true match,
but makes the algorithm faster overall. These optimizations
are run by default. The fourth optimization runs only if the
buggy code segment contains too many lines of code.

The first three optimizations are based on the fact,
explained in Section III.B, that CBCD reports system code as
a clone of buggy code only if both the shape of the
respective PDGs, and also the vertex kind and source text of
corresponding vertices, are identical. The first three
optimizations can be viewed as enhancements to the
subgraph isomorphism checker, working around its
limitation that it does not account for vertex kinds and source
text.

All four optimizations are also based on the following
observation: In most cases, the Bug PDG is small. Fig. 2

3

validates this observation: it is the maximum number of
contiguous lines of code in each of the 163 Git, Linux kernel,
and PostgreSQL bugs for which we can locate their cloned
bugs. (This excludes 28 bug fixes that added code rather than
changing code.) More than 88% of the bugs cover 4 or fewer
contiguous lines of code.

1) Optimization 1 (Opt1): Exclude Irrelevant Edges and
Nodes from the System PDG

CBCD removes every edge that cannot match an edge in
the Bug PDG, because such an edge is irrelevant for CBCD’s
purposes. In particular, CBCD removes every edge whose
start and end vertex kinds and vertex text are not included in
the start and end vertex kinds and characters of an edge in
the Bug PDG. In the best case, this disconnects entire sets of
nodes, but it is useful even if it merely removes edges,
because a single System PDG can be very big.

For example, suppose the Bug PDG has two edges: one
from vertex kind “control-point” to vertex kind “expression”,
and the other from “expression” to “actual-in”. Then, CBCD
excludes from the System PDG all edges that do not start
with “control-point” and end with “expression”, or start with
“expression” and end with “actual-in”.

At this point, CBCD also compares the vertex characters
(source code text), for vertex kinds whose code must match
(e.g., not procedure parameters nor arguments). CBCD
discards those with text that cannot match the Bug PDG. The
purpose of comparing vertex kinds and characters is different
than Step 3 of Section III.B. The comparison here excludes
System PDG vertexes and edges that are irrelevant to the
Bug PDG. The comparison in Step 3 ensures that the
vertexes in the isomorphism matching graphs are also
identical.

2) Optimization 2 (Opt2): Break the System PDG into
Small Graphs

This optimization transforms the System PDG from one
large graph into multiple small ones. CBCD must run more
subgraph isomorphism matchings, but each matching will
focus on a smaller graph. The idea is to utilize the vertex
kind information of the Bug PDG to choose only small
sections of the procedure PDG for each subgraph
isomorphism matching. The steps of Opt2 are:

 Opt2-step1: Count the number of nodes of each
vertex kind in the Bug PDG and the System PDG.

 Opt2-step2: Choose the vertex kind vkmin in the Bug
PDG that has the minimum number of occurrences
in the System PDG. If it occurs 0 times in the
System PDG, there is no graph match.

 Opt2-step3: Calculate the pseudo-radius db of the
Bug PDG: the greatest distance between a node of
vertex kind vkmin and any other node.

 Opt2-step4: For each node of vertex kind vkmin in
the System PDG, find the neighbor graph of the
vertex, with radius db from the node of kind vkmin.

 The distance computations ignore edge directions.
 Fig. 3 shows an example. Since the nodes of vertex kind
vkmin must match, and there are few of them, it makes sense
to check subgraph isomorphism only near them. It is possible
for the neighbor graphs to overlap, in which case some PDG
nodes appear in multiple distinct neighbor graphs and will be
tested for isomorphism with the Bug PDG multiple times.

Figure 2. Size (contiguous lines) of the largest component of each bug
fix

Bug PDG
radius db = 2

Vertexes of PDG

Node of kind VKmin

VS.

Neighbor graph of
node of kind

VKmin with radius db

System PDG

Figure 3. Breaking the System PDG into smaller pieces (Opt2)

Opt2 adds some extra overhead to CBCD. Here is the
theoretical analysis of the time complexity without Opt2 and
with Opt2. We assume that the Bug PDG has i1 nodes and j1

edges and the System PDG has i2 nodes and j2 edges. Then
the time complexity of each step of Opt2 is:
 Opt2-step1. O(i1+i2)
 Opt2-step2. O(1)
 Opt2-step3. O(i1 j1), because of the igraph_diameter()

function of igraph [16].
 Opt2-step4: O(w(i2+j2)), where there are w vertexes in

the System PDG having the chosen vertex kind from
Opt2-step2, because of igraph_neighborhood_graph()
function of igraph [16] .

Although Opt2 adds the above overhead, it can
significantly reduce the time complexity of Step 3 of Section
III.B, i.e. subgraph isomorphism matching.

Without Opt2, the time complexity of comparing the Bug
PDG and the System PDG is between O((i1+ j1+ i2+ j2)2) and
O((i1+ j1+ i2+ j2)! (i1+ j1+ i2+ j2)), for the algorithm [12]
implemented by igraph.

Since each subgraph of the System PDG has identical
pseudo-radius as the Bug PDG after Opt2, we can assume

4

the size of subgraph of the System PDG is v(i1+j1), where v is
expected to be close to 1. With Opt2, we compare the Bug
PDG with w neighbor graphs in the System PDG in Step 3 of
CBCD. The time complexity of each comparison will be
between O(w(i1+j1+v(i1+j1))2) and
O(w(i1+j1+v(i1+j1))! (i1+j1+v(i1+j1))).

Let us compare the time complexity of isomorphism
testing without Opt2 with Opt2:

 The best case:
O(w(i1+j1+v(i1+j1))2) vs. O((i1+ j1+ i2+ j2)2)

 The worst case:
O(w(i1+j1+v(i1+j1))! (i1+j1+v(i1+j1))) vs.
O((i1+ j1+ i2+ j2)! (i1+ j1+ i2+ j2))

Opt2-step2 chooses the vertex kind with the fewest
occurrences. So, it reasonable to assume that w is small,
namely much less than i2. In addition, we have observed that
the buggy code often includes only a few lines, so we can
assume i1+j1 is much smaller than i2+j2. If the two
assumptions stand, the time complexity of comparing the
Bug PDG and System PDG with Opt2 will be at least as
good as the time complexity of this step without Opt2 in the
best case. Even in the worst case, the time complexity with
Opt2 will still be better than the one without it, because i1+j1

is related to the size of the buggy code, which is often small,
while i2+j2 is related to the size of the procedure to be
compared, which can have hundreds of lines of code.

3) Optimization 3 (Opt3): Exclude Irrelevant PDGs
This optimization discards some parts of the System

PDG. The Bug PDG must match within one of the (relatively
small) components of the System PDG. More specifically,
each node of the Bug PDG must correspond to some node of
a System PDG component, so each System PDG component
must have as many, or more, nodes of each vertex kind than
the Bug PDG does. CBCD discards any System PDG
component that does not satisfy this criterion.

For example, suppose the Bug PDG has four nodes of the
“expression” vertex kind, two nodes of the “control-point”
vertex kind, and two nodes of the “actual-in” vertex kind. If
a System PDG component includes four nodes of the
“expression” vertex kind, one node of the “control-point”
vertex kind, and three nodes of the “actual-in” vertex kind,
this System PDG component will be excluded from
isomorphism matching, because it has too few nodes of
vertex kind “control-point”. It therefore cannot be a
supergraph of the Bug PDG.

4) Optimization 4 (Opt4): Break Up Large Bug Code
Segments

Although most bug segments cover 4 or fewer lines of
contiguous code, as shown in Fig. 2, some bug segments are
larger. When the buggy code segment is large, Opt1, Opt2,
and Opt3 may not be able to improve the performance of the
system enough, because:
 When the buggy code segment is large, the Bug PDG

will include many vertex kinds. Thus, Opt1 may not
be able to prune many edges of the System PDG.

 When the buggy code segment is large, the radius of
the Bug PDG will be large. Thus, the sub-graphs of
the System PDG after Opt2 will still be large and
isomorphism matching will be slow.

 Even if few large Bug PDGs and large System PDGs
need to be compared for isomorphism matching, the
system will perform very slowly. Thus, Opt3, which
reduces the number of comparisons, does not help
enough.

To deal with large contiguous buggy code, we
implemented a fourth optimization. It is only triggered when
the bug has more than 8 lines of contiguous code. The
optimization is performed in Step 2 of CBCD and breaks up
bug code segments into sub-segments with fewer lines of
code. We set two thresholds, which are configurable and
default to 4 and 6. The purpose of setting these two
thresholds is to split large buggy code segment into smaller
sub-segments, and at the same time avoid having too small
sub-segments. For a buggy code segment having more than 8
lines of code, CBCD puts the first 4 lines of code in a sub-
segment first. If the remaining lines have 6 or few lines of
code, CBCD does not split it further. Otherwise, CBCD
again puts the first 4 lines of the remaining lines in the
second sub-segment and reconsiders the remaining lines.
CBCD searches for clones of each sub-segment
independently, and then merges their corresponding matched
clones together. Merging can increase the false positive rate
of CBCD, if CBCD merges two unrelated partial matches
into a “complete” match that it would never have discovered
if using the larger bug PDG. To deal with this issue, CBCD
checks the last line of one suspected buggy sub-segment with
the first line of another suspected buggy sub-segment to be
merged. If the difference is more than 8 lines of code or the
two sub-segments are in different files, CBCD assumes that
these two code lines are too far apart to be part of clone of a
single bug and does not merge them.

IV. EVALUATION AND DISCUSSION

We wished to answer the following research questions:
 How well can CBCD find cloned buggy code?
 How well does CBCD scale?

A. The Subject Programs

We evaluated CBCD on Git, the Linux kernel, and
PostgreSQL. We chose those three systems because:
 They are programmed mainly using C/C++, which

means that they can be compiled by CodeSurfer.
 Their revision histories enable us to find buggy code

and cloned buggy code for our evaluation.
 Git has more than 100K lines of code, PostgreSQL has

more than 300K lines of code, and the Linux kernel has
millions of lines of code, making them a good test of
the scalability of CBCD.

B. Evaluation Procedure

1) Oracles for the Evaluation
As discussed in Section III.B, determining true clones of

buggy code is undecidable. Our experiments use as an
oracle the clones of buggy code that developers identified. It
is possible that the developers found only some clones of a
given bug, in which case any tool that reported the others
would be (incorrectly) considered to suffer false positives.

As described in Section II, we identified buggy code and
its clones by searching commit logs and reading code. From

5

these bugs, we chose only those related to C/C++ code,
because that is the only type of code that CodeSurfer can
compile. We examined all 12 Git bugs and all 22
PostgreSQL bugs from Table III, and we arbitrarily chose 52
(one third of 157) Linux bugs from Table I. We were not
able to use all of these bugs: our technique is not applicable
when the bug fix adds new code; CBCD only handles C and
C++; our processor is 32-bit x86; and in two cases the
developers were mistaken in calling two bugs clones,
because they refer to completely different functions or data
structures (see Table V). After excluding such cases, the
evaluation used 5 Git bugs, 14 PostgreSQL bugs, and 34
Linux bugs. A complete list of the bug clones examined in
the evaluation is in [24].

TABLE V. BUGGY CODE THAT PROGRAMMERS CALLED “CLONES” BUT
ARE NOT TRUE CLONES

Buggy lines of code Not identical code under
CBCD definition

struct lock_file packlock; struct cache_file cache_file;

if (ahd_match_scb(ahd,
pending_scb, scmd_id(cmd))

if (ahc_match_scb(ahc,
pending_scb, scmd_id(cmd))

2) Other Code Clone Detectors for Comparison
To compare CBCD with other types of code clone

detectors, we also ran Simian v2.3.32 [25] (text-based),
CCFinder v10.2.7.3 [1] (token-based), Deckard v1.2.1 [6]
(AST-based), and CloneDR v2.2.5 [26] (AST-based) on
these 53 bugs.

These code clone detectors favor large cloned code
segments rather than small ones. As shown in Fig. 2, cloned
bugs are mostly less than 4 lines of code, so we adjusted
some parameters to make the code clone detectors work
better. For Simian, we set the number of lines of code to be
compared for clones to its minimum value, i.e. 2, and used
default values for the other parameters. For CCFinder, we set
the minimum clone length to be 10 and the minimum TKS to
be 1. For Deckard, we set min_tokens to 3, stride to 2, and
similiartiy threshold to 0.95. For CloneDR, we set the
minimum clone mass to 1, the number of characters per node
to 10, number of clone parameters to 5, and similarity
threshold to 0.9.

For Simian, CCFinder, and Deckard, the system to be
checked for buggy clones is the same file set as CBCD.
However, CloneDR failed with parse errors when we input
the same file set as for CBCD. To enable a comparison with
CBCD, we used a “slim evaluation”: the “system” input to
CloneDR is only the files that include the bug and the buggy
clones found by CBCD. We additionally commented out
lines that CloneDR could not parse. The slim evaluation
determines whether CloneDR can find the clones that are
identified by CBCD. However, the slim version includes
only 2% of the input files and 1% of the lines of code. If
CloneDR could run on all files, its false positive rate would
be much higher than reported in the slim evaluation.

3) Executing the Tools
The input to each tool is: the file that contains the buggy

code (along with the starting and ending lines of the buggy
code segment, if the tool accepts it; only CBCD did), plus
the system to be checked for buggy clones.

We recorded the execution time of CBCD using the
Linux command “time”. The evaluation was run on a PC
with 4G memory, 3Ghz CPU, and running Ubuntu 10.04.

4) Metrics
A false negative is a clone identified by the developer but

not identified by the tool. A false positive is a clone reported
by a tool that the developers did not report as buggy.

We count a clone as found if a tool reports a clone pair
whose parts are as large as, or larger than, the original buggy
code and the developer-identified buggy clone. This metric
is very generous to the other code clone tools. CBCD
reports clones that have similar size to the buggy code. The
other code clone tools report much larger clones, because
they are designed for a different purpose: to find large cloned
code segments. Often a single result subsumed several of
CBCD’s results. Such large results would be less useful to a
programmer. These issues make a direct comparison of
precision and recall, or of the exact number of true and false
positives and negatives, misleading. Instead, for each tool,
we categorized each of the 53 bugs as follows.
 N1: no false positives, no false negatives.
 N2: no false positives, some false negatives.
 N3: some false positives, no false negatives.
 N4: some false positives, some false negatives.

C. How Well Can CBCD Find Cloned Buggy Code?

Table VI counts the bugs in each category. CBCD
outperforms the other tools in finding buggy clones
correctly, i.e., CBCD has the highest number in N1. Deckard
performs the worst, partially because it failed with parse
errors in 15 out of the 29 N2 cases. Unlike CloneDR,
Deckard does not report precisely the location of the parse
error. Thus, we could not perform a slim evaluation as with
CloneDR.

TABLE VI. COMPARISON WITH OTHER CODE CLONE DETECTORS

CBCD Simian CCFinder Deckard CloneDR
-slim

N1 36 (68%) 16 (30%) 24 (45%) 14 (26%) 31 (58%)
N2 6 (11%) 36 (68%) 11 (21%) 29 (55%) 14 (26%)
N3 11 (21%) 1 (2%) 12 (23%) 6 (11%) 7 (13%)
N4 0 (0%) 0 (0%) 6 (11%) 4 (8%) 1 (2%)

Researchers categorize code clones into four main types,
and so-called “scenarios” subcategorize each type [27]. The
distributions of our examined bugs are shown in details in
[24] and are summarized as follows:
 51% of duplicated bugs are Type-1: identical code

fragments except for variations in whitespace, layout,
and comments.

 24% are in scenarios a, b, and c of Type-2: renaming
identifiers or renaming data types and literal values.
Most of the variable renaming is renaming of function
actual arguments.

 23% are in scenarios a and b of Type-3: small deletions
or insertions.

 2% are in scenario a of Type-4: reordering of
statements.

The 5 tools perform about equally well on Type-1 and
Type-2 clones. In theory, AST-based tools could be best on

6

Type-2 clones, but CBCD’s text comparisons reduce its false
positive rate in practice. CBCD outperforms all the other
tools on Type-3 clones; for example, CBCD identifies the
code segments shown in Table VII as clones while Simian,
CCFinder, Deckard, and CloneDR suffer false negatives.

Unlike text-based, token-based, and AST-based clone
detectors, a semantics-based clone detector like CBCD
tolerates control-statement replacement. Our 53 examples
did not include control-statement replacement (programmers
might be less likely to call such code snippets “clones” in the
bug tracking system), so we evaluated this claim by
artificially modifying the code of a Git clone from a “for”
statement to a “while” statement. The modified code is
shown in Table VIII. CBCD identified the clone, but Simian,
CCFinder, Deckard, and CloneDR did not.

TABLE VII. EXAMPLES OF BUGGY CLONES IDENTIFIED CORRECTLY BY
CBCD BUT NOT BY OTHER CODE CLONE DETECTORS

Buggy lines of code Bug clones
doorbell[0] = cpu_to_be32((qp-
>rq.next_ind << qp-
>rq.wqe_shift) | size0);

doorbell[0] = cpu_to_be32(first
_ind << srq->wqe_shift);

 ret = btrfs_drop_extents(trans, ro
ot, inode, start, aligned_end, star
t, &hint_byte);

ret = btrfs_drop_extents(trans, r
oot, inode, file_pos, file_pos +
num_bytes, file_pos, &hint);

TABLE VIII. ORIGINAL CODE VS. CODE AFTER CONTROL REPLACEMENT

Original code Code after control replacement
for (j = first; j <= last; j++){

 struct object_entry *child =
 objects + deltas[j].obj_no;
 if (child->real_type ==
 OBJ_REF_DELTA)
 resolve_delta(child,
&base_obj, obj->type);
}

j = first;
while (j <= last){
 struct object_entry *child =
objects + deltas[j].obj_no
 if (child->real_type ==
OBJ_REF_DELTA)
 resolve_delta(child, &base_obj,
obj->type);
 j++; }

The 6 clones out of 53 that are not identified by CBCD,
i.e. the false negative cases, are in Table IX. CBCD misses
the first three clones because CodeSurfer’s PDG does not
represent data structures and macros; this is not a reflection
on our technique, but on our toolset. CBCD misses the last
three clones because they include variable renaming in an
expression. When a vertex in the PDG is recognized as
“expression”, as explained in Section III.C.1, CBCD
compares the characters of the expression to avoid false
positives.

All 11 bugs for which CBCD reports a false positive are
similar: the buggy code is one line of code calling a function,
or a few one-line function calls without data/control
dependencies among them. For all 11 bugs, Simian,
CCFinder, or Deckard either also report a false positive, or
else suffer a false negative due to a built-in threshold that
prevents them from ever finding any small clone. CloneDR-
slim does slightly better, with 2 false negative and 7 false
positives. Recall that we used a slim evaluation for
CloneDR; if it ran on all files, its false positive rate would be
higher.

One example of CBCD’s 11 false positives is shown in
Table X. Other calls of the same function, such as
memset(ib_ah_attr, 0, sizeof param), are returned by CBCD,
because it tolerates renaming of actual input and output

parameters. However, as mentioned in Section IV.C.3, we
count as a false positive any CBCD output that is not yet
reported by the developers as buggy. Some of the CBCD-
identified clones of the bug code segments might be bugs
that have been overlooked by developers. Thus, CBCD’s real
false positive rate may be lower than Table VI reports.

TABLE IX. FALSE NEGATIVES: BUGGY CODE CLONES THAT ARE NOT
IDENTIFIED BY CBCD

The bug fix shown by “diff”
 static const struct amd_flash_info jedec_table[] = {
- .devtypes = CFI_DEVICETYPE_X16|
CFI_DEVICETYPE_X8,
- .uaddr = MTD_UADDR_0x0555_0x02AA,
static struct ethtool_ops bnx2x_ethtool_ops = {
- .get_link = ethtool_op_get_link,
 #define desc_empty(desc) \
- (!((desc)->a + (desc)->b))
- obj = ((struct tag *)obj)->tagged;
VS.
- object = tag->tagged;
- blue_gain = core->global_gain +

 core->global_gain * core->blue_bal / (1 << 9);
VS.
- red_gain = core->global_gain +

 core->global_gain * core->blue_bal / (1 << 9);
- if (!hpet && !ref1 && !ref2)
VS.
- if (!hpet && !ref_start && !ref_stop)

TABLE X. EXAMPLES OF FALSE POSITIVES

Buggy code All identified clones
memset(ib_ah
_attr, 0, sizeof
 *path);

True positive:
memset(ib_ah_attr, 0, sizeof *path);
False positive:
memset(best_table, 0, sizeof(best_table));
memset(best_table_len, 0, sizeof(best_table_len));
memset(p, 0, padding);
etc.

Table XI shows another kind of code that might lead to
potential false positive reports from CBCD. Fig. 4 shows the
PDGs. The two vertexes representing “close()” in Bug PDG
and the four vertexes representing “close()” in System PDG
lead to several sub-graph isomorphism relationships between
these two PDGs. Thus, CBCD returned several semantically
identical correspondences between the buggy code and
suspected code. However, all CBCD results point to the
same suspected code. CBCD coalesces duplicate results that
point to the same code location.

D. How Well Does CBCD Scale to Larger Bugs?

In our experiments, CBCD finished in seconds after
CodeSurfer completed. However, this is not a good test of
scalability, because the cloned bugs are often platform- or
architecture-dependent, in which case the command line (in
the developer-supplied Makefile) that compiles them does
not compile the whole system.

To determine how well CBCD works with larger bug
segments, we searched the Linux and Git SCM using the key
word “duplicate”. We chose four of these (non-buggy) code
segments from Git and four from Linux. The four Linux
code segments are located in subcomponents “net”, “fs”,
“drivers”, and “drivers” of Linux of different versions

7

respectively, and we compiled the relevant subcomponent.
For Git, we compiled the whole relevant version (Git
changed size over time). Table XII gives the results.

TABLE XI. BUGGY CODE AND SUSPECTED CODE OF A POTENTIAL FALSE
POSITIVE IN GIT

Buggy code System code

 if(pid! = 0){
close(fd[1]);
dup2(fd[0], 0);
close(fd[0]);}

if(pid! = 0){
close(fd[1]);
dup2(fd[0], 0);
close(fd[0]); }
close(fd[0]);
close(fd[1]);

pid

close() dup2() close()

fd[1] 0 fd[0] fd[0]

pid

close() dup2() close() close() close()

fd[1] fd[0]0 fd[0] fd[0] fd[1]

PDG of the buggy code PDG of the system code

Figure 4. Snippet of the PDG of the buggy and system code in Table XI

Step 1 of CBCD (performed by CodeSurfer, version 2.1)
takes a long time if the system is big, but this is done only
once and can be reused. We expect CodeSurfer’s
performance to improve in later versions. Checking for
clones of new bugs requires only running Step 2 and 3,
which takes only seconds.

The running time of Simian, CCFinder, and Deckard
using the same parameter setting as explained in Section
IV.B are shown in Table XIII. We could not run CloneDR
because of its parse errors.

CBCD is slower than Simian and Deckard if CBCD’s
preprocessing (Step 1) is included. Considering only the
incremental cost of Steps 2 and 3, CBCD is competitive.
Setting parameters to let CCFinder detect small clones
makes it slower than CBCD, because generating all small
clone pairs first, and then searching for clones of a certain
code segment, is inherently inefficient. This could be
changed, but CBCD is more accurate than the other
approaches, regardless of their settings. We believe the cost
of undetected bugs makes CBCD worth running even if all
steps are required.

E. Performance Improvement Due to the Four
Optimizations

We used four optimizations to speed up CBCD. We have
examined the unique benefits of a given optimization that are
not obtained by other optimizations. For example, to
evaluate Opt2, we compared CBCD with Opts 1+3+4 against
CBCD with Opts 1+2+3+4.

The results show that our optimizations can greatly
improve the performance of the isomorphism matching by
reducing the complexity and number of graphs to be
compared. Detailed data are shown in Appendix C of [24].

Opt1, i.e. filtering out the irrelevant edges and vertexes
in the System PDG, contributes most to the CBCD
performance improvement. Opt1 pruned on average 90% of
the edges before the subgraph isomorphism comparison. For

the 53 bugs, Opt1 on average improved performance 622
times. However, the variation is high. One case achieved
20237 times performance improvement and another achieved
11890 times performance gain. In one of the four “duplicate
code” Linux cases, without Opt1, the execution of the Step 3
of CBCD was aborted (igraph’s [16] subgraph isomorphism
function reported an out-of-memory error, because the
System PDG is too big and too many isomorphic subgraphs
are returned).

TABLE XII. RUNNING TIME OF EACH STEP OF CBCD

Id NLOC / Number of
PDG edge

CBCD steps
1 2 3

Sys. Bug
Git-1 67K/358K 10/38 6m 13s 5s
Git-2 75K/441K 4/4 15m 4s 2s
Git-3 81K/414K 9/39 18m 9s 3s
Git-4 81K/414K 16/33 18m 6s 2s

Linux1 170K/1022K 6/70 32m 15s 6s
Linux2 140K/830K 3/3 25m 16s 4s
Linux3 363K/1970K 4/4 159m 39s 8s
Linux4 313K/1645K 3/13 95m 17s 7s

TABLE XIII. RUNNING TIME OF OTHER CLONE DETECTORS

Id Simian CCFinder Deckard
Git-1 2s 5m 4m
Git-2 2s 6m 5m
Git-3 2s 8m 6m
Git-4 2s 8m 6m

Linux1 6s 63m 8m
Linux2 5s 34m 7m
Linux3 16s 899m 32m
Linux4 13s 623m 24m

Opt2, i.e. breaking the System PDG into smaller graphs,
improves Step 3 of CBCD by 2 to 3 times. In one case, Opt2
improved performance by 72 times. The performance gain of
Opt2 is not significant in other cases, because Opt1 prunes
out most edges of the System PDG. In 90% of our examined
cases, the average ratio of size (number of edges and
vertexes) of subgraph of the System PDG to size of the Bug
PDG, i.e. the “v” in the formulas of Section III.C.2, is less
than 1.

Opt3, i.e. excluding irrelevant System PDGs, also
improves Step 3 of CBCD by 2 to 3 times. As with Opt2,
after Opt1 filters out most of the edges of the System PDG,
few subgraphs of the System PDGs are left for comparison.

Opt4, i.e. breaking the large bug code segment, is
applicable only to three clones that have more than 8 lines of
code. In one case, Step 3 of CBCD sped up by 120 times, but
the other two showed no significant performance
improvement. Examination of these code segments shows
that Opt4 can bring significant performance gains when the
bug code segment has many vertex kinds, especially vertex
kinds such as “actual_in”, “actual_out”, or “declaration”, that
are related to procedure parameters or arguments. In such
cases, Opt1 cannot filter out many vertexes and edges of the
System PDG. On the contrary, if the number of different
vertex kinds of the Bug PDG is small, many vertexes and
edges of other vertex kinds in System PDGs will be pruned
out using Opt1, and Opt2 and Opt3 are also more effective,
subsuming the benefits of Opt4.

8

F. Threats to Validity

 1) Threats to Internal Validity
The buggy code used for evaluation consists of real

cloned bugs in Git, the Linux kernel, and PostgreSQL, but
were not chosen to be representative or comprehensive. We
do not know how many cloned bugs these projects really
have, but we do know that around 4% of the bugs in a
commercial product were duplicates.
 2) Threats to External Validity

We tested CBCD only on Git, the Linux kernel, and
PostgreSQL. It is possible that other subject programs would
have different characteristics. Furthermore, the evaluation
considers only 53 cloned bugs in detail, and these were not
chosen to be representative.
 3) Threats to Construct Validity

To measure the false positive rate of CBCD, we used the
clones identified by the developers as an oracle. As
mentioned in Section IV.C, the developers might have
overlooked some clones, so CBCD’s real false positive rate
may be lower than reported in this paper.

G. Application Constraints

Although bugs consisting of a one-line function cause
false positives in our experiment, and Fig. 2 shows that most
code fixes are on one line, this does not limit the
applicability of CBCD. In real life, developers can often
merge the buggy code line with few lines before or after it,
which can be regarded as the context of the buggy code, to
make a bigger code segment as the input for CBCD. This
may help avoid false positives. We did not perform this in
our experiments to avoid evaluation bias.

V. RELATED WORK

Previous code detection methods can be classified into:
 Token-based code clone detecting methods [1, 2]

examine token sequence similarities.
 Text [3] or string-based [4] code clone detection

methods compare the text or strings in the code.
 Abstract syntax tree (AST) based code clone detection

methods [5, 6] match two ASTs to find code clones.
 PDG-based code clone detection tools [7, 8, 9, 10] try

to overcome the limitations of the above code clone
detectors by comparing the data and control
dependence graphs of the code segments.

 Behavior-based code clone detection [32] tries to find
code clone based on the execution results of test cases.

 Memory-state-based code clone detection [33]
compares the abstract memory states of code.

Most previous code clone detection tools search for large
clones for code refactoring or to find plagiarism. Thus, most
such tools do not compare small code segments that span
only a few lines. For example, PDGs smaller than a certain
size are excluded from comparison in [9]. In general, such
tools have no knowledge of which segment of code should
be the input for clone searching. Thus, some of these tools
start with the first line of the system, and extract 10 or 20
lines as input for searching for code clones.

We have identified a new, important use case. CBCD
solves a different problem than scanning an entire codebase

for plagiarism detection or identifying refactoring
opportunities. CBCD is more like an advanced “find”
command. The input is a small code segment that includes a
few contiguous lines of code (most buggy segments cover
only a few contiguous lines of code, unless the bug is caused
by missing functionality or a design change). The outputs are
all locations of the clones of such a code segment. A user
might assume that general code clone detectors would also
perform well at detecting clones of buggy code. However, as
our evaluation showed, this assumption would be wrong.
CBCD outperforms text-based, token-based, and AST-based
clone detectors to find cloned buggy code, especially Type-3
and Type-4 clones. We did not compare CBCD with
behavior-based clone detectors, because we lack detailed
knowledge of the expected dynamic behavior of the buggy
code. Memory-state-based clone detectors do not fit the
purpose of detecting cloned buggy code.

Unlike generic code clone detectors; CBCD does not
generate all code clone pairs in advance. It only searches for
clones of a small code segment on demand. The rationale is
that people are usually not interested in finding code clones
of small code segments to refactor them. However, when
they find that a code segment is buggy, they need to find all
its clones and fix all of them. As mentioned in Section IV.B
and IV.E, searching for clones on demand rather than
generating all clone pairs at once makes CBCD more
scalable than general clone detectors. But, even if other clone
detectors adopted CBCD’s incremental approach, CBCD is
still more accurate.

CBCD uses PDG-based code clone detection principles
to detect clones. PDG-based methods usually face scalability
problems in sub-graph isomorphism checking. One proposed
solution to improve the performance of PDG-based code
clone detection is to match the PDG back to the AST [10], so
that the graph isomorphism problem is simplified into a tree
similarity problem. However, such a simplification excludes
information for some edges in the PDG and makes the PDG
comparison incomplete. Another proposed solution to the
scalability problem is to compare the vertex histogram of
PDGs first to exclude highly dissimilar PDGs and stop the
sub-graph isomorphism matching after the first isomorphism
is found [9]. Such a solution is lossy, because a dissimilar
vertex histogram between a small PDG and a big PDG does
not guarantee that the small PDG will not have a subgraph
isomorphism relationship with the large PDG. A PDG-based
code clone detector [7] based only on graph isomorphism
performed poorly compared to other code clone detectors
[30]. CBCD improves the accuracy of PDG-based code
clone detection by utilizing the syntax and text information
of the buggy code to prune and break the PDG to be
compared. Compared to the system in [9], CBCD is less
lossy and is more scalable to large PDGs. Yet another
proposed solution to the scalability problem is to compare
the PDG only within radius 5 of a vertex of “control-point”
kind [19]. This is lossy and depends on hard-coded choices
of radius and vertex kind; by contrast, our Opt2 is not lossy
and is general.

The studies [28, 29] transform the code query into graph
reachability patterns and match the patterns in the SDG of
the source code. Such a method can potentially be used to
detect clones of buggy code. However, developers must

9

manually describe the buggy code using code query
language. Compared to these methods, CBCD is easier to
use, because it automatically transforms the buggy code into
PDG graphs and then matches the buggy PDG with the PDG
of the suspected code. Similarity, graph-matching algorithm
has been used to match design patterns [34]. However, the
algorithm in [34] is not directly applicable since it finds a
hard-coded set of design patterns rather than clones of
arbitrary bugs. CP-Miner [2] is a code clone detection tool
that searches for bugs caused by code copy-paste. CP-Miner
can only find “bugs caused when programmers forget to
modify identifiers consistently after copy-pasting”. The
study [31] also compares tokens to search defect clones.

The SecureSync tool [18] is similar to CBCD, i.e. a tool
to find duplications of a software vulnerability/bug. To use
SecureSync, the clones must be classified into categories I,
II, and III first. A category I code clone is due to code
copy/paste. For such a code clone, an AST-based method is
proposed. A category II code clone is due to function reuse.
To detect such a clone, the local PDG around a function call
is built and compared. All other code clones are categorized
into III without any methods proposed to detect them.
Compared to SecureSync, CBCD is easier to use. People do
not need to categorize code clone into different categories
and treat them differently. For category I code clones, CBCD
better tolerates code insertion, deletion, and re-ordering.
CBCD can potentially support more kinds of code clone, for
example, those in category III of SecureSync. We would like
to compare CBCD with SecureSync [18], but according to its
authors, SecureSync is not available for public distribution
yet. Jiang et al. [20] investigated how to discover clone-
related bugs through comparing the nodes in parse trees. In
[21], the attributes of edges and nodes of two graphs are
extracted to optimize the performance of graph isomorphism
comparison for detecting clones of MATLAB/Simulink
models. In [22], 17-45% of bug-fixing changes were found
to be recurring, and most of them occurred in multiple files
at the same revision (i.e. in space). However, this study
targets identifying bug clones in object-oriented systems. In
[23], a few clone detection algorithms are combined with
parallel algorithm to detect buggy inconsistency in a very
large system.

VI. CONCLUSIONS AND FUTURE WORK

We have identified a new, important use case for code
clone detection (finding buggy clones), motivated its
importance in real-world systems, given an algorithm for
finding buggy clones, and evaluated its accuracy and
performance. Whereas previous work was motivated by
code refactoring or plagiarism detection, we focus on
detecting cloned buggy code.

The contributions of our work include:
1. We examined real-world bug reports and SCM data,

and established that identical (cloned) bugs are a serious
problem. In a commercial product line, cloned bugs were
common and important, comprising 4% of all bugs.

2. We proposed a methodology for improving system
reliability: After a bug is fixed, the programmer should
search for other code that behaves similarly to the detected
buggy lines. Even if a system has relatively few cloned bugs,

finding these bugs is valuable for programmers and can be
done relatively accurately and inexpensively.

3. We extended previous PDG-based clone detection
algorithms to make them more scalable, by pruning the
search space of sub-graph isomorphism matching. Detecting
small clones required different algorithms and
implementations than previous code detectors, which are less
effective in finding bug clones.

4. We implemented our algorithms in a tool, CBCD, that
detects possible clones of buggy code by comparing the Bug
PDG and the System PDG. The CBCD tool is available on
request for research purposes.

5. We evaluated CBCD with known cloned bugs and
known cloned lines of code, showing that CBCD is scalable
and effective in searching for possible clones of buggy code.
Other clone detection tools are less effective for this purpose.

The performance bottleneck of CBCD is CodeSurfer’s
PDG generation. Future work is to improve performance of
this step to make CBCD even more scalable.

ACKNOWLEDGMENTS

This work was supported in part by grant #183235/S10
from the Norwegian Research Council, by the JIP partners,
and by US NSF grant CCF-1016701.

REFERENCES

[1] T. Kamiya, S. Kusumoto, and K. Inoue, “CCFinder: a Multilinguistic
Token-based Code Clone Detection System for Large Scale Source
Code,” IEEE Trans on Software Engineering, vol. 28, no. 7, pp. 654-
670, July 2002.

[2] Z. Li, S. Lu, S. Myagmar, and Y. Zhou, “CP-Miner: Finding Copy-
Paste and Related Bugs in Large-Scale Software Code,” IEEE Trans
on Software Engineering, vol. 32, no. 3, pp. 176-192, March 2006.

[3] S. Ducasse, M. Rieger, and S. Demeyer, “A Language Independent
Approach for Detecting Duplicated Code,” Proc. IEEE intl. conf. on
Software Maintenance (ICSM’99), IEEE Press, Sept. 1999, pp. 109-
118.

[4] B. S. Baker, “On Finding Duplication and Near-duplication in Large
Software Systems,” Proc. the Second Working Conference on
Reverse Engineering, IEEE Press, July 1995, pp. 86-95.

[5] R. Koschke, R. Falke, and P. Frenzel, “Clone Detection Using
Abstract Syntax Suffix Trees,” Proc. the 13th Working Conference on
Reverse Engineering, IEEE Press, Oct. 2006, pp. 253-262.

[6] L. Jiang, G. Misherghi, Z. Su, and S. Glondu, “DECKARD: Scalable
and Accurate Tree-Based Detection of Code Clones,” Proc. Intl. conf.
on Software Engineering (ICSE’07), IEEE Press, May 2007, pp. 96-
105.

[7] J. Krinke, “Identifying Similar Code with Program Dependence
Graphs,” Proc. the 8th Working Conference on Reverse Engineering
(WCRE'01), IEEE Press, Oct. 2001, pp. 301-309.

[8] R. Komondoor and S. Horwitz, “Using Slicing to Identify Duplication
in Source Code,” Proc. the 8th International Symposium on Static
Analysis (SAS’ 01), Spring-Verlag Press, July 2001, pp. 40-56.

[9] C. Liu, C. Chen, J. Han, and P. S. Yu, “GPLAG: Detection of
Software Plagiarism by Program Dependence Graph Analysis,” Proc.
12th ACM SIGKDD Intl. Conf. on Knowledge Discovery and Data
Mining, ACM Press, Aug. 2006, pp. 872-881.

[10] M. Gabel, L. Jiang, and Z. Su, “Scalable Detection of Semantic
Clones,” Proc. Int. Conf. on Software Engineering (ICSE’08), ACM
Press, May 2008, pp. 321-330.

10

[11] A. Chou, J. Yang, B. Chelf, S. Hallem, and D. Engler, “An Empirical
Study of Operating Systems Errors,” Proc. the 8th ACM Symp. on
Operating Systems Principles, ACM Press, Oct. 2001, pp. 73-88.

[12] L. P. Cordella, P. Foggia, C. Sansone, and M. A. Vento, “(Sub)Graph
Isomorphism Algorithm for Matching Large Graphs,” IEEE Trans on
Pattern Analysis and Machine Intelligence, vol. 26, no. 10, pp. 1367-
1372, Oct. 2004.

[13] R. C. Read, and D. G. Corneil, “The Graph Isomorphism Disease,”
Journal of Graph Theory, vol. 1, no. 4, pp. 339–363, Winter 1977.

[14] CodeSurfer:
http://www.grammatech.com/products/codesurfer/overview.html

[15] J. Ferrante, K. J. Ottenstein, and J. D. Warren, “The Program
Dependence Graph and its Use in Optimization,” ACM Trans on
Programming Languages and Systems, vol. 9, no. 3, pp. 319-349,
July, 1987.

[16] G. Csárdi and T. Nepusz, “The Igraph Software Package for Complex
Network Research,” InterJournal Complex Systems, 2006, pp. 1695.

[17] B. D. McKay, “Practical Graph Isomorphism,” Congressus
Numerantium, 30 (1981), pp. 45-87.

[18] N. H. Pham, T. T. Nguyen, H. A. Nguyen, and T. N. Nguyen,
“Detection of Recurring Software Vulnerabilities,” Proc. Intl. Conf.
on Automated Software Engineering (ASE’10), ACM Press, Sept.
2010, pp. 447-456.

[19] R.-Y. Chang, A. Podgurski and J. Yang, “Discovering Neglected
Conditions in Software by Mining Dependence Graphs,” IEEE Trans
on Software Engineering, vol. 34, no. 5, pp. 579-596, Sept. 2008.

[20] L. Jiang, Z. Su, and E. Chiu, “Context-based Detection of Clone-
related Bugs,” Proc. 6th joint meeting of the European software
engineering conference and the ACM SIGSOFT symp. on The
foundations of software engineering (ESCE/FSE’07), ACM Press,
Sept. 2007, pp. 55-64.

[21] N. H. Pham, H. A. Nguyen, T. T. Nguyen, J. M. Al-Kofahi, and T. N.
Nguyen, “Complete and Accurate Clone Detection in Graph-based
Models,” Proc. Intl. Conf. on Software Engineering (ICSE’09), IEEE
Press, May 2009, pp.276-286.

[22] T. T. Nguyen, H. A. Nguyen, N. H. Pham, J. M. Al-Kofahi, and T.
N. Nguyen, “Recurring Bug Fixes in Object Oriented Programs,”
Proc. Intl. Conf. on Software Engineering (ICSE’10), ACM Press,
May 2010, pp. 315-324.

[23] M. Gabel, J. Yang, Y. Yu, M. Goldszmidt, and Z. Su, “Scalable and
Systematic Detection of Buggy Inconsistencies in Source Code,”
Proc. ACM intl. conf. on Object Oriented Programming Systems
Languages and Applications (OOPSLA’10), ACM Press, Oct. 2010,
pp. 175-190.

[24] J. Li, and M. D. Ernst, “CBCD: Cloned Buggy Code Detector,”
Technical Report UW-CSE-12-03-20, 2012.

[25] Simian- Similarity Analyser: http://www.harukizaemon.com/simian/

[26] CloneDR: http://www.semdesigns.com/Products/Clone/

[27] C. K. Roy, J. R. Cordy, and R. Koschke, “Comparison and Evaluation
of Code Clone Detection Techniques and Tools: A Qualitative
Approach,” Sci. Comput. Program, vol. 74, no. 7, pp. 470-495, May
2009.

[28] X. Wang, D. Lo, J. Cheng, L. Zhang, H. Mei, and J. X. Yu,
“Matching Dependence-related Queries in the System Dependence
Graph,” Proc. Intl. Conf. on Automated Software Engineering
(ASE’10), ACM Press, Sept. 2010, pp. 457-466.

[29] M. Martin, B. Livshits, and M. S. Lam, “Finding Application Errors
and Security Flaws using PQL: a Program Query Language,” Proc.
ACM intl. conf. on Object Oriented Programming Systems
Languages and Applications (OOPSLA’05), ACM Press, Oct, 2005,
pp. 365-383.

[30] S. Bellon, R. Koschke, G. Antoniol, J. Krinke, E. Merlo,
“Comparison and Evaluation of Clone Detection Tools,” IEEE Trans
on Software Engineering, vol. 33, no. 9, pp. 577-591, Sept. 2007.

[31] S. Bazrafshan, R. Koschke, and N. Gode, “Approximate Code Search
in Program Histories,” Proc. 18th Working Conference on Reverse
Engineering, in in press, 2011.

[32] L. Jiang and Z. Su., “Automatic Mining of Functionally Equivalent
Code Fragments via Random Testing,” Proc. 8th Intl. Symp. on
Software Testing and Analysis (ISSTA '09), ACM Press, July 2009,
pp. 81-92.

[33] H. Kim, Y. Jung, S. Kim, and K. Yi, "MeCC: Memory Comparison-
Based Clone Detector," Proc. 33rd Intl. Conf. on Software
engineering (ICSE '11), ACM press, May 2011, pp. 301-310.

[34] N. Tsantalis, A. Chatzigeorgiou, G. Stephanides, and S. T. Halkidis,
“Design Pattern Detection Using Similarity Scoring,” IEEE Trans. On
Software Engineering, vol. 32, no. 11, pp. 896-909, Nov. 2006.

11

	I. Introduction
	II. An Empirical Study of Cloned Buggy Code
	III. CBCD, A Tool To Search For Cloned Buggy Code
	1) Optimization 1 (Opt1): Exclude Irrelevant Edges and Nodes from the System PDG
	2) Optimization 2 (Opt2): Break the System PDG into Small Graphs
	3) Optimization 3 (Opt3): Exclude Irrelevant PDGs
	4) Optimization 4 (Opt4): Break Up Large Bug Code Segments

	IV. Evaluation And Discussion
	1) Oracles for the Evaluation
	2) Other Code Clone Detectors for Comparison
	3) Executing the Tools
	4) Metrics
	1) Threats to Internal Validity
	2) Threats to External Validity
	3) Threats to Construct Validity

	V. Related work
	VI. Conclusions and Future Work

